Characteristics of SO2 Removal and Heat Recovery of Flue Gas Based on a Hybrid Flue Gas Condenser
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hybrid FGC System
2.2. Experimental Method
2.3. Experimental Conditions
2.3.1. Single Experiment Based on ICC Type
2.3.2. Integrated Experiment on the ICC- and DCC-Type FGC System
3. Results and Discussion
3.1. Results of Single Experiment Based on the ICC-Type Reactor
3.2. Results of the Hybrid FGC System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Abbreviations | ||
L/G | liquid-to-gas ratio | |
PM | packing material | |
W | with | |
W/O | with out | |
Symbols | ||
cp | specific heat capacity | [kJ/kg/K] |
C | SO2 concentration | [ppm] |
D | humidity ratio | |
H | specific enthalpy | [kJ/kg] |
Q | heat transfer rate | [kW] |
r | latent heat of water vaporization | [kJ/kg] |
T | temperature | [°C] |
Greek | ||
SO2 removal efficiency | [%] | |
Subscripts | ||
0 | reference state | |
a | dry flue gas | |
D | DCC | |
dp | dew point | |
fg | flue gas | |
g | gas | |
H | hybrid | |
in | inlet | |
I | ICC | |
l | liquid | |
out | outlet | |
v | vapor |
References
- Gao, D.; Li, Z.H.; Zhang, H.; Chen, H.; Cheng, C.; Liang, K. Moisture and latent heat recovery from flue gas by nonporous organic membranes. J. Clean. Prod. 2019, 225, 1065–1078. [Google Scholar] [CrossRef]
- Bacon, G.H.; Li, R.; Liang, K.Y. Control particulate and metal HAPs. Chem. Eng. Prog. 1997, 93, 59–67. [Google Scholar]
- Vehlow, J. Air pollution control systems in WtE units: An overview. Waste Manag. 2015, 37, 58–74. [Google Scholar] [CrossRef]
- Li, X.; Han, J.; Liu, Y.; Dou, Z.; Zhang, T. Summary of research progress on industrial flue gas desulfurization technology. Sep. Purif. Technol. 2022, 281, 119849. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Jozewicz, W. Flue gas desulfurization: The state of the art. J. Air Waste Manag. Assoc. 2001, 51, 1676–1688. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Riffat, S.; Bai, H.; Zheng, X.; Reay, D. Recent progress in liquid desiccant dehumidification and air conditioning: A review. Energy Built. Environ. 2020, 1, 106–130. [Google Scholar] [CrossRef]
- Osakabe, M.; Yagi, K.; Itoh, T.; Ohmasa, K. Condensation heat transfer on tubes in actual flue gas (Parametric study for condensation behavior). Heat Transf. —Asian Res. Co-Spons. By Soc. Chem. Eng. Jpn. Heat Transf. Div. ASME 2003, 32, 153–166. [Google Scholar] [CrossRef]
- Osakabe, M.; Itoh, T.; Yagi, K. Condensation heat transfer of actual flue gas on horizontal tubes. Heat Transf. Asian Res. 1999, 32, 153–166. [Google Scholar] [CrossRef]
- Osakabe, M.; Itoh, T.; Ohmasa, K. Condensation heat transfer on spirally finned tubes in actual flue gas. J. Mar. Eng. Soc. Jpn 2000, 35, 260–267. [Google Scholar] [CrossRef]
- Cui, L.; Song, X.; Li, Y.; Wang, Y.; Feng, Y.; Yan, L.; Dong, Y. Synergistic capture of fine particles in wet flue gas through cooling and condensation. Appl. Energy 2018, 225, 656–667. [Google Scholar] [CrossRef]
- Grigonyte, J.; Nuutinen, I.; Koponen, T.; Lamberg, H.; Tissari, J.; Jokiniemi, J.; Sippula, O. Evaluation of a heat exchanger designed for efficient fine particle precipitation in small-scale wood combustion. Energy Fuels 2014, 28, 6058–6065. [Google Scholar] [CrossRef]
- Jia, L.; Peng, X.F.; Sun, J.D.; Chen, T.B. An experimental study on vapor condensation of wet flue gas in a plastic heat exchanger. Heat Transf.—Asian Res. Co-Spons. By Soc. Chem. Eng. Jpn. Heat Transf. Div. ASME 2001, 30, 571–580. [Google Scholar] [CrossRef]
- Jeong, K.; Kessen, M.J.; Bilirgen, H.; Levy, E.K. Analytical modeling of water condensation in condensing heat exchanger. Int. J. Heat Mass Transf. 2010, 53, 2361–2368. [Google Scholar] [CrossRef]
- Jeong, K.; Levy, E.K. Theoretical prediction of sulfuric acid condensation rates in boiler flue gas. Int. J. Heat Mass Transf. 2012, 55, 8010–8019. [Google Scholar] [CrossRef]
- Jiao, F.; Cheng, Y.; Zhang, L.; Yamada, N.; Sato, A.; Ninomiya, Y. Effects of HCl, SO2 and H2O in flue gas on the condensation behavior of Pb and Cd vapors in the cooling section of municipal solid waste incineration. Proc. Combust. Inst. 2011, 33, 2787–2793. [Google Scholar] [CrossRef]
- Jiao, F.; Zhang, L.; Yamada, N.; Sato, A.; Ninomiya, Y. Effect of HCl, SO2 and H2O on the condensation of heavy metal vapors in flue gas cooling section. Fuel Process. Technol. 2013, 105, 181–187. [Google Scholar] [CrossRef]
- Zuo, W.; Zhang, X.; Li, Y. Review of flue gas acid dew-point and related low temperature corrosion. J. Energy Inst. 2020, 93, 1666–1677. [Google Scholar] [CrossRef]
- Butcher, T.A.; Litzke, W. Condensing Economizers for Small Coal-Fired Boilers and Furnaces; Brookhaven National Lab. (BNL): Upton, NY, USA, 1994. [Google Scholar]
- Li, Z.; Sun, F.; Shi, Y.; Li, F.; Ma, L. Experimental study and mechanism analysis on low temperature corrosion of coal fired boiler heating surface. Appl. Therm. Eng. 2015, 80, 355–361. [Google Scholar] [CrossRef]
- Zhong, W.; Ji, W.; Cao, X.; Yuan, Y. Flue gas water recovery by indirect cooling technology for large-scale applications: A review. J. Therm. Sci. 2020, 29, 1223–1241. [Google Scholar] [CrossRef]
- Hou, J.; Che, D.; Liu, Y.; Jiang, Q. A new system of absorption heat pump vs. boiler for recovering heat and water vapor in flue gas. Energy Procedia 2018, 152, 1266–1271. [Google Scholar] [CrossRef]
- Hrastel, I.; Gerbec, M.; Stergařsek, A. Technology optimization of wet flue gas desulphurization process. Chem. Eng. Technol. 2007, 30, 220–233. [Google Scholar] [CrossRef]
- Dunning, S.; Katz, L.S. Energy Calculations & Problem Solving Sourcebook: A Practical Guide for the Certified Energy Manager Exam, 1st ed.; The Fairmont Press, Inc.: Lilburn, Georgia, 2017. [Google Scholar]
- Gellings, C.W. Efficient Use and Conservation of Energy; Eolss Publishers, Co. Ltd.: Oxford, UK, 2009; Volume I. [Google Scholar]
- Rahmani, F.; Mowla, D.; Karimi, G.; Golkhar, A.; Rahmatmand, B. SO2 removal from simulated flue gas using various aqueous solutions: Absorption equilibria and operational data in a packed column. Sep. Purif. Technol. 2015, 153, 162–169. [Google Scholar] [CrossRef]
- Maalouf, S.; Ksayer, E.B.; Clodic, D. Investigation of direct contact condensation for wet flue-gas waste heat recovery using Organic Rankine Cycle. Energy Convers. Manag. 2016, 107, 96–102. [Google Scholar] [CrossRef]
- Zhang, L.; Zhai, H.; He, J.; Yang, F.; Wang, S. Application of exergy analysis in flue gas condensation waste heat recovery system evaluation. Energies 2022, 15, 7525. [Google Scholar] [CrossRef]
- Cui, L.; Lu, J.; Song, X.; Tang, L.; Li, Y.; Dong, Y. Energy conservation and efficiency improvement by coupling wet flue gas desulfurization with condensation desulfurization. Fuel 2021, 285, 119209. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018. [Google Scholar]
- Shuangchen, M.; Jin, C.; Kunling, J.; Lan, M.; Sijie, Z.; Kai, W. Environmental influence and countermeasures for high humidity flue gas discharging from power plants. Renew. Sustain. Energy Rev. 2017, 73, 225–235. [Google Scholar] [CrossRef]
Unit | Case Ref. | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | |
---|---|---|---|---|---|---|---|---|
Flue gas flow rate | L/min | 30 | 22.5 | 15 | 30 | 15 | 30 | 30 |
Residence time | S | 7.8 | 11.7 | 15.6 | 7.8 | 15.6 | 7.8 | 7.8 |
Water vapor contents | Vol.% | 15 | 15 | 15 | 45 | 45 | 15 | 15 |
Cooling water flow rate | L/min | 1 | 1 | 1 | 1 | 1 | 1.5 | 2 |
Parameter | Unit | Value |
---|---|---|
Flue gas flow rate | L/min | 60 |
Inlet SO2 concentration | ppm | 320 |
L/G ratio | - | 1.5, 2, 2.5, 3, 3.5 |
SO2: NaOH molar ratio | - | 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 |
Parameter | Case Ref. | Case 5 | Case 6 |
---|---|---|---|
Mixed gas outlet temperature (°C) | 28 | 26 | 24 |
Condensed water ratio (%) | 80.9 | 82.9 | 85.7 |
Heat recovery efficiency (%) | 93.4 | 94.8 | 97.6 |
Experimental Case | L/G Ratio | Single DCC System | ICC–DCC Hybrid System | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
W/O PM | With PM | SO2: NaOH Molar Ratio (With PM) | |||||||||
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | |||||
SO2 removal efficiency (%) | 1.5 | 31.5 | 40.5 | 47.1 | 52.8 | 61.3 | 71.6 | 77.5 | 84.7 | 87.6 | 92.2 |
2 | 42.6 | 49.2 | 56.1 | ||||||||
2.5 | 52.1 | 57.7 | 63.5 | ||||||||
3 | 59.5 | 63.9 | 69.5 | ||||||||
3.5 | 65.9 | 69.5 | 72.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.; Yang, W.; Lee, Y.; Ryu, C. Characteristics of SO2 Removal and Heat Recovery of Flue Gas Based on a Hybrid Flue Gas Condenser. Energies 2024, 17, 4799. https://doi.org/10.3390/en17194799
Choi H, Yang W, Lee Y, Ryu C. Characteristics of SO2 Removal and Heat Recovery of Flue Gas Based on a Hybrid Flue Gas Condenser. Energies. 2024; 17(19):4799. https://doi.org/10.3390/en17194799
Chicago/Turabian StyleChoi, Hyeonrok, Won Yang, Yongwoon Lee, and Changkook Ryu. 2024. "Characteristics of SO2 Removal and Heat Recovery of Flue Gas Based on a Hybrid Flue Gas Condenser" Energies 17, no. 19: 4799. https://doi.org/10.3390/en17194799
APA StyleChoi, H., Yang, W., Lee, Y., & Ryu, C. (2024). Characteristics of SO2 Removal and Heat Recovery of Flue Gas Based on a Hybrid Flue Gas Condenser. Energies, 17(19), 4799. https://doi.org/10.3390/en17194799