Modeling Exhaust Emissions in Older Vehicles in the Era of New Technologies
Abstract
:1. Introduction
2. Methods
2.1. Research Vehicle, Route, and Apparatus Used
2.2. Software Used and Data Processing
3. Results
3.1. Exhaust Emission Results from Road Tests
3.2. Clustering of Model Learning Inputs
3.3. Emission Modeling and Validation
- Data clustering: the dataset is partitioned into two categories: cold engine and hot engine emissions, represented mathematically as:
- Emission modeling: the relationship between the features (speed and acceleration) and the target emission compounds (THC, NOx, CO, and CO2) can be modeled using general regression equations:
3.4. Example Use of Models
4. Discussion
5. Conclusions
- Development of predictive models for CO2, CO, THC, and NOx emissions using data clustering techniques and machine learning algorithms, notably gradient boosting.
- Significant improvement in model accuracy through clustering of input data, enhancing the ability to reflect emissions under various vehicle operating conditions.
- Capability of the models to analyze exhaust emissions and generate emission maps for urban areas, providing critical insights for effective transportation planning.
- Successful capture of complex emission patterns that traditional methods struggle to identify, showcasing the advantages of AI techniques.
- Affirmation of the effectiveness of the methodology in modeling emissions from older vehicles, offering valuable insights for decision-makers in environmental analysis and transport planning.
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CO | Carbon monoxide |
CO2 | Carbon dioxide |
CNG | Compressed natural gas |
EV | Electric vehicle |
ICEV | Internal combustion engine vehicles |
LPG | Liquified petroleum gas |
MAE | Mean Absolute Error |
MSE | Mean squared error |
NNET | Neural network |
NOx | Nitrogen oxides |
PEMS | Portable Emission Measurement System |
PHEV | Plug-in hybrid electric vehicle |
PM | Particulate matter |
R2 | Coefficient of determination |
RMSE | Root mean square error |
SOx | Sulfur Oxide |
SVM | Support vector machine |
THC | Total hydrocarbons |
References
- Agamloh, E.; Von Jouanne, A.; Yokochi, A. An overview of electric machine trends in modern electric vehicles. Machines 2020, 8, 20. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Selleri, T.; Gioria, R.; Melas, A.D.; Ferrarese, C.; Franzetti, J.; Arlitt, B.; Nagura, N.; Hanada, T.; Giechaskiel, B. Real-time measurements of formaldehyde emissions from modern vehicles. Energies 2022, 15, 7680. [Google Scholar] [CrossRef]
- Sharma, R.; Kumar, R.; Singh, P.K.; Raboaca, M.S.; Felseghi, R.A. A systematic study on the analysis of the emission of CO, CO2 and HC for four-wheelers and its impact on the sustainable ecosystem. Sustainability 2020, 12, 6707. [Google Scholar] [CrossRef]
- Mądziel, M.; Campisi, T. Investigation of Vehicular Pollutant Emissions at 4-Arm Intersections for the Improvement of Integrated Actions in the Sustainable Urban Mobility Plans (SUMPs). Sustainability 2023, 15, 1860. [Google Scholar] [CrossRef]
- Jaworski, A.; Mądziel, M.; Lew, K.; Campisi, T.; Woś, P.; Kuszewski, H.; Wojewoda, P.; Ustrzycki, A.; Balawender, K.; Jakubowski, M. Evaluation of the Effect of Chassis Dynamometer Load Setting on CO2 Emissions and Energy Demand of a Full Hybrid Vehicle. Energies 2022, 15, 122. [Google Scholar] [CrossRef]
- Shepelev, V.; Glushkov, A.; Slobodin, I.; Cherkassov, Y. Measuring and modelling the concentration of vehicle-related PM2.5 and PM10 emissions based on neural networks. Mathematics 2023, 11, 1144. [Google Scholar] [CrossRef]
- Wallington, T.J.; Anderson, J.E.; Dolan, R.H.; Winkler, S.L. Vehicle emissions and urban air quality: 60 years of progress. Atmosphere 2022, 13, 650. [Google Scholar] [CrossRef]
- Park, J.; Shin, M.; Lee, J.; Lee, J. Estimating the effectiveness of vehicle emission regulations for reducing NOx from light-duty vehicles in Korea using on-road measurements. Sci. Total Environ. 2021, 767, 144250. [Google Scholar] [CrossRef]
- Jaworski, A.; Lejda, K.; Mądziel, M.; Ustrzycki, A. Assessment of the emission of harmful car exhaust components in real traffic conditions. IOP Conf. Ser. Mater. Sci. Eng. 2018, 421, 042031. [Google Scholar] [CrossRef]
- Vidyattama, Y.; Tanton, R.; Nakanishi, H. Investigating Australian households’ vehicle ownership and its relationship with emission tax policy options. Transp. Policy 2021, 114, 196–205. [Google Scholar] [CrossRef]
- Guttikunda, S.K. Vehicle Stock Numbers and Survival Functions for On-Road Exhaust Emissions Analysis in India: 1993–2018. Sustainability 2024, 16, 6298. [Google Scholar] [CrossRef]
- Gürbüz, H.; Şöhret, Y.; Ekici, S. Evaluating effects of the COVID-19 pandemic period on energy consumption and enviro-economic indicators of Turkish road transportation. In Energy Sources, Part A: Recovery, Utilization, and Environmental Effects; Taylor and Francis Group: Boca Raton, FL, USA, 2021; pp. 1–13. [Google Scholar]
- Ge, J.C.; Wu, G.; Yoo, B.O.; Choi, N.J. Effect of injection timing on combustion, emission and particle morphology of an old diesel engine fueled with ternary blends at low idling operations. Energy 2022, 253, 124150. [Google Scholar] [CrossRef]
- Gao, C.; Gao, C.; Song, K.; Xing, Y.; Chen, W. Vehicle emissions inventory in high spatial–temporal resolution and emission reduction strategy in Harbin-Changchun Megalopolis. Process Saf. Environ. Prot. 2020, 138, 236–245. [Google Scholar] [CrossRef]
- Alizadeh, H.; Sharifi, A. Analyzing urban travel behavior components in Tehran, Iran. Future Transp. 2023, 3, 236–253. [Google Scholar] [CrossRef]
- Gao, J.; Tian, G.; Sorniotti, A. On the emission reduction through the application of an electrically heated catalyst to a diesel vehicle. Energy Sci. Eng. 2019, 7, 2383–2397. [Google Scholar] [CrossRef]
- de Meij, A.; Astorga, C.; Thunis, P.; Crippa, M.; Guizzardi, D.; Pisoni, E.; Valverde, V.; Suarez-Bertoa, R.; Oreggioni, G.D.; Mahiques, O.; et al. Modelling the impact of the introduction of the EURO 6d-TEMP/6d regulation for light-duty vehicles on EU air quality. Appl. Sci. 2022, 12, 4257. [Google Scholar] [CrossRef]
- Xiao, C.; Chang, M.; Guo, P.; Chen, Q.; Tian, X. Comparison of the cost-effectiveness of eliminating high-polluting old vehicles and imposing driving restrictions to reduce vehicle emissions in Beijing. Transp. Res. Part D: Transp. Environ. 2019, 67, 291–302. [Google Scholar] [CrossRef]
- Singh, S.; Kulshrestha, M.J.; Rani, N.; Kumar, K.; Sharma, C.; Aswal, D.K. An overview of vehicular emission standards. Mapan 2023, 38, 241–263. [Google Scholar] [CrossRef]
- Zhan, T.; Ruehl, C.R.; Bishop, G.A.; Hosseini, S.; Collins, J.F.; Yoon, S.; Herner, J.D. An analysis of real-world exhaust emission control deterioration in the California light-duty gasoline vehicle fleet. Atmos. Environ. 2020, 220, 117107. [Google Scholar] [CrossRef]
- Jaworski, A.; Mądziel, M.; Kuszewski, H.; Lejda, K.; Balawender, K.; Jaremcio, M.; Jakubowski, M.; Wojewoda, P.; Lew, K.; Ustrzycki, A. Analysis of Cold Start Emission from Light Duty Vehicles Fueled with Gasoline and LPG for Selected Ambient Temperatures (No. 2020-01-2207); SAE Technical Paper: Warrendale, PA, USA, 2020. [Google Scholar]
- Guno, C.S.; Collera, A.A.; Agaton, C.B. Barriers and drivers of transition to sustainable public transport in the Philippines. World Electr. Veh. J. 2021, 12, 46. [Google Scholar] [CrossRef]
- Fullerton, D.; Gan, L. Cost-effective policies to reduce vehicle emissions. Am. Econ. Rev. 2005, 95, 300–304. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, M.; Hao, W. Energy-optimal car-following model for connected automated vehicles considering traffic flow stability. Energy 2024, 298, 131333. [Google Scholar] [CrossRef]
- Le Cornec, C.M.; Molden, N.; van Reeuwijk, M.; Stettler, M.E. Modelling of instantaneous emissions from diesel vehicles with a special focus on NOx: Insights from machine learning techniques. Sci. Total Environ. 2020, 737, 139625. [Google Scholar] [CrossRef] [PubMed]
- Aliramezani, M.; Koch, C.R.; Shahbakhti, M. Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: A review and future directions. Prog. Energy Combust. Sci. 2022, 88, 100967. [Google Scholar] [CrossRef]
- Giovannardi, E.; Brusa, A.; Petrone, B.; Cavina, N.; Tonelli, R.; Kitsopanidis, I. AI-Based Virtual Sensing of Gaseous Pollutant Emissions at the Tailpipe of a High-Performance Vehicle. SAE Int. J. Engines 2024, 17, 513–527. [Google Scholar] [CrossRef]
- Zhao, B.; Yu, L.; Wang, C.; Shuai, C.; Zhu, J.; Qu, S.; Taiebat, M.; Xu, M. Urban air pollution mapping using fleet vehicles as mobile monitors and machine learning. Environ. Sci. Technol. 2021, 55, 5579–5588. [Google Scholar] [CrossRef]
- Mądziel, M. Instantaneous CO2 emission modelling for a Euro 6 start-stop vehicle based on portable emission measurement system data and artificial intelligence methods. Environ. Sci. Pollut. Res. 2024, 31, 6944–6959. [Google Scholar] [CrossRef]
- Chen, J.; Dobbie, G.; Koh, Y.S.; Somervell, E.; Olivares, G. Vehicle emission prediction using remote sensing data and machine learning techniques. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing, Pau, France, 9–13 April 2018; pp. 444–451. [Google Scholar]
- Hoang, A.T.; Nižetić, S.; Ong, H.C.; Tarelko, W.; Le, T.H.; Chau, M.Q.; Nguyen, X.P. A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels. Sustain. Energy Technol. Assess. 2021, 47, 101416. [Google Scholar]
- Acheampong, A.O.; Boateng, E.B. Modelling carbon emission intensity: Application of artificial neural network. J. Clean. Prod. 2019, 225, 833–856. [Google Scholar] [CrossRef]
- Mądziel, M. Modelling CO2 Emissions from Vehicles Fuelled with Compressed Natural Gas Based on On-Road and Chassis Dynamometer Tests. Energies 2024, 17, 1850. [Google Scholar] [CrossRef]
- Mądziel, M. Liquified Petroleum Gas-Fuelled Vehicle CO2 Emission Modelling Based on Portable Emission Measurement System, On-Board Diagnostics Data, and Gradient-Boosting Machine Learning. Energies 2023, 16, 2754. [Google Scholar] [CrossRef]
- Liu, H.; Qi, L.; Liang, C.; Deng, F.; Man, H.; He, K. How aging process changes characteristics of vehicle emissions? A review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1796–1828. [Google Scholar] [CrossRef]
- Kadijk, G.; Elstgeest, M.; Vroom, Q.; Paalvast, M.; Ligterink, N.; van der Mark, P. On road emissions of 38 petrol vehicles with high mileages. TNO Rep. 2020, 8, 11883. [Google Scholar]
- Seo, J.; Park, J.; Park, J.; Park, S. Emission factor development for light-duty vehicles based on real-world emissions using emission map-based simulation. Environ. Pollut. 2021, 270, 116081. [Google Scholar] [CrossRef]
- Perugu, H. Emission modelling of light-duty vehicles in India using the revamped VSP-based MOVES model: The case study of Hyderabad. Transp. Res. Part D Transp. Environ. 2019, 68, 150–163. [Google Scholar] [CrossRef]
- Ziółkowski, A.; Fuć, P.; Lijewski, P.; Jagielski, A.; Bednarek, M.; Kusiak, W. Analysis of exhaust emissions from heavy-duty vehicles on different applications. Energies 2022, 15, 7886. [Google Scholar] [CrossRef]
- Pielecha, J.; Skobiej, K.; Gis, M.; Gis, W. Particle number emission from vehicles of various drives in the RDE tests. Energies 2022, 15, 6471. [Google Scholar] [CrossRef]
- Ziółkowski, A.; Fuć, P.; Lijewski, P.; Bednarek, M.; Jagielski, A.; Kusiak, W.; Igielska-Kalwat, J. The Influence of the Type and Condition of Road Surfaces on the Exhaust Emissions and Fuel Consumption in the Transport of Timber. Energies 2023, 16, 7257. [Google Scholar] [CrossRef]
- Andrych-Zalewska, M.; Chlopek, Z.; Merkisz, J.; Pielecha, J. Comparison of gasoline engine exhaust emissions of a passenger car through the WLTC and RDE Type Approval Tests. Energies 2022, 15, 8157. [Google Scholar] [CrossRef]
- Johary, R.; Révillion, C.; Catry, T.; Alexandre, C.; Mouquet, P.; Rakotoniaina, S.; Pennober, G.; Rakotondraompiana, S. Detection of large-scale floods using Google Earth Engine and Google Colab. Remote Sens. 2023, 15, 5368. [Google Scholar] [CrossRef]
- Li, Z. Forecasting weekly dengue cases by integrating google earth engine-based risk predictor generation and google colab-based deep learning modeling in fortaleza and the federal district, Brazil. Int. J. Environ. Res. Public Health 2022, 19, 13555. [Google Scholar] [CrossRef] [PubMed]
- Govender, P.; Sivakumar, V. Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019). Atmos. Pollut. Res. 2020, 11, 40–56. [Google Scholar] [CrossRef]
- Scoccimarro, R.; Zaldarriaga, M.; Hui, L. Power spectrum correlations induced by nonlinear clustering. Astrophys. J. 1999, 527, 1. [Google Scholar] [CrossRef]
- Jia, H.; Ding, S.; Xu, X.; Nie, R. The latest research progress on spectral clustering. Neural Comput. Appl. 2014, 24, 1477–1486. [Google Scholar] [CrossRef]
- Teymoori, M.M.; Chitsaz, I.; Zarei, A. Three-way catalyst modeling and fuel switch optimization of a natural gas bi-fuel-powered vehicle. Fuel 2023, 341, 126979. [Google Scholar] [CrossRef]
- Hamedi, M.R.; Doustdar, O.; Tsolakis, A.; Hartland, J. Energy-efficient heating strategies of diesel oxidation catalyst for low emissions vehicles. Energy 2021, 230, 120819. [Google Scholar] [CrossRef]
- Prati, M.V.; Costagliola, M.A.; Zuccheroso, A.; Napolitano, P. Assessment of Euro 5 diesel vehicle NOx emissions by laboratory and track testing. Environ. Sci. Pollut. Res. 2019, 26, 10576–10586. [Google Scholar] [CrossRef]
- Hassan AA, H.; Shah, W.; Husein, A.M.; Talib, M.S.; Mohammed AA, J.; Iskandar, M. Clustering approach in wireless sensor networks based on K-means: Limitations and recommendations. Int. J. Recent Technol. Eng. 2019, 7, 119–126. [Google Scholar]
- Raykov, Y.P.; Boukouvalas, A.; Baig, F.; Little, M.A. What to do when K-means clustering fails: A simple yet principled alternative algorithm. PLoS ONE 2016, 11, e0162259. [Google Scholar] [CrossRef]
- Shutaywi, M.; Kachouie, N.N. Silhouette analysis for performance evaluation in machine learning with applications to clustering. Entropy 2021, 23, 759. [Google Scholar] [CrossRef]
- Ekemeyong Awong, L.E.; Zielinska, T. Comparative Analysis of the Clustering Quality in Self-Organizing Maps for Human Posture Classification. Sensors 2023, 23, 7925. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Bae, S.J.; Jang, M.W. Linear regression machine learning algorithms for estimating reference evapotranspiration using limited climate data. Sustainability 2022, 14, 11674. [Google Scholar] [CrossRef]
- Lee, H.; Wang, J.; Leblon, B. Using linear regression, random forests, and support vector machine with unmanned aerial vehicle multispectral images to predict canopy nitrogen weight in corn. Remote Sens. 2020, 12, 2071. [Google Scholar] [CrossRef]
- Steigmann, L.; Di Gianfilippo, R.; Steigmann, M.; Wang, H.L. Classification based on extraction socket buccal bone morphology and related treatment decision tree. Materials 2022, 15, 733. [Google Scholar] [CrossRef]
- Huo, Z.; Zha, X.; Lu, M.; Ma, T.; Lu, Z. Prediction of carbon emission of the transportation sector in Jiangsu province-regression prediction model based on GA-SVM. Sustainability 2023, 15, 3631. [Google Scholar] [CrossRef]
- Petersen, A.H.; Ekstrøm, C. Technical Validation of Plot Designs by Use of Deep Learning. Am. Stat. 2024, 78, 220–228. [Google Scholar] [CrossRef]
- Jaworski, A.; Mądziel, M.; Kuszewski, H. Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions. Energies 2022, 15, 2238. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.-W.A.; Ho, K.-F.; Chan, C.S.; Zhang, Z.; Lee, S.-C.; Chow, J.C.; Watson, J.G. Comparison of vehicle emissions by EMFAC-HK model and tunnel measurement in Hong Kong. Atmos. Environ. 2021, 256, 118452. [Google Scholar] [CrossRef]
- Abdul-Manan, A.F. Uncertainty and differences in GHG emissions between electric and conventional gasoline vehicles with implications for transport policy making. Energy Policy 2015, 87, 1–7. [Google Scholar] [CrossRef]
- Tamayao, M.A.M.; Michalek, J.J.; Hendrickson, C.; Azevedo, I.M. Regional variability and uncertainty of electric vehicle life cycle CO2 emissions across the United States. Environ. Sci. Technol. 2015, 49, 8844–8855. [Google Scholar] [CrossRef]
- Mądziel, M. Quantifying Emissions in Vehicles Equipped with Energy-Saving Start–Stop Technology: THC and NOx Modeling Insights. Energies 2024, 17, 2815. [Google Scholar] [CrossRef]
- Mądziel, M. Energy Modeling for Electric Vehicles Based on Real Driving Cycles: An Artificial Intelligence Approach for Microscale Analyses. Energies 2024, 17, 1148. [Google Scholar] [CrossRef]
- Zimakowska-Laskowska, M.; Laskowski, P. Emission from Internal Combustion Engines and Battery Electric Vehicles: Case Study for Poland. Atmosphere 2022, 13, 401. [Google Scholar] [CrossRef]
- Mądziel, M. Future Cities Carbon Emission Models: Hybrid Vehicle Emission Modelling for Low-Emission Zones. Energies 2023, 16, 6928. [Google Scholar] [CrossRef]
- Sun, S.; Sun, L.; Liu, G.; Zou, C.; Wang, Y.; Wu, L.; Mao, H. Developing a vehicle emission inventory with high temporal-spatial resolution in Tianjin, China. Sci. Total Environ. 2021, 776, 145873. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, Y.; Zhang, H.; Wang, F.; Chen, H. A Parallel Supervision System for Vehicle CO2 Emissions Based on OBD-Independent Information. IEEE Trans. Intell. Veh. 2022, 8, 2077–2087. [Google Scholar] [CrossRef]
- Dib, A.; Sciarretta, A.; Balac, M. Deep Learning-Based Mesoscopic Pollutant Emissions Modeling in Road Traffic Networks. In Proceedings of the 2024 IEEE Forum for Innovative Sustainable Transportation Systems (FISTS), Riverside, CA, USA, 26–28 February 2024; pp. 1–7. [Google Scholar]
- Matthias, V.; Bieser, J.; Mocanu, T.; Pregger, T.; Quante, M.; Ramacher, M.O.; Seum, S.; Winkler, C. Modelling road transport emissions in Germany–Current day situation and scenarios for 2040. Transp. Res. Part D Transp. Environ. 2020, 87, 102536. [Google Scholar] [CrossRef]
Emission Compound | Best Model | MSE (± Std. Dev.) | R2 (± Std. Dev.) |
---|---|---|---|
THC (Cold Engine) | Random Forest Regression | 0.00003 ± 0.00001 | 0.756 ± 0.014 |
NOx (Cold Engine) | Polynomial Regression | 0.00005 ± 0.00002 | 0.602 ± 0.013 |
CO (Cold Engine) | Gradient Boosting Regression | 0.00288 ± 0.00015 | 0.485 ± 0.012 |
CO2 (Cold Engine) | Polynomial Regression | 0.00319 ± 0.00010 | 0.926 ± 0.010 |
THC (Warm Engine) | Gradient Boosting Regression | 0.00002 ± 0.00001 | 0.665 ± 0.013 |
NOx (Warm Engine) | Polynomial Regression | 0.00002 ± 0.00001 | 0.424 ± 0.015 |
CO (Warm Engine) | Polynomial Regression | 0.00275 ± 0.00014 | 0.225 ± 0.016 |
CO2 (Warm Engine) | Polynomial Regression | 0.00219 ± 0.00009 | 0.954 ± 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mądziel, M. Modeling Exhaust Emissions in Older Vehicles in the Era of New Technologies. Energies 2024, 17, 4924. https://doi.org/10.3390/en17194924
Mądziel M. Modeling Exhaust Emissions in Older Vehicles in the Era of New Technologies. Energies. 2024; 17(19):4924. https://doi.org/10.3390/en17194924
Chicago/Turabian StyleMądziel, Maksymilian. 2024. "Modeling Exhaust Emissions in Older Vehicles in the Era of New Technologies" Energies 17, no. 19: 4924. https://doi.org/10.3390/en17194924
APA StyleMądziel, M. (2024). Modeling Exhaust Emissions in Older Vehicles in the Era of New Technologies. Energies, 17(19), 4924. https://doi.org/10.3390/en17194924