Portrait of the Decarbonization and Renewables Penetration in Oman’s Energy Mix, Motivated by Oman’s National Green Hydrogen Plan
Abstract
:1. Introduction
1.1. Background
1.2. Goal of the Study
2. Research Method
- The Global Integrated Power Tracker (GIPT), which is a comprehensive dataset, covering energy projects in eight categories and eight statuses (stages or phases) of development [209].
- Operating.
- Construction.
- Pre-construction.
- Announced.
- Retired.
- Cancelled.
- Shelved.
- Mothballed.
- Coal.
- Oil–Gas.
- Nuclear.
- Geothermal.
- Hydropower.
- Bioenergy.
- Solar.
- Wind.
- The Global Solar Power Tracker (GSPT), which is limited to solar energy projects (with the same eight statuses of development as in GIPT) [210].
- PV (photovoltaic), where solar radiation is converted directly into electricity.
- The Global Wind Power Tracker (GWPT), which is limited to wind energy projects (with the same eight statuses of development as in GIPT) [216].
- Onshore.
- Offshore Hard Mount.
- Offshore Floating.
3. Results
3.1. Number of Plants by Energy Category and Development Status
3.2. Capacity by Energy Category and Development Status
3.3. Renewables Capacity by Development Status
3.4. Energy Mix Capacity Shares by Development Status
3.5. Share of Green Hydrogen in the Solar Capacity
3.6. Share of Green Hydrogen in the Wind Capacity
4. Discussion
5. Conclusions
- Out of 119 energy plants (or projects) for Oman, 11 plants were announced (seven solar plants and four wind plants), five were cancelled (two coal plants, one oil–gas plant, and two solar plants), one was shelved (hydropower), and three were mothballed (oil–gas). Thus, the remaining plants in operation or quite reliably planned (construction or pre-construction) are 99.
- Out of the 99 operating or planned plants in Oman, the operating 53 plants have a total capacity of 15.0711 GW, which is largely dominated by oil–gas plants (13.7287 GW or 91.093%).
- Out of the 99 operating or planned plants, the planned 46 plants have a total capacity of 68.0560 GW, which is largely dominated by renewable energy plants (67.7640 GW or 99.571%), with roughly equal shares for the solar type and the wind type.
- Green hydrogen (GH) investments (with a 2030 annual target of exceeding 1 million tons and a 2040 annual target of exceeding 3 million tons) are the major driver for the expansive penetration of solar and wind energy in Oman. The share of planned national capacity additions for green hydrogen production is 91.248% (a fraction of 62.1000 GW within a total of 68.0560 GW). Solar and wind energy have roughly equal shares in green hydrogen production (in terms of the planned portion of capacity dedicated for green hydrogen production, being 29.0500 GW solar and 33.0500 GW wind).
- It is possible that no more oil–gas plants are to be established in Oman, indicating a phaseout process of these sources of greenhouse gases and the country’s dedication to decarbonize the national economy and reach net-zero GHG emissions by 2050.
- All wind plants in Oman (either operating or planned) use the onshore installation type.
- Most of the solar plants in Oman (either operating or planned) use the photovoltaic (PV) technology, with only a few of them using the solar thermal (concentrated solar power) technology. The PV share by capacity exceeds 95%, either for the planned plants alone or for the planned and operating plants together.
- Nearly all planned wind capacity additions are for green hydrogen (98.804% or 33.0500 GW out of 33.4500 GW).
- Most of the planned solar capacity additions are for green hydrogen (84.659% or 29.0500 GW out of 34.3140 GW).
- Large expansions in solar energy utilization are intended for non-hydrogen applications.
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Abri, I.; Önel, G.; Grogan, K.A. Oil Revenue Shocks and the Growth of the Non-Oil Sector in an Oil-Dependent Economy: The Case of Oman. Theor. Econ. Lett. 2019, 9, 785–800. [Google Scholar] [CrossRef]
- Valeri, M. Economic Diversification and Energy Security in Oman: Natural Gas, the X Factor? J. Arab. Stud. 2020, 10, 159–174. [Google Scholar] [CrossRef]
- Alshubiri, F.N.; Tawfik, O.I.; Jamil, S.A. Impact of Petroleum and Non-Petroleum Indices on Financial Development in Oman. Financ. Innov. 2020, 6, 15. [Google Scholar] [CrossRef]
- Charabi, Y.; Al-Awadhi, T.; Choudri, B.S. Strategic Pathways and Regulatory Choices for Effective GHG Reduction in Hydrocarbon Based Economy: Case of Oman. Energy Rep. 2018, 4, 653–659. [Google Scholar] [CrossRef]
- PricewaterhouseCoopers (PwC). Oman: Budget 2021 & 10th Five Year Development Plan (2021–2025)—Continued Focus on Diversification & Maintaining Deficit; PwC: London, UK, 2021. [Google Scholar]
- Marzouk, O.A. Expectations for the Role of Hydrogen and Its Derivatives in Different Sectors through Analysis of the Four Energy Scenarios: IEA-STEPS, IEA-NZE, IRENA-PES, and IRENA-1.5 °C. Energies 2024, 17, 646. [Google Scholar] [CrossRef]
- Al Ismaili, S.; Al Abri, I.; Gulseven, O.; Al-Masroori, H.; Dutta, S. Recreational Value of Different Coral Reefs Richness Levels in Oman. J. Outdoor Recreat. Tour. 2024, 46, 100775. [Google Scholar] [CrossRef]
- Al Abri, I.; Gulseven, O.; Yousuf, J.B. Estimating the Recreational Value of a Rural Mountain Area in the Presence of Heterogeneous Agricultural Density on Al-Jabal Al-Akhdar Oman. J. Outdoor Recreat. Tour. 2023, 42, 100639. [Google Scholar] [CrossRef]
- Al-Badi, A.H.; Malik, A.; Gastli, A. Assessment of Renewable Energy Resources Potential in Oman and Identification of Barrier to Their Significant Utilization. Renew. Sustain. Energy Rev. 2009, 13, 2734–2739. [Google Scholar] [CrossRef]
- Oman Power and Water Procurement Company (OPWP). Oman Power and Water Procurement Company Annual Report 2022; OPWP: Muscat, Oman, 2023. [Google Scholar]
- International Renewable Energy Agency (IRENA). Renewables Readiness Assessment: Sultanate of Oman; IRENA: Masdar City, United Arab Emirates, 2014. [Google Scholar]
- Turner, L.K.; Collins, F.G. Carbon Dioxide Equivalent (CO2-e) Emissions: A Comparison between Geopolymer and OPC Cement Concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Carbon Dioxide Equivalent. Available online: https://www.eea.europa.eu/help/glossary/eea-glossary/carbon-dioxide-equivalent (accessed on 8 August 2024).
- Marzouk, O.A. Assessment of Global Warming in Al Buraimi, Sultanate of Oman Based on Statistical Analysis of NASA POWER Data over 39 Years, and Testing the Reliability of NASA POWER against Meteorological Measurements. Heliyon 2021, 7, e06625. [Google Scholar] [CrossRef]
- Winchester, N. Climate Policy Insights from an Open-Source Economy-Wide Model. N. Z. Econ. Pap. 2023, 57, 179–183. [Google Scholar] [CrossRef]
- Teng, F.; Xu, S.-Q. Definition of Business as Usual and Its Impacts on Assessment of Mitigation Efforts. Adv. Clim. Chang. Res. 2012, 3, 212–219. [Google Scholar] [CrossRef]
- Connolly, R.; Connolly, M.; Carter, R.M.; Soon, W. How Much Human-Caused Global Warming Should We Expect with Business-As-Usual (BAU) Climate Policies? A Semi-Empirical Assessment. Energies 2020, 13, 1365. [Google Scholar] [CrossRef]
- Eldon, O.; Noek, A. Benue River Physico-Chemical Assessment. Int. J. Adv. Appl. Sci. 2014, 1, 13–19. [Google Scholar]
- Lomoljo-Bantayan, N.A.; Tatil, W.T.; Dagoc, F.L.S.; Tampus, A.D.; Amparado, R.J.F. Carbon Stock Assessment of Mangrove Forests along Macajalar Bay, Misamis Oriental, Philippines. Int. J. Adv. Appl. Sci. 2023, 10, 36–45. [Google Scholar] [CrossRef]
- Syafrina, A.H.; Norzaida, A.; Shazwani, O.N. Rainfall Analysis in the Northern Region of Peninsular Malaysia. Int. J. Adv. Appl. Sci. 2017, 4, 11–16. [Google Scholar] [CrossRef]
- Igberi, C.O.; Omenyi, L.O.; Osuji, E.P.; Egwu, P.N.; Ibrahim-Olesin, S. Comparative Analysis of the Sustainable Dimensions of Food Security with COVID-19 and Climate Change: A Case Study. Int. J. Adv. Appl. Sci. 2022, 9, 9–15. [Google Scholar] [CrossRef]
- Hussain, Z.A.; Aljalawi, N.M.F. Effect of Sustainable Glass Powder on the Properties of Reactive Powder Concrete with Polypropylene Fibers. Eng. Technol. Appl. Sci. Res. 2022, 12, 8388–8392. [Google Scholar] [CrossRef]
- Sultanate of Oman Ministry of Environmental and Climate Affairs (MECA). Submission on Intended Nationally Determined Contributions (lNDCs); Sultanate of Oman Ministry of Environmental and Climate Affairs: Muscat, Oman, 2015. [Google Scholar]
- Oman 2040 Main Committee (Om2040C). Sultanate of Oman 2040 Vision Document (Draft); Oman 2040 Main Committee: Muscat, Oman, 2019. [Google Scholar]
- Oman Vision 2040 Implementation Follow-Up Unit (Om2040U). Follow-Up System (Oman Vision 2040). Available online: https://www.oman2040.om/organization?lang=en (accessed on 30 July 2024).
- United Nations Framework Convention on Climate Change (UNFCCC). Parties to the United Nations Framework Convention on Climate Change (UNFCCC)—Oman. Available online: https://unfccc.int/node/61133 (accessed on 30 July 2024).
- United Nations (UN). What Is the Difference between Signing, Ratification and Accession of UN Treaties? Available online: https://ask.un.org/faq/14594 (accessed on 6 August 2024).
- Civil Aviation Authority in the Sultanate of Oman (CAA). Second Nationally Determined Contribution (NDC); CAA: Muscat, Oman, 2021. [Google Scholar]
- Energy & Utilities (E&N). Oman Establishes National Hydrogen Alliance (Hy-Fly). Available online: https://energy-utilities.com/oman-establishes-national-hydrogen-alliance-news113700.html (accessed on 30 July 2024).
- Ministry of Energy and Minerals in the Sultanate of Oman (MEM). Renewable Energy and Hydrogen (Hy-Fly). Available online: https://mem.gov.om/en-us/About-Us/About/Renewable-Energy-and-Hydrogen (accessed on 30 July 2024).
- Sulaiman, S.M.A. Satisfaction on Academic Supervision Services among Sultan Qaboos University Students. J. Educ. Psychol. Sci. 2008, 9, 13–38. [Google Scholar] [CrossRef]
- Shukri, R.K.; Bakkar, B.S.; El-Damen, M.A.; Ahmed, S.M. Attitudes of Students at Sultan Qaboos University towards the Nursing Profession. Sultan Qaboos Univ. Med. J. 2013, 13, 539–544. [Google Scholar] [CrossRef]
- Al-Sinani, S.; Al-Mamari, A.; Woodhouse, N.; Al-Shafie, O.; Amar, F.; Al-Shafaee, M.; Hassan, M.; Bayoumi, R. Quality of Diabetes Care at Outpatient Clinic, Sultan Qaboos University Hospital. Oman Med. J. 2015, 30, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Al Riyami, H.M.; Al Sheibani, H.M.; Al Subhi, H.A.; Al Ajmi, H.T.; Zohny, Z.Y.; Al Kindy, A.Q. Petroleum Development Oman Forecasting Management System. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 15–18 November 2021; SPE: Abu Dhabi, United Arab Emirates, 2021; p. D011S012R002. [Google Scholar]
- Sohar Port (SP). Sohar Port and Freezone. Available online: https://soharportandfreezone.om/en (accessed on 6 August 2024).
- Kumaraswamy, P.R.; Quamar, M.M.; Hameed, S. Oman. In Persian Gulf 2020; Persian Gulf; Springer: Singapore, 2020; pp. 151–176. ISBN 9789811564147. [Google Scholar]
- OQ Vendors│OQ. Available online: https://oq.com/en/vendors (accessed on 8 August 2024).
- Kakoulaki, G.; Kougias, I.; Taylor, N.; Dolci, F.; Moya, J.; Jäger-Waldau, A. Green Hydrogen in Europe—A Regional Assessment: Substituting Existing Production with Electrolysis Powered by Renewables. Energy Convers. Manag. 2021, 228, 113649. [Google Scholar] [CrossRef]
- Boretti, A. There Are Hydrogen Production Pathways with Better than Green Hydrogen Economic and Environmental Costs. Int. J. Hydrogen Energy 2021, 46, 23988–23995. [Google Scholar] [CrossRef]
- d’Amore-Domenech, R.; Santiago, Ó.; Leo, T.J. Multicriteria Analysis of Seawater Electrolysis Technologies for Green Hydrogen Production at Sea. Renew. Sustain. Energy Rev. 2020, 133, 110166. [Google Scholar] [CrossRef]
- Shiva Kumar, S.; Lim, H. An Overview of Water Electrolysis Technologies for Green Hydrogen Production. Energy Rep. 2022, 8, 13793–13813. [Google Scholar] [CrossRef]
- Ursua, A.; Gandia, L.M.; Sanchis, P. Hydrogen Production From Water Electrolysis: Current Status and Future Trends. Proc. IEEE 2012, 100, 410–426. [Google Scholar] [CrossRef]
- Cheng, H.; Xia, Y.; Wei, W.; Zhou, Y.; Zhao, B.; Zhang, L. Safety and Efficiency Problems of Hydrogen Production from Alkaline Water Electrolyzers Driven by Renewable Energy Sources. Int. J. Hydrogen Energy 2024, 54, 700–712. [Google Scholar] [CrossRef]
- Risco-Bravo, A.; Varela, C.; Bartels, J.; Zondervan, E. From Green Hydrogen to Electricity: A Review on Recent Advances, Challenges, and Opportunities on Power-to-Hydrogen-to-Power Systems. Renew. Sustain. Energy Rev. 2024, 189, 113930. [Google Scholar] [CrossRef]
- Marzouk, O.A. Compilation of Smart Cities Attributes and Quantitative Identification of Mismatch in Rankings. J. Eng. 2022, 2022, 5981551. [Google Scholar] [CrossRef]
- Hassan, Q.; Sameen, A.Z.; Olapade, O.; Alghoul, M.; Salman, H.M.; Jaszczur, M. Hydrogen Fuel as an Important Element of the Energy Storage Needs for Future Smart Cities. Int. J. Hydrogen Energy 2023, 48, 30247–30262. [Google Scholar] [CrossRef]
- Marzouk, O.A. Urban Air Mobility and Flying Cars: Overview, Examples, Prospects, Drawbacks, and Solutions. Open Eng. 2022, 12, 662–679. [Google Scholar] [CrossRef]
- Atilhan, S.; Park, S.; El-Halwagi, M.M.; Atilhan, M.; Moore, M.; Nielsen, R.B. Green Hydrogen as an Alternative Fuel for the Shipping Industry. Curr. Opin. Chem. Eng. 2021, 31, 100668. [Google Scholar] [CrossRef]
- Marzouk, O.A. Adiabatic Flame Temperatures for Oxy-Methane, Oxy-Hydrogen, Air-Methane, and Air-Hydrogen Stoichiometric Combustion Using the NASA CEARUN Tool, GRI-Mech 3.0 Reaction Mechanism, and Cantera Python Package. Eng. Technol. Appl. Sci. Res. 2023, 13, 11437–11444. [Google Scholar] [CrossRef]
- Bernardo, G.; Araújo, T.; Da Silva Lopes, T.; Sousa, J.; Mendes, A. Recent Advances in Membrane Technologies for Hydrogen Purification. Int. J. Hydrogen Energy 2020, 45, 7313–7338. [Google Scholar] [CrossRef]
- Marzouk, O.A. Performance Analysis of Shell-and-Tube Dehydrogenation Module: Dehydrogenation Module. Int. J. Energy Res. 2017, 41, 604–610. [Google Scholar] [CrossRef]
- Full, J.; Merseburg, S.; Miehe, R.; Sauer, A. A New Perspective for Climate Change Mitigation—Introducing Carbon-Negative Hydrogen Production from Biomass with Carbon Capture and Storage (HyBECCS). Sustainability 2021, 13, 4026. [Google Scholar] [CrossRef]
- Kameyama, H.; Yoshizaki, K.; Yasuda, I. Carbon Capture and Recycle by Integration of CCS and Green Hydrogen. Energy Procedia 2011, 4, 2669–2676. [Google Scholar] [CrossRef]
- Marzouk, O.A. Radiant Heat Transfer in Nitrogen-Free Combustion Environments. Int. J. Nonlinear Sci. Numer. Simul. 2018, 19, 175–188. [Google Scholar] [CrossRef]
- Nurdiawati, A.; Urban, F. Decarbonising the Refinery Sector: A Socio-Technical Analysis of Advanced Biofuels, Green Hydrogen and Carbon Capture and Storage Developments in Sweden. Energy Res. Soc. Sci. 2022, 84, 102358. [Google Scholar] [CrossRef]
- Marzouk, O.A. Estimated Electric Conductivities of Thermal Plasma for Air-Fuel Combustion and Oxy-Fuel Combustion with Potassium or Cesium Seeding. Heliyon 2024, 10, e31697. [Google Scholar] [CrossRef]
- Normann, F.; Andersson, K.; Leckner, B.; Johnsson, F. Emission Control of Nitrogen Oxides in the Oxy-Fuel Process. Prog. Energy Combust. Sci. 2009, 35, 385–397. [Google Scholar] [CrossRef]
- Hassan, Q.; Algburi, S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. Green Hydrogen: A Pathway to a Sustainable Energy Future. Int. J. Hydrogen Energy 2024, 50, 310–333. [Google Scholar] [CrossRef]
- Marzouk, O.A. Detailed and Simplified Plasma Models in Combined-Cycle Magnetohydrodynamic Power Systems. Int. J. Adv. Appl. Sci. 2023, 10, 96–108. [Google Scholar] [CrossRef]
- Li, X.; Raorane, C.J.; Xia, C.; Wu, Y.; Tran, T.K.N.; Khademi, T. Latest Approaches on Green Hydrogen as a Potential Source of Renewable Energy towards Sustainable Energy: Spotlighting of Recent Innovations, Challenges, and Future Insights. Fuel 2023, 334, 126684. [Google Scholar] [CrossRef]
- Choi, W.; Kang, S. Greenhouse Gas Reduction and Economic Cost of Technologies Using Green Hydrogen in the Steel Industry. J. Environ. Manag. 2023, 335, 117569. [Google Scholar] [CrossRef]
- Marzouk, O.A. Subcritical and Supercritical Rankine Steam Cycles, under Elevated Temperatures up to 900 °C and Absolute Pressures up to 400 Bara. Adv. Mech. Eng. 2024, 16, 1–18. [Google Scholar] [CrossRef]
- Pluemudom, A.; Smakgahn, K. Potential of Electricity Generation from Waste Managements: Case Study in Mueang, Thailand. Int. J. Adv. Appl. Sci. 2018, 5, 8–12. [Google Scholar] [CrossRef]
- Sek, S.K.; Chu, J.F. Investigating Economic Growth-Energy Consumption-Environmental Degradation Nexus in China. Int. J. Adv. Appl. Sci. 2017, 4, 21–25. [Google Scholar] [CrossRef]
- Kassem, Y.; Camur, H.; Abughinda, O.A.M. Solar Energy Potential and Feasibility Study of a 10MW Grid-Connected Solar Plant in Libya. Eng. Technol. Appl. Sci. Res. 2020, 10, 5358–5366. [Google Scholar] [CrossRef]
- Antar, R.; Alghamdi, S.; Alotaibi, J.; Alghamdi, M. Automatic Number Plate Recognition of Saudi License Car Plates. Eng. Technol. Appl. Sci. Res. 2022, 12, 8266–8272. [Google Scholar] [CrossRef]
- Saleh, A.M.S. A Power-Aware Method for IoT Networks with Mobile Stations and Dynamic Power Management Strategy. Eng. Technol. Appl. Sci. Res. 2023, 13, 12108–12114. [Google Scholar] [CrossRef]
- Goel, G.; Chaturvedi, A.K. Multi-Objective Load-Balancing Strategy for Fog-Driven Patient-Centric Smart Healthcare System in a Smart City. Eng. Technol. Appl. Sci. Res. 2024, 14, 16011–16019. [Google Scholar] [CrossRef]
- Lyudmila, P.; Anzhela, H. Main Directions for Improving Public Administration Mechanisms in Ukraine. Int. J. Adv. Appl. Sci. 2022, 9, 41–48. [Google Scholar] [CrossRef]
- Naz, N.S.; Abbas, S.; Khan, M.A.; Hassan, Z.; Bukhari, M.; Ghazal, T.M. Optimizing Semantic Error Detection through Weighted Federated Machine Learning: A Comprehensive Approach. Int. J. Adv. Appl. Sci. 2024, 11, 150–160. [Google Scholar] [CrossRef]
- Khan, S.; Altayar, M. Industrial Internet of Things: Investigation of the Applications, Issues, and Challenges. Int. J. Adv. Appl. Sci. 2021, 8, 104–113. [Google Scholar] [CrossRef]
- Follett, R.F.; Shafer, S.R.; Jawson, M.D.; Franzluebbers, A.J. Research and Implementation Needs to Mitigate Greenhouse Gas Emissions from Agriculture in the USA. Soil Tillage Res. 2005, 83, 159–166. [Google Scholar] [CrossRef]
- Necpalova, M.; Lee, J.; Skinner, C.; Büchi, L.; Wittwer, R.; Gattinger, A.; van der Heijden, M.; Mäder, P.; Charles, R.; Berner, A.; et al. Potentials to Mitigate Greenhouse Gas Emissions from Swiss Agriculture. Agric. Ecosyst. Environ. 2018, 265, 84–102. [Google Scholar] [CrossRef]
- Glennerster, R.; Jayachandran, S. Think Globally, Act Globally: Opportunities to Mitigate Greenhouse Gas Emissions in Low- and Middle-Income Countries. J. Econ. Perspect. 2023, 37, 111–136. [Google Scholar] [CrossRef]
- Llonch, P.; Haskell, M.J.; Dewhurst, R.J.; Turner, S.P. Current Available Strategies to Mitigate Greenhouse Gas Emissions in Livestock Systems: An Animal Welfare Perspective. Animal 2017, 11, 274–284. [Google Scholar] [CrossRef]
- Foreign Ministry in the Sultanate of Oman (FM). Energy Ministry to Launch Oman Hydrogen Company. Available online: https://www.fm.gov.om/energy-ministry-launches-oman-hydrogen-company (accessed on 23 November 2022).
- Hydrogen Oman (Hydrom). About Us (Hydrom: Hydrogen Oman). Available online: https://hydrom.om/Hydrom.aspx?cms=iQRpheuphYtJ6pyXUGiNqiQQw2RhEtKe#about (accessed on 30 July 2024).
- International Energy Agency (IEA). Climate Pledges Explorer. Available online: https://www.iea.org/data-and-statistics/data-tools/climate-pledges-explorer (accessed on 6 August 2024).
- Net Zero Tracker (NZT). Oman (Country). Available online: https://zerotracker.net/countries/oman-cou-0167 (accessed on 6 August 2024).
- Marzouk, O.A. Zero Carbon Ready Metrics for a Single-Family Home in the Sultanate of Oman Based on EDGE Certification System for Green Buildings. Sustainability 2023, 15, 13856. [Google Scholar] [CrossRef]
- Ozkan, M.; Nayak, S.P.; Ruiz, A.D.; Jiang, W. Current Status and Pillars of Direct Air Capture Technologies. iScience 2022, 25, 103990. [Google Scholar] [CrossRef] [PubMed]
- Herzog, H. Direct Air Capture. In Greenhouse Gas Removal Technologies; Royal Society of Chemistry: London, UK, 2022. [Google Scholar] [CrossRef]
- Breyer, C.; Fasihi, M.; Bajamundi, C.; Creutzig, F. Direct Air Capture of CO2: A Key Technology for Ambitious Climate Change Mitigation. Joule 2019, 3, 2053–2057. [Google Scholar] [CrossRef]
- Sabatino, F.; Grimm, A.; Gallucci, F.; Annaland, M.v.S.; Kramer, G.J.; Gazzani, M. A Comparative Energy and Costs Assessment and Optimization for Direct Air Capture Technologies. Joule 2021, 5, 2047–2076. [Google Scholar] [CrossRef]
- Kumar, A.; Madden, D.G.; Lusi, M.; Chen, K.-J.; Daniels, E.A.; Curtin, T.; Perry, J.J., IV; Zaworotko, M.J. Direct Air Capture of CO2 by Physisorbent Materials. Angew. Chem. Int. Ed. 2015, 54, 14372–14377. [Google Scholar] [CrossRef]
- Erans, M.; Sanz-Pérez, E.S.; Hanak, D.P.; Clulow, Z.; Reiner, D.M.; Mutch, G.A. Direct Air Capture: Process Technology, Techno-Economic and Socio-Political Challenges. Energy Environ. Sci. 2022, 15, 1360–1405. [Google Scholar] [CrossRef]
- Hammond, G.P. Editorial: Towards Net-Zero ‘Greenhouse Gas’ Emissions by 2050. Proc. Inst. Civ. Eng.-Energy 2024, 177, 95–97. [Google Scholar] [CrossRef]
- Renné, D.S. Progress, Opportunities and Challenges of Achieving Net-Zero Emissions and 100% Renewables. Sol. Compass 2022, 1, 100007. [Google Scholar] [CrossRef]
- Din, A.U.; Yang, Y.; Khan, M.I.M.; Khuram, W. Innovative Technological Solutions for Environmental Sustainability in Chinese Engineering Practices. Eng. Technol. Appl. Sci. Res. 2024, 14, 13648–13657. [Google Scholar] [CrossRef]
- Minister of Energy and Minerals in the Sultanate of Oman (MEM). The Sultanate of Oman’s National Strategy for an Orderly Transition to Net Zero; MEM: Muscat, Oman, 2022. [Google Scholar]
- Energy Development Oman (EDO). EDO—Energy Development Oman. Available online: https://edoman.om/ (accessed on 6 August 2024).
- Foreign Ministry in the Sultanate of Oman (FM). Oman Announces Investment Opportunities in Green Hydrogen. Available online: https://www.fm.gov.om/oman-announces-investment-opportunities-in-green-hydrogen (accessed on 29 May 2023).
- Minister of Energy and Minerals in the Sultanate of Oman (MEM). Green Hydrogen in Oman; MEM: Muscat, Oman, 2022. [Google Scholar]
- Wärtsilä Nominal Power (Photovoltaic). Available online: https://www.wartsila.com/encyclopedia/term/nominal-power-photovoltaic- (accessed on 9 August 2024).
- Mishra, K.K.; Mittal, D.; Tiwari, H.P. A Strategy for Fastest Commissioning of 0.475 MTPA Stamp Charged Coke Oven Battery at JSPL. Coke Chem. 2021, 64, 119–129. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.-W.; Liang, C.-Y.; Xiong, W. Techno-Economic Assessment of an Offshore Wind Turbines-Underwater Compressed Hydrogen Energy Storage System. In Proceedings of the 2023 9th International Conference on Fluid Power and Mechatronics (FPM), Lanzhou, China, 18–21 August 2023; pp. 1–9. [Google Scholar]
- Ayotte, C.A., IV. Black Phosphorus Quantum Dots: Synthesis, Characterization, and Utilization towards the Photogeneration of Hydrogen Gas. Master’s Thesis, University of New Hampshire, Durham, NH, USA, 2018. [Google Scholar]
- Pegler, D.L.; Rawlinson-Smith, R.; Greaves, D. Levelised Cost of Hydrogen from a Dedicated Offshore Wind Farm. In Proceedings of the 7th Offshore Energy & Storage Symposium (OSES 2023), St. Julian’s, Malta, 12–14 July 2023; Volume 2023, pp. 31–39. [Google Scholar]
- Sharshir, S.W.; Joseph, A.; Elsayad, M.M.; Tareemi, A.A.; Kandeal, A.W.; Elkadeem, M.R. A Review of Recent Advances in Alkaline Electrolyzer for Green Hydrogen Production: Performance Improvement and Applications. Int. J. Hydrogen Energy 2024, 49, 458–488. [Google Scholar] [CrossRef]
- Alhaj Omar, F. A New Approach for Improving the Efficiency of the Indirectly Coupled Photovoltaic-Electrolyzer System. Int. J. Hydrogen Energy 2023, 48, 8768–8782. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Van herle, J.; Maréchal, F.; Desideri, U. Techno-Economic Evaluation of Biomass-to-Fuels with Solid-Oxide Electrolyzer. Appl. Energy 2020, 270, 115113. [Google Scholar] [CrossRef]
- Yilmaz, C.; Kanoglu, M. Thermodynamic Evaluation of Geothermal Energy Powered Hydrogen Production by PEM Water Electrolysis. Energy 2014, 69, 592–602. [Google Scholar] [CrossRef]
- van der Roest, E.; Bol, R.; Fens, T.; van Wijk, A. Utilisation of Waste Heat from PEM Electrolysers—Unlocking Local Optimisation. Int. J. Hydrogen Energy 2023, 48, 27872–27891. [Google Scholar] [CrossRef]
- Atiz, A.; Karakilçik, M. Assessment of Hydrogen Generation and Thermodynamic Efficiencies of PEM Coupled with PV and PV-T under Diverse Circumstances. Int. J. Hydrogen Energy 2024, 75, 132–143. [Google Scholar] [CrossRef]
- Nasser, M.; Hassan, H. Techno-Enviro-Economic Analysis of Hydrogen Production via Low and High Temperature Electrolyzers Powered by PV/Wind Turbines/Waste Heat. Energy Convers. Manag. 2023, 278, 116693. [Google Scholar] [CrossRef]
- Green Hydrogen Systems (GHS). Technical Specis-HyProvide Electrolyzers A-Series & X-Series; GHS: Kolding, Denmark, 2023. [Google Scholar]
- International Renewable Energy Agency (IRENA). Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5 °C Climate Goal; IRENA: Masdar City, United Arab Emirates, 2020. [Google Scholar]
- FuelCell Energy, Inc. (FCE). Hydrogen Production Calculator. Available online: https://go.fuelcellenergy.com/hydrogen-savings-calculator (accessed on 13 September 2024).
- Biberci, M.A.; Celik, M.B. Dynamic Modeling and Simulation of a PEM Fuel Cell (PEMFC) during an Automotive Vehicle’s Driving Cycle. Eng. Technol. Appl. Sci. Res. 2020, 10, 5796–5802. [Google Scholar] [CrossRef]
- Ji, M.; Wei, Z. A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells. Energies 2009, 2, 1057–1106. [Google Scholar] [CrossRef]
- Jiao, K.; Li, X. Water Transport in Polymer Electrolyte Membrane Fuel Cells. Prog. Energy Combust. Sci. 2011, 37, 221–291. [Google Scholar] [CrossRef]
- Guerrero Moreno, N.; Cisneros Molina, M.; Gervasio, D.; Pérez Robles, J.F. Approaches to Polymer Electrolyte Membrane Fuel Cells (PEMFCs) and Their Cost. Renew. Sustain. Energy Rev. 2015, 52, 897–906. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, K.S.; Mishler, J.; Cho, S.C.; Adroher, X.C. A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research. Appl. Energy 2011, 88, 981–1007. [Google Scholar] [CrossRef]
- Yuan, X.-Z.; Li, H.; Zhang, S.; Martin, J.; Wang, H. A Review of Polymer Electrolyte Membrane Fuel Cell Durability Test Protocols. J. Power Sources 2011, 196, 9107–9116. [Google Scholar] [CrossRef]
- Li, J.; Park, J.K.; Moore, R.B.; Madsen, L.A. Linear Coupling of Alignment with Transport in a Polymer Electrolyte Membrane. Nat. Mater 2011, 10, 507–511. [Google Scholar] [CrossRef]
- Wang, Y.; Seo, B.; Wang, B.; Zamel, N.; Jiao, K.; Adroher, X.C. Fundamentals, Materials, and Machine Learning of Polymer Electrolyte Membrane Fuel Cell Technology. Energy AI 2020, 1, 100014. [Google Scholar] [CrossRef]
- Alshammari, B.M. Integrated Renewable Energy and Load Management Strategies in Power Systems. Int. J. Adv. Appl. Sci. 2018, 5, 79–87. [Google Scholar] [CrossRef]
- Bolinger, M.; Weaver, S.; Zuboy, J. Is $50/MWh Solar for Real? Falling Project Prices and Rising Capacity Factors Drive Utility-Scale PV toward Economic Competitiveness. Prog. Photovolt. Res. Appl. 2015, 23, 1847–1856. [Google Scholar] [CrossRef]
- Pelland, S.; Abboud, I. Comparing Photovoltaic Capacity Value Metrics: A Case Study for the City of Toronto. Prog. Photovolt. Res. Appl. 2008, 16, 715–724. [Google Scholar] [CrossRef]
- Bucher, R.; Couch, S.J. Adjusting the Financial Risk of Tidal Current Projects by Optimising the ‘Installed Capacity/Capacity Factor’-Ratio Already during the Feasibility Stage. Int. J. Mar. Energy 2013, 2, 28–42. [Google Scholar] [CrossRef]
- Acker, T.L.; Williams, S.K.; Duque, E.P.N.; Brummels, G.; Buechler, J. Wind Resource Assessment in the State of Arizona: Inventory, Capacity Factor, and Cost. Renew. Energy 2007, 32, 1453–1466. [Google Scholar] [CrossRef]
- Park, J.; Hwan Ryu, K.; Kim, C.-H.; Chul Cho, W.; Kim, M.; Hun Lee, J.; Cho, H.-S.; Lee, J.H. Green Hydrogen to Tackle the Power Curtailment: Meteorological Data-Based Capacity Factor and Techno-Economic Analysis. Appl. Energy 2023, 340, 121016. [Google Scholar] [CrossRef]
- Environment Authority in the Sultanate of Oman (EA). The Sultanate of OMAN First Update of the Second Nationally Determined Contribution. 2023 Submission to UNFCCC; EA: Muscat, Oman, 2023. [Google Scholar]
- Al-Badi, A.H.; Malik, A.; Gastli, A. Sustainable Energy Usage in Oman—Opportunities and Barriers. Renew. Sustain. Energy Rev. 2011, 15, 3780–3788. [Google Scholar] [CrossRef]
- Marzouk, O.A. Tilt Sensitivity for a Scalable One-Hectare Photovoltaic Power Plant Composed of Parallel Racks in Muscat. Cogent Eng. 2022, 9, 2029243. [Google Scholar] [CrossRef]
- Alhousni, F.K.; Ismail, F.B.; Okonkwo, P.C.; Mohamed, H.; Okonkwo, B.O.; Al-Shahri, O.A. A Review of PV Solar Energy System Operations and Applications in Dhofar Oman. AIMSE 2022, 10, 858–884. [Google Scholar] [CrossRef]
- Marzouk, O.A. Land-Use Competitiveness of Photovoltaic and Concentrated Solar Power Technologies near the Tropic of Cancer. Sol. Energy 2022, 243, 103–119. [Google Scholar] [CrossRef]
- Kazem, H.A. Renewable Energy in Oman: Status and Future Prospects. Renew. Sustain. Energy Rev. 2011, 15, 3465–3469. [Google Scholar] [CrossRef]
- Marzouk, O.A. Lookup Tables for Power Generation Performance of Photovoltaic Systems Covering 40 Geographic Locations (Wilayats) in the Sultanate of Oman, with and without Solar Tracking, and General Perspectives about Solar Irradiation. Sustainability 2021, 13, 13209. [Google Scholar] [CrossRef]
- Gastli, A.; Charabi, Y. Solar Electricity Prospects in Oman Using GIS-Based Solar Radiation Maps. Renew. Sustain. Energy Rev. 2010, 14, 790–797. [Google Scholar] [CrossRef]
- Marzouk, O.A. Energy Generation Intensity (EGI) of Solar Updraft Tower (SUT) Power Plants Relative to CSP Plants and PV Power Plants Using the New Energy Simulator “Aladdin”. Energies 2024, 17, 405. [Google Scholar] [CrossRef]
- Al-Badi, A.H.; Albadi, M.H.; Al-Lawati, A.M.; Malik, A.S. Economic Perspective of PV Electricity in Oman. Energy 2011, 36, 226–232. [Google Scholar] [CrossRef]
- Al-Yahyai, S.; Charabi, Y. Assessment of Large-Scale Wind Energy Potential in the Emerging City of Duqm (Oman). Renew. Sustain. Energy Rev. 2015, 47, 438–447. [Google Scholar] [CrossRef]
- Duqm Refinery and Petrochemical Industries Company (OQ8). About Duqm. Available online: https://www.oq8.om/about-oq8/about-duqm (accessed on 6 August 2024).
- Al-Hinai, A.; Charabi, Y.; Aghay Kaboli, S.H. Offshore Wind Energy Resource Assessment across the Territory of Oman: A Spatial-Temporal Data Analysis. Sustainability 2021, 13, 2862. [Google Scholar] [CrossRef]
- Port of Duqm (PoD). About (Port of Duqm). Available online: https://portofduqm.om/logistics-solutions-in-oman (accessed on 6 August 2024).
- Charabi, Y.; Al Hinai, A.; Al-Yahyai, S.; Al Awadhi, T.; Choudri, B.S. Offshore Wind Potential and Wind Atlas over the Oman Maritime Zone. Energ. Ecol. Environ. 2019, 4, 1–14. [Google Scholar] [CrossRef]
- Special Economic Zone at Duqm (SEZAD). Plan Your Visit—FAQ (SEZAD: Special Economic Zone at Duqm). Available online: https://www.duqm.gov.om/en/discover-duqm/plan-your-visit/faq-1 (accessed on 6 August 2024).
- Salalah Airport (SA). Governorate of Dhofar. Available online: https://salalahairport.co.om/content/governorate-of-dhofar (accessed on 6 August 2024).
- Charabi, Y. Status and Future Prospects of Wind Energy in Oman. In Alternative Energy Resources in the MENA Region; Henni, A., Negm, A., Zerrouki, D., Eds.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2023; Volume 131, pp. 169–187. ISBN 978-3-031-60749-3. [Google Scholar]
- Hereher, M.; El Kenawy, A.M. Exploring the Potential of Solar, Tidal, and Wind Energy Resources in Oman Using an Integrated Climatic-Socioeconomic Approach. Renew. Energy 2020, 161, 662–675. [Google Scholar] [CrossRef]
- General Electric Renewable Energy (GE Vernova). GE’s 2 MW Platform of Onshore Wind Turbines; General Electric Company: Boston, MA, USA, 2018. [Google Scholar]
- Renewables First—The Renewable Energy Company (RF). Wind Turbine Fundamentals. Available online: https://renewablesfirst.co.uk/renewable-energy-technologies/windpower/windpower-learning-centre/wind-turbine-fundamentals/ (accessed on 9 August 2024).
- United States Energy Information Administration (EIA). Most Wind Capacity in the United States Is Designed for a Medium Wind Speed Environment. Available online: https://www.eia.gov/todayinenergy/detail.php?id=41474 (accessed on 9 August 2024).
- Technical University of Denmark (DTU). Global Wind Atlas Online Application (GWA App). Available online: https://globalwindatlas.info/en (accessed on 9 August 2024).
- Hydrogen Insight (HI). $20bn for Green Hydrogen|Oman Signs Six Deals with International Developers to Build 15 GW of Electrolyser Capacity. Available online: https://www.hydrogeninsight.com/production/-20bn-for-green-hydrogen-oman-signs-six-deals-with-international-developers-to-build-15gw-of-electrolyser-capacity/2-1-1419493 (accessed on 29 May 2023).
- Khadhraoui, A.; Selmi, T.; Cherif, A. Energy Management of a Hybrid Electric Vehicle. Eng. Technol. Appl. Sci. Res. 2022, 12, 8916–8921. [Google Scholar] [CrossRef]
- Asus, Z.; Aglzim, E.-H.; Chrenko, D.; Daud, Z.H.C.; Le-Moyne, L. Fuel Consumption Evaluation of a Hybrid Electric Car over Aggressive Cycles for Thermal Engine Optimization. Int. J. Adv. Appl. Sci. 2018, 5, 37–43. [Google Scholar] [CrossRef]
- Utilization of Hydrogen for Sustainable Energy and Fuels; Van De Voorde, M. (Ed.) De Gruyter: Berlin, Germany, 2021; ISBN 978-3-11-059627-4. [Google Scholar]
- Gómez, J.A.; Santos, D.M.F. The Status of On-Board Hydrogen Storage in Fuel Cell Electric Vehicles. Designs 2023, 7, 97. [Google Scholar] [CrossRef]
- Lin, Z.; Ou, S.; Elgowainy, A.; Reddi, K.; Veenstra, M.; Verduzco, L. A Method for Determining the Optimal Delivered Hydrogen Pressure for Fuel Cell Electric Vehicles. Appl. Energy 2018, 216, 183–194. [Google Scholar] [CrossRef]
- Joby Aviation, Inc. (JA). Joby Completes Landmark 523-Mile Hydrogen-Electric Flight. Available online: https://www.jobyaviation.com/news/joby-demonstrates-potential-regional-journeys-landmark-hydrogen-electric-flight (accessed on 13 August 2024).
- Marzouk, O. A Two-Step Computational Aeroacoustics Method Applied to High-Speed Flows. Noise Control Eng. J. 2008, 56, 396. [Google Scholar] [CrossRef]
- Sun, Y.; Anwar, M.; Hassan, N.M.S.; Spiryagin, M.; Cole, C. A Review of Hydrogen Technologies and Engineering Solutions for Railway Vehicle Design and Operations. Rail. Eng. Sci. 2021, 29, 212–232. [Google Scholar] [CrossRef]
- Palmer, C. Hydrogen-Powered Trains Start to Roll. Engineering 2022, 11, 9–11. [Google Scholar] [CrossRef]
- Ding, D.; Wu, X.-Y. Hydrogen Fuel Cell Electric Trains: Technologies, Current Status, and Future. Appl. Energy Combust. Sci. 2024, 17, 100255. [Google Scholar] [CrossRef]
- Marzouk, O.A. Evolutionary Computing Applied to Design Optimization. In Proceedings of the Volume 2: 27th Computers and Information in Engineering Conference, Parts A and B; ASMEDC, Las Vegas, NV, USA; 2007; pp. 995–1003. [Google Scholar] [CrossRef]
- Nadarajan, S.; Sukumaran, S. Chapter 12—Chemistry and Toxicology behind Chemical Fertilizers. In Controlled Release Fertilizers for Sustainable Agriculture; Lewu, F.B., Volova, T., Thomas, S., K.R., R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 195–229. ISBN 978-0-12-819555-0. [Google Scholar]
- NordFert What Is Nitrogen Fertilizer? Available online: https://nordfert.com/faq/what-is-nitrogen-fertilizer (accessed on 14 September 2024).
- Nemmour, A.; Inayat, A.; Janajreh, I.; Ghenai, C. Green Hydrogen-Based E-Fuels (E-Methane, E-Methanol, E-Ammonia) to Support Clean Energy Transition: A Literature Review. Int. J. Hydrogen Energy 2023, 48, 29011–29033. [Google Scholar] [CrossRef]
- BP What Is eSAF|News and Views. Available online: https://www.bp.com/en/global/air-bp/news-and-views/views/what-is-esaf.html (accessed on 14 September 2024).
- Rufer, A. Quantitative Design of a New E-Methanol Production Process. Energies 2022, 15, 9309. [Google Scholar] [CrossRef]
- Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping (MMMC). E-Ammonia. Available online: https://www.zerocarbonshipping.com/energy-carriers/e-ammonia (accessed on 14 September 2024).
- GRTgaz E-Methane Production. Available online: https://www.grtgaz.com/en/new-gas/e-methane-production (accessed on 14 September 2024).
- Watson, C.J. The Comparative Effects of Ammonium Nitrate, Urea or a Combined Ammonium Nitrate/Urea Granular Fertilizer on the Efficiency of Nitrogen Recovery by Perennial Ryegrass. Fertil. Res. 1987, 11, 69–78. [Google Scholar] [CrossRef]
- Bauen, A.; Bitossi, N.; German, L.; Harris, A.; Leow, K. Sustainable Aviation Fuels: Status, Challenges and Prospects of Drop-in Liquid Fuels, Hydrogen and Electrification in Aviation. Johns. Matthey Technol. Rev. 2020, 64, 263–278. [Google Scholar] [CrossRef]
- Garcia, A.; Sierra-Jimenez, V.; Brandt, K.; Martinez-Valencia, L.P.; Wolcott, M.; Male, J.; Garcia-Perez, M. Holistic Methodology to Guide the Evolution of Sustainable Aviation Fuel Production Technologies. Energy Fuels 2024, 38, 17706–17716. [Google Scholar] [CrossRef]
- AlZohbi, G. Hydrogen Fuel for a Sustainable Aviation. In Renewable Energy Resources and Conservation; Pong, P., Ed.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 63–75. ISBN 978-3-031-59005-4. [Google Scholar]
- Pipitone, G.; Zoppi, G.; Pirone, R.; Bensaid, S. Sustainable Aviation Fuel Production Using In-Situ Hydrogen Supply via Aqueous Phase Reforming: A Techno-Economic and Life-Cycle Greenhouse Gas Emissions Assessment. J. Clean. Prod. 2023, 418, 138141. [Google Scholar] [CrossRef]
- Ng, K.S.; Farooq, D.; Yang, A. Global Biorenewable Development Strategies for Sustainable Aviation Fuel Production. Renew. Sustain. Energy Rev. 2021, 150, 111502. [Google Scholar] [CrossRef]
- Ficca, A.; Marulo, F.; Sollo, A. An Open Thinking for a Vision on Sustainable Green Aviation. Prog. Aerosp. Sci. 2023, 141, 100928. [Google Scholar] [CrossRef]
- Alipour Bonab, S.; Waite, T.; Song, W.; Flynn, D.; Yazdani-Asrami, M. Machine Learning-Powered Performance Monitoring of Proton Exchange Membrane Water Electrolyzers for Enhancing Green Hydrogen Production as a Sustainable Fuel for Aviation Industry. Energy Rep. 2024, 12, 2270–2282. [Google Scholar] [CrossRef]
- Cabrera, E.; de Sousa, J.M.M. Use of Sustainable Fuels in Aviation—A Review. Energies 2022, 15, 2440. [Google Scholar] [CrossRef]
- Zhang, L.; Butler, T.L.; Yang, B. Recent Trends, Opportunities and Challenges of Sustainable Aviation Fuel. In Green Energy to Sustainability; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; pp. 85–110. ISBN 978-1-119-15205-7. [Google Scholar]
- Gonzalez-Garay, A.; Heuberger-Austin, C.; Fu, X.; Klokkenburg, M.; Zhang, D.; van der Made, A.; Shah, N. Unravelling the Potential of Sustainable Aviation Fuels to Decarbonise the Aviation Sector. Energy Environ. Sci. 2022, 15, 3291–3309. [Google Scholar] [CrossRef]
- Heyne, J.; Rauch, B.; Le Clercq, P.; Colket, M. Sustainable Aviation Fuel Prescreening Tools and Procedures. Fuel 2021, 290, 120004. [Google Scholar] [CrossRef]
- Zahid, I.; Nazir, M.H.; Chiang, K.; Christo, F.; Ameen, M. Current Outlook on Sustainable Feedstocks and Processes for Sustainable Aviation Fuel Production. Curr. Opin. Green Sustain. Chem. 2024, 49, 100959. [Google Scholar] [CrossRef]
- Grimme, W. The Introduction of Sustainable Aviation Fuels—A Discussion of Challenges, Options and Alternatives. Aerospace 2023, 10, 218. [Google Scholar] [CrossRef]
- Colelli, L.; Segneri, V.; Bassano, C.; Vilardi, G. E-Fuels, Technical and Economic Analysis of the Production of Synthetic Kerosene Precursor as Sustainable Aviation Fuel. Energy Convers. Manag. 2023, 288, 117165. [Google Scholar] [CrossRef]
- Marszałek, N.; Lis, T. The Future of Sustainable Aviation Fuels. Combust. Engines 2022, 191, 29–40. [Google Scholar] [CrossRef]
- Mirea, R.; Cican, G. Theoretical Assessment of Different Aviation Fuel Blends Based on Their Physical-Chemical Properties. Eng. Technol. Appl. Sci. Res. 2024, 14, 14134–14140. [Google Scholar] [CrossRef]
- Choi, C.S.; Mapes, J.E.; Prince, E. The Structure of Ammonium Nitrate (IV). Acta Cryst. B 1972, 28, 1357–1361. [Google Scholar] [CrossRef]
- Oxley, J.C.; Smith, J.L.; Rogers, E.; Yu, M. Ammonium Nitrate: Thermal Stability and Explosivity Modifiers. Thermochim. Acta 2002, 384, 23–45. [Google Scholar] [CrossRef]
- Oommen, C.; Jain, S.R. Ammonium Nitrate: A Promising Rocket Propellant Oxidizer. J. Hazard. Mater. 1999, 67, 253–281. [Google Scholar] [CrossRef] [PubMed]
- Bowen, N.L. Properties of Ammonium Nitrate. I. J. Phys. Chem. 2002, 30, 721–725. [Google Scholar] [CrossRef]
- Sinditskii, V.P.; Egorshev, V.Y.; Levshenkov, A.I.; Serushkin, V.V. Ammonium Nitrate: Combustion Mechanism and the Role of Additives. Propellants Explos. Pyrotech. 2005, 30, 269–280. [Google Scholar] [CrossRef]
- Pittman, W.; Han, Z.; Harding, B.; Rosas, C.; Jiang, J.; Pineda, A.; Mannan, M.S. Lessons to Be Learned from an Analysis of Ammonium Nitrate Disasters in the Last 100 Years. J. Hazard. Mater. 2014, 280, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Soum, V. H2 as Clean Energy for Sustainable Future. Univers. J. Catal. Sci. 2023, 71–95. [Google Scholar] [CrossRef]
- Görlach, B.; Jakob, M.; de la Vega, R. Pathways Towards a Global Market for Green and Sustainable Hydrogen; Ecologic Institute: Berlin, Germany, 2022. [Google Scholar]
- Moritz, M.; Schönfisch, M.; Schulte, S. Estimating Global Production and Supply Costs for Green Hydrogen and Hydrogen-Based Green Energy Commodities. Int. J. Hydrogen Energy 2023, 48, 9139–9154. [Google Scholar] [CrossRef]
- Lebrouhi, B.E.; Djoupo, J.J.; Lamrani, B.; Benabdelaziz, K.; Kousksou, T. Global Hydrogen Development—A Technological and Geopolitical Overview. Int. J. Hydrogen Energy 2022, 47, 7016–7048. [Google Scholar] [CrossRef]
- Dujjanutat, P.; Neramittagapong, A.; Kaewkannetra, P. H2-Assisted Chemical Reaction for Green-Kerosene Production. Defect Diffus. Forum 2015, 364, 104–111. [Google Scholar] [CrossRef]
- Shirizadeh, B.; Ailleret, A.; Guillon, A.; Bovari, E.; El Khatib, N.; Douguet, S.; Issa, C.B.; Brauer, J.; Trüby, J. Towards a Resilient and Cost-Competitive Clean Hydrogen Economy: The Future Is Green. Energy Environ. Sci. 2023, 16, 6094–6109. [Google Scholar] [CrossRef]
- Chehade, G.; Dincer, I. Progress in Green Ammonia Production as Potential Carbon-Free Fuel. Fuel 2021, 299, 120845. [Google Scholar] [CrossRef]
- Müller, M.; Pfeifer, M.; Holtz, D.; Müller, K. Comparison of Green Ammonia and Green Hydrogen Pathways in Terms of Energy Efficiency. Fuel 2024, 357, 129843. [Google Scholar] [CrossRef]
- Sollai, S.; Porcu, A.; Tola, V.; Ferrara, F.; Pettinau, A. Renewable Methanol Production from Green Hydrogen and Captured CO2: A Techno-Economic Assessment. J. CO2 Util. 2023, 68, 102345. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, D.; Chen, Q.; Tang, Z. Techno-Economic Analysis of Green Methanol Plant with Optimal Design of Renewable Hydrogen Production: A Case Study in China. Int. J. Hydrogen Energy 2022, 47, 5085–5100. [Google Scholar] [CrossRef]
- Gurz, M.; Baltacioglu, E.; Hames, Y.; Kaya, K. The Meeting of Hydrogen and Automotive: A Review. Int. J. Hydrogen Energy 2017, 42, 23334–23346. [Google Scholar] [CrossRef]
- Tanç, B.; Arat, H.T.; Baltacıoğlu, E.; Aydın, K. Overview of the next Quarter Century Vision of Hydrogen Fuel Cell Electric Vehicles. Int. J. Hydrogen Energy 2019, 44, 10120–10128. [Google Scholar] [CrossRef]
- Szałek, A.; Pielecha, I.; Cieslik, W. Fuel Cell Electric Vehicle (FCEV) Energy Flow Analysis in Real Driving Conditions (RDC). Energies 2021, 14, 5018. [Google Scholar] [CrossRef]
- Global Energy Monitor (GEM). About Us (GEM: Global Energy Monitor). Available online: https://globalenergymonitor.org/about (accessed on 7 August 2024).
- Global Energy Monitor (GEM). Download Data—Global Energy Monitor. Available online: https://globalenergymonitor.org/projects/global-integrated-power-tracker/download-data (accessed on 20 July 2024).
- Global Energy Monitor (GEM). Ibri 2 Solar—Global Energy Monitor Profile. Available online: https://www.gem.wiki/Ibri_2_Solar (accessed on 7 August 2024).
- Global Energy Monitor (GEM). Methodology—Global Energy Monitor. Available online: https://globalenergymonitor.org/projects/global-integrated-power-tracker/methodology (accessed on 20 July 2024).
- World Resources Institute (WRI). Global Power Plant Database (GPPD) by the World Resources Institute (WRI). Available online: https://datasets.wri.org/dataset/globalpowerplantdatabase (accessed on 7 August 2024).
- Hydrogen Oman (Hydrom). Auction (Hydrom: Hydrogen Oman). Available online: https://hydrom.om/Auction.aspx?cms=iQRpheuphYtJ6pyXUGiNqlChNlcwVZKF (accessed on 30 July 2024).
- Green Energy Oman (GEO). About Green Energy Oman. Available online: https://geo.om/about-us.php (accessed on 7 August 2024).
- ChemAnalyst Amnah Pledges Hydrogen Support for Oman’s Eco-Friendly Steel Sector. Available online: https://www.chemanalyst.com/NewsAndDeals/NewsDetails/amnah-pledges-hydrogen-support-for-oman-eco-friendly-steel-sector-24157 (accessed on 7 August 2024).
- Global Energy Monitor (GEM). Global Integrated Power Tracker (GIPT)—Tracker Map. Available online: https://globalenergymonitor.org/projects/global-integrated-power-tracker/tracker-map (accessed on 20 July 2024).
- Global Energy Monitor (GEM). Global Solar Power Tracker (GSPT)—Tracker Map. Available online: https://globalenergymonitor.org/projects/global-solar-power-tracker/tracker-map (accessed on 20 July 2024).
- Romero, M.; González-Aguilar, J. Solar Thermal CSP Technology. WIREs Energy Environ. 2014, 3, 42–59. [Google Scholar] [CrossRef]
- Thirugnanasambandam, M.; Iniyan, S.; Goic, R. A Review of Solar Thermal Technologies☆. Renew. Sustain. Energy Rev. 2010, 14, 312–322. [Google Scholar] [CrossRef]
- Weinstein, L.A.; Loomis, J.; Bhatia, B.; Bierman, D.M.; Wang, E.N.; Chen, G. Concentrating Solar Power. Chem. Rev. 2015, 115, 12797–12838. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Alim, M.A.; Alam, T.; Mofijur, M.; Ahmed, S.F.; Perkins, G. A Critical Review on the Development and Challenges of Concentrated Solar Power Technologies. Sustain. Energy Technol. Assess. 2021, 47, 101434. [Google Scholar] [CrossRef]
- Zhang, H.L.; Baeyens, J.; Degrève, J.; Cacères, G. Concentrated Solar Power Plants: Review and Design Methodology. Renew. Sustain. Energy Rev. 2013, 22, 466–481. [Google Scholar] [CrossRef]
- Global Energy Monitor (GEM). Global Wind Power Tracker (GWPT)—Tracker Map. Available online: https://globalenergymonitor.org/projects/global-wind-power-tracker/tracker-map (accessed on 20 July 2024).
- Tlili, O.; Mansilla, C.; Frimat, D.; Perez, Y. Hydrogen Market Penetration Feasibility Assessment: Mobility and Natural Gas Markets in the US, Europe, China and Japan. Int. J. Hydrogen Energy 2019, 44, 16048–16068. [Google Scholar] [CrossRef]
- Rosenberg, E.; Fidje, A.; Espegren, K.A.; Stiller, C.; Svensson, A.M.; Møller-Holst, S. Market Penetration Analysis of Hydrogen Vehicles in Norwegian Passenger Transport towards 2050. Int. J. Hydrogen Energy 2010, 35, 7267–7279. [Google Scholar] [CrossRef]
- Marzouk, O.A.; Nayfeh, A.H. Characterization of the Flow over a Cylinder Moving Harmonically in the Cross-Flow Direction. Int. J. Non-Linear Mech. 2010, 45, 821–833. [Google Scholar] [CrossRef]
- Antonelli, M.; Desideri, U.; Franco, A. Effects of Large Scale Penetration of Renewables: The Italian Case in the Years 2008–2015. Renew. Sustain. Energy Rev. 2018, 81, 3090–3100. [Google Scholar] [CrossRef]
- Farooqui, S.Z. Prospects of Renewables Penetration in the Energy Mix of Pakistan. Renew. Sustain. Energy Rev. 2014, 29, 693–700. [Google Scholar] [CrossRef]
- Marzouk, O.A. One-Way and Two-Way Couplings of CFD and Structural Models and Application to the Wake-Body Interaction. Appl. Math. Model. 2011, 35, 1036–1053. [Google Scholar] [CrossRef]
- Khan, B.; Singh, P. Optimal Power Flow Techniques under Characterization of Conventional and Renewable Energy Sources: A Comprehensive Analysis. J. Eng. 2017, 2017, 1–16. [Google Scholar] [CrossRef]
- González, A.; McKeogh, E.; Gallachóir, B.Ó. The Role of Hydrogen in High Wind Energy Penetration Electricity Systems: The Irish Case. Renew. Energy 2004, 29, 471–489. [Google Scholar] [CrossRef]
- Marzouk, O.A. Characteristics of the Flow-Induced Vibration and Forces With 1- and 2-DOF Vibrations and Limiting Solid-to-Fluid Density Ratios. J. Vib. Acoust. 2010, 132, 041013. [Google Scholar] [CrossRef]
- Cabrera, P.; Lund, H.; Carta, J.A. Smart Renewable Energy Penetration Strategies on Islands: The Case of Gran Canaria. Energy 2018, 162, 421–443. [Google Scholar] [CrossRef]
- Segurado, R.; Krajačić, G.; Duić, N.; Alves, L. Increasing the Penetration of Renewable Energy Resources in S. Vicente, Cape Verde. Appl. Energy 2011, 88, 466–472. [Google Scholar] [CrossRef]
- Koltsaklis, N.E.; Dagoumas, A.S.; Panapakidis, I.P. Impact of the Penetration of Renewables on Flexibility Needs. Energy Policy 2017, 109, 360–369. [Google Scholar] [CrossRef]
- Marzouk, O.A. Direct Numerical Simulations of the Flow Past a Cylinder Moving With Sinusoidal and Nonsinusoidal Profiles. J. Fluids Eng. 2009, 131, 121201. [Google Scholar] [CrossRef]
- Mohandes, B.; Moursi, M.S.E.; Hatziargyriou, N.; Khatib, S.E. A Review of Power System Flexibility With High Penetration of Renewables. IEEE Trans. Power Syst. 2019, 34, 3140–3155. [Google Scholar] [CrossRef]
- Tuballa, M.L.; Abundo, M.L.S. Operational Impact of RES Penetration on a Remote Diesel-Powered System in West Papua, Indonesia. Eng. Technol. Appl. Sci. Res. 2018, 8, 2963–2968. [Google Scholar] [CrossRef]
- Marzouk, O.A. Temperature-Dependent Functions of the Electron–Neutral Momentum Transfer Collision Cross Sections of Selected Combustion Plasma Species. Appl. Sci. 2023, 13, 11282. [Google Scholar] [CrossRef]
- Nazri, N.; Anuar, S.; Shukrie, A.; Basrawi, F.; Safi, A. Energy Potential and Power Generation from Tidal Basin in Coastal Area of Malaysia. Int. J. Adv. Appl. Sci. 2016, 3, 44–48. [Google Scholar] [CrossRef]
- Marzouk, O.A. Flow Control Using Bifrequency Motion. Theor. Comput. Fluid Dyn. 2011, 25, 381–405. [Google Scholar] [CrossRef]
- Zafar, M.W.; Sinha, A.; Ahmed, Z.; Qin, Q.; Zaidi, S.A.H. Effects of Biomass Energy Consumption on Environmental Quality: The Role of Education and Technology in Asia-Pacific Economic Cooperation Countries. Renew. Sustain. Energy Rev. 2021, 142, 110868. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Ali, S.; Khan, Z. Eco-Innovation and Energy Productivity: New Determinants of Renewable Energy Consumption. J. Environ. Manag. 2020, 271, 111028. [Google Scholar] [CrossRef] [PubMed]
- Marzouk, O.A. Contrasting the Cartesian and Polar Forms of the Shedding-Induced Force Vector in Response to 12 Subharmonic and Superharmonic Mechanical Excitations. Fluid Dyn. Res. 2010, 42, 035507. [Google Scholar] [CrossRef]
- Bruce, S.; Temminghoff, M.; Hayward, J.; Schmidt, E.; Munnings, C.; Palfreyman, D.; Hartley, P. National Hydrogen Roadmap—Pathways to an Economically Sustainable Hydrogen Industry in Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 2018. [Google Scholar]
- Abbasi, K.R.; Shahbaz, M.; Zhang, J.; Irfan, M.; Alvarado, R. Analyze the Environmental Sustainability Factors of China: The Role of Fossil Fuel Energy and Renewable Energy. Renew. Energy 2022, 187, 390–402. [Google Scholar] [CrossRef]
- Ajanovic, A.; Sayer, M.; Haas, R. On the Future Relevance of Green Hydrogen in Europe. Appl. Energy 2024, 358, 122586. [Google Scholar] [CrossRef]
- Marzouk, O.A.; Nayfeh, A.H. Reduction of the Loads on a Cylinder Undergoing Harmonic In-Line Motion. Phys. Fluids 2009, 21, 083103. [Google Scholar] [CrossRef]
- Bairrão, D.; Soares, J.; Almeida, J.; Franco, J.F.; Vale, Z. Green Hydrogen and Energy Transition: Current State and Prospects in Portugal. Energies 2023, 16, 551. [Google Scholar] [CrossRef]
- Marzouk, O.A. The Sod Gasdynamics Problem as a Tool for Benchmarking Face Flux Construction in the Finite Volume Method. Sci. Afr. 2020, 10, e00573. [Google Scholar] [CrossRef]
- Mahmood, D.; Latif, S.; Anwar, A.; Hussain, S.J.; Jhanjhi, N.Z.; Us Sama, N.; Humayun, M. Utilization of ICT and AI Techniques in Harnessing Residential Energy Consumption for an Energy-Aware Smart City: A Review. Int. J. Adv. Appl. Sci. 2021, 8, 50–66. [Google Scholar] [CrossRef]
- Dong, D.X.; Minh, P.V.; Ninh, N.Q.; Dinh, D.X. Development of Renewable Energy Sources to Serve Agriculture in Vietnam: A Strategic Assessment Using the SWOT Analysis. Eng. Technol. Appl. Sci. Res. 2023, 13, 11721–11727. [Google Scholar] [CrossRef]
- Cheng, W.; Lee, S. How Green Are the National Hydrogen Strategies? Sustainability 2022, 14, 1930. [Google Scholar] [CrossRef]
- Marzouk, O.A.; Huckaby, E.D. Effects of Turbulence Modeling and Parcel Approach on Dispersed Two-Phase Swirling Flow; International Association of Engineers (IAENG): San Francisco, CA, USA, 2009; Volume II, pp. 1–11. [Google Scholar]
- Kartikay, S.; Saurabh, T.; Anil, K.; Chandra, P.S. Critical Review of India’s Green Hydrogen Policy, 2022. Water Energy Int. 2023, 66r, 50–57. [Google Scholar]
- Marzouk, O.A.; Nayfeh, A.H. Fluid Forces And Structure-Induced Damping of Obliquely-Oscillating Offshore Structures; OnePetro: Vancouver, BC, Canada, 2008. [Google Scholar]
- Bayssi, O.; Nabil, N.; Azaroual, M.; Bousselamti, L.; Boutammachte, N.; Rachidi, S.; Barberis, S. Green Hydrogen Landscape in North African Countries: Strengths, Challenges, and Future Prospects. Int. J. Hydrogen Energy 2024, 84, 822–839. [Google Scholar] [CrossRef]
- Marzouk, O.A.; Nayfeh, A.H. A Parametric Study and Optimization of Ship-Stabilization Systems; World Scientific and Engineering Academy and Society (WSEAS Press): Sliema, Malta, 2008; pp. 169–174. Available online: https://www.wseas.org/multimedia/books/2008/malta/finite_differences_finite_elements_finite_volumes_and_boundary_elements.pdf (accessed on 8 August 2024).
- Caillard, A.; Yeganyan, R.; Cannone, C.; Plazas-Niño, F.; Howells, M. A Critical Analysis of Morocco’s Green Hydrogen Roadmap: A Modelling Approach to Assess Country Readiness from the Energy Trilemma Perspective. Climate 2024, 12, 61. [Google Scholar] [CrossRef]
- Marzouk, O.A.; Nayfeh, A.H. Mitigation of Ship Motion Using Passive and Active Anti-Roll Tanks; American Society of Mechanical Engineers Digital Collection: Las Vegas, NV, USA, 2009; pp. 215–229. [Google Scholar] [CrossRef]
- Chavez-Angel, E.; Castro-Alvarez, A.; Sapunar, N.; Henríquez, F.; Saavedra, J.; Rodríguez, S.; Cornejo, I.; Maxwell, L. Exploring the Potential of Green Hydrogen Production and Application in the Antofagasta Region of Chile. Energies 2023, 16, 4509. [Google Scholar] [CrossRef]
- Marzouk, O.A.; Nayfeh, A.H. Loads on a Harmonically Oscillating Cylinder; American Society of Mechanical Engineers Digital Collection: Las Vegas, NV, USA, 2009; pp. 1755–1774. [Google Scholar] [CrossRef]
- Nallapaneni, A.; Kshirsagar, S. Chapter 1.3—Global Hydrogen Economy and Hydrogen Strategy Overview. In Towards Hydrogen Infrastructure; Jaiswal-Nagar, D., Dixit, V., Devasahayam, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 59–74. ISBN 978-0-323-95553-9. [Google Scholar]
- Marzouk, O.A.; Nayfeh, A.H. A Study of the Forces on an Oscillating Cylinder. In Proceedings of the ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. Volume 3: Pipeline and Riser Technology; CFD and VIV, San Diego, CA, USA, 10–15 June 2007; American Society of Mechanical Engineers Digital Collection; OMAE2007-29163. pp. 741–752. [Google Scholar] [CrossRef]
- Alruweili, F. Impact of GDP Growth on the Ecological Footprint: Theoretical and Empirical Evidence from Saudi Arabia. Int. J. Adv. Appl. Sci. 2023, 10, 120–129. [Google Scholar] [CrossRef]
- Oh, G.-H. A Study on the Energy Saving of Lighting through the Development of Integrated Control of Multifunctional Shading System. Int. J. Adv. Appl. Sci. 2023, 10, 23–33. [Google Scholar] [CrossRef]
- Marzouk, O.A.; Nayfeh, A.H. New Wake Models with Capability of Capturing Nonlinear Physics; American Society of Mechanical Engineers Digital Collection: Estoril, Portugal, 2009; pp. 901–912. [Google Scholar] [CrossRef]
- Thanapongporn, A.; Saengchote, K.; Gowanit, C. The New Service Development Process of Green FinTech Innovation: A Multi-Case Study. Int. J. Adv. Appl. Sci. 2024, 11, 101–114. [Google Scholar] [CrossRef]
- Tabasová, A.; Kropáč, J.; Kermes, V.; Nemet, A.; Stehlík, P. Waste-to-Energy Technologies: Impact on Environment. Energy 2012, 44, 146–155. [Google Scholar] [CrossRef]
- Kumar, A.; Samadder, S.R. A Review on Technological Options of Waste to Energy for Effective Management of Municipal Solid Waste. Waste Manag. 2017, 69, 407–422. [Google Scholar] [CrossRef]
- Kothari, R.; Tyagi, V.V.; Pathak, A. Waste-to-Energy: A Way from Renewable Energy Sources to Sustainable Development. Renew. Sustain. Energy Rev. 2010, 14, 3164–3170. [Google Scholar] [CrossRef]
- Lawal, I.M.; Ndagi, A.; Mohammed, A.; Saleh, Y.Y.; Shuaibu, A.; Hassan, I.; Abubakar, S.; Soja, U.B.; Jagaba, A.H. Proximate Analysis of Waste-to-Energy Potential of Municipal Solid Waste for Sustainable Renewable Energy Generation. Ain Shams Eng. J. 2024, 15, 102357. [Google Scholar] [CrossRef]
- Ouda, O.K.M.; Raza, S.A.; Nizami, A.S.; Rehan, M.; Al-Waked, R.; Korres, N.E. Waste to Energy Potential: A Case Study of Saudi Arabia. Renew. Sustain. Energy Rev. 2016, 61, 328–340. [Google Scholar] [CrossRef]
- Beyene, H.D.; Werkneh, A.A.; Ambaye, T.G. Current Updates on Waste to Energy (WtE) Technologies: A Review. Renew. Energy Focus 2018, 24, 1–11. [Google Scholar] [CrossRef]
- Bishoge, O.K.; Huang, X.; Zhang, L.; Ma, H.; Danyo, C. The Adaptation of Waste-to-Energy Technologies: Towards the Conversion of Municipal Solid Waste into a Renewable Energy Resource. Environ. Rev. 2019, 27, 435–446. [Google Scholar] [CrossRef]
- Moya, D.; Aldás, C.; López, G.; Kaparaju, P. Municipal Solid Waste as a Valuable Renewable Energy Resource: A Worldwide Opportunity of Energy Recovery by Using Waste-To-Energy Technologies. Energy Procedia 2017, 134, 286–295. [Google Scholar] [CrossRef]
- Tozlu, A.; Özahi, E.; Abuşoğlu, A. Waste to Energy Technologies for Municipal Solid Waste Management in Gaziantep. Renew. Sustain. Energy Rev. 2016, 54, 809–815. [Google Scholar] [CrossRef]
- Brunner, P.H.; Rechberger, H. Waste to Energy—Key Element for Sustainable Waste Management. Waste Manag. 2015, 37, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, K.A.; Pandey, K.K. Waste to Energy Status in India: A Short Review. Renew. Sustain. Energy Rev. 2014, 31, 113–120. [Google Scholar] [CrossRef]
- Global Energy Monitor (GEM). Barka Power Station—Global Energy Monitor Profile. Available online: https://www.gem.wiki/Barka_power_station (accessed on 20 July 2024).
- Hevia-Koch, P.; Klinge Jacobsen, H. Comparing Offshore and Onshore Wind Development Considering Acceptance Costs. Energy Policy 2019, 125, 9–19. [Google Scholar] [CrossRef]
- Bonou, A.; Laurent, A.; Olsen, S.I. Life Cycle Assessment of Onshore and Offshore Wind Energy-from Theory to Application. Appl. Energy 2016, 180, 327–337. [Google Scholar] [CrossRef]
- Offshore Construction Associates (OCA). Interconnection Issues Facing the Offshore Wind Industry. Available online: https://offshoreconstruct.com/interconnection-issues-facing-the-offshore-wind-industry (accessed on 7 August 2024).
- World Bank (WB). Concentrating Solar Power: Clean Power on Demand 24/7; World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Kaldellis, J.K.; Apostolou, D.; Kapsali, M.; Kondili, E. Environmental and Social Footprint of Offshore Wind Energy. Comparison with Onshore Counterpart. Renew. Energy 2016, 92, 543–556. [Google Scholar] [CrossRef]
- Green, R.; Vasilakos, N. The Economics of Offshore Wind. Energy Policy 2011, 39, 496–502. [Google Scholar] [CrossRef]
- Esteban, M.D.; Diez, J.J.; López, J.S.; Negro, V. Why Offshore Wind Energy? Renew. Energy 2011, 36, 444–450. [Google Scholar] [CrossRef]
- van der Zwaan, B.; Rivera-Tinoco, R.; Lensink, S.; van den Oosterkamp, P. Cost Reductions for Offshore Wind Power: Exploring the Balance between Scaling, Learning and R&D. Renew. Energy 2012, 41, 389–393. [Google Scholar] [CrossRef]
- Dvorak, M.J.; Archer, C.L.; Jacobson, M.Z. California Offshore Wind Energy Potential. Renew. Energy 2010, 35, 1244–1254. [Google Scholar] [CrossRef]
- Enevoldsen, P.; Valentine, S.V. Do Onshore and Offshore Wind Farm Development Patterns Differ? Energy Sustain. Dev. 2016, 35, 41–51. [Google Scholar] [CrossRef]
- Rodrigues, S.; Restrepo, C.; Kontos, E.; Teixeira Pinto, R.; Bauer, P. Trends of Offshore Wind Projects. Renew. Sustain. Energy Rev. 2015, 49, 1114–1135. [Google Scholar] [CrossRef]
- Letcher, T.M. Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines, 2nd ed.; Academic Press, an Imprint of Elsevier: London, UK, 2023; ISBN 978-0-323-95830-1. [Google Scholar]
- Markard, J.; Petersen, R. The Offshore Trend: Structural Changes in the Wind Power Sector. Energy Policy 2009, 37, 3545–3556. [Google Scholar] [CrossRef]
- Li, M.; Jiang, X.; Negenborn, R.R. Opportunistic Maintenance for Offshore Wind Farms with Multiple-Component Age-Based Preventive Dispatch. Ocean Eng. 2021, 231, 109062. [Google Scholar] [CrossRef]
- Nour Al-Deen, K.A.; Hussain, H.A. Review of DC Offshore Wind Farm Topologies. In Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 10–14 October 2021; pp. 53–60. [Google Scholar]
- Al Riyami, H.A.; Al Busaidi, A.G.; Al Nadabi, A.A.; Al Habsi, A.A.; Naqabi, A.; Bicskei, R.; Szekut, A.; Fahmi, R. Integration of 50MW Dhofar Wind Farm Intermittency in System Planning & Operation. In Proceedings of the 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand, 19–23 March 2019; IEEE: Bangkok, Thailand, 2019; pp. 901–908. [Google Scholar]
- Masdar Dhofar Wind Project. Available online: https://masdar.ae/en/renewables/our-projects/dhofar-wind-project (accessed on 7 August 2024).
- TSK Dhofar 50 MW Wind Farm. Available online: https://www.grupotsk.com/en/project/dhofar-50-mw-wind-farm (accessed on 7 August 2024).
- Global Energy Monitor (GEM). Dhofar II Wind Farm—Global Energy Monitor Profile. Available online: https://www.gem.wiki/Dhofar_II_wind_farm (accessed on 8 August 2024).
- PowerTechnology. Power Plant Profile: Dhofar Wind Farm, Oman. Available online: https://www.power-technology.com/data-insights/power-plant-profile-dhofar-wind-farm-oman (accessed on 8 August 2024).
- Mavromatakis, F.; Viskadouros, G.; Haritaki, H.; Xanthos, G. Photovoltaic Systems and Net Metering in Greece. Eng. Technol. Appl. Sci. Res. 2018, 8, 3168–3171. [Google Scholar] [CrossRef]
- Obi, M.; Jensen, S.M.; Ferris, J.B.; Bass, R.B. Calculation of Levelized Costs of Electricity for Various Electrical Energy Storage Systems. Renew. Sustain. Energy Rev. 2017, 67, 908–920. [Google Scholar] [CrossRef]
- Marzouk, O. Benchmarks for the Omani Higher Education Students-Faculty Ratio (SFR) Based on World Bank Data, QS Rankings, and THE Rankings. Cogent Educ. 2024, 11, 2317117. [Google Scholar] [CrossRef]
- Branker, K.; Pathak, M.J.M.; Pearce, J.M. A Review of Solar Photovoltaic Levelized Cost of Electricity. Renew. Sustain. Energy Rev. 2011, 15, 4470–4482. [Google Scholar] [CrossRef]
- Wiser, R.; Bolinger, M.; Lantz, E. Benchmarking Wind Power Operating Costs in the United States: Results from a Survey of Wind Industry Experts; United States Lawrence Berkeley National Laboratory (LBL): Berkeley, CA, USA, 2019. [Google Scholar]
- Ueckerdt, F.; Hirth, L.; Luderer, G.; Edenhofer, O. System LCOE: What Are the Costs of Variable Renewables? Energy 2013, 63, 61–75. [Google Scholar] [CrossRef]
- Lazard 2024 Lazard’s Levelized Cost of Energy Plus; Lazard Inc.: New York, NY, USA, 2024.
- International Energy Agency (IEA). Renewables 2023 (7th Edition)—Analysis and Forecasts to 2028; International Energy Agency: Paris, France, 2024. [Google Scholar]
- International Renewable Energy Agency (IRENA). Renewable Power Generation Costs in 2022; IRENA: Masdar City, United Arab Emirates, 2023. [Google Scholar]
- International Energy Agency (IEA). Hydrogen Production and Infrastructure Projects Database. Available online: https://www.iea.org/data-and-statistics/data-product/hydrogen-production-and-infrastructure-projects-database#hydrogen-production-projects (accessed on 20 September 2024).
- Blohm, M.; Dettner, F. Green Hydrogen Production: Integrating Environmental and Social Criteria to Ensure Sustainability. Smart Energy 2023, 11, 100112. [Google Scholar] [CrossRef]
- Wappler, M.; Unguder, D.; Lu, X.; Ohlmeyer, H.; Teschke, H.; Lueke, W. Building the Green Hydrogen Market—Current State and Outlook on Green Hydrogen Demand and Electrolyzer Manufacturing. Int. J. Hydrogen Energy 2022, 47, 33551–33570. [Google Scholar] [CrossRef]
- Kopteva, A.; Kalimullin, L.; Tcvetkov, P.; Soares, A. Prospects and Obstacles for Green Hydrogen Production in Russia. Energies 2021, 14, 718. [Google Scholar] [CrossRef]
- H2Global Foundation (H2Global Stiftung). Shaping the Global Energy Transition. Available online: https://www.h2-global.org (accessed on 20 September 2024).
- German Federal Ministry for Economic Affairs and Climate Action (BMWK). H2Global. Available online: https://www.bmwk.de/Redaktion/EN/Hydrogen/Foerderung-International-Beispiele/01-H2Global.html (accessed on 20 September 2024).
- Green Hydrogen Organisation (GH2). GH2 Country Portal—Germany (and H2Global). Available online: http://gh2.org/countries/germany (accessed on 20 September 2024).
- Coleman, D.; Kopp, M.; Wagner, T.; Scheppat, B. The Value Chain of Green Hydrogen for Fuel Cell Buses—A Case Study for the Rhine-Main Area in Germany. Int. J. Hydrogen Energy 2020, 45, 5122–5133. [Google Scholar] [CrossRef]
- Westphal, K.; Graul, H.; Hoffmann, F.; Klages, C.; Kübler, M.; Möhring, L.; Völler, J. Commercial Interfaces as a Challenge for the Build-Up of Hydrogen Supply Chains (H2Global); H2GLOBAL STIFTUNG: Hamburg, Germany, 2023. [Google Scholar]
- Burgess, J. Fertiglobe Wins First German H2Global Green Ammonia Import Tender at Eur1000/Mt. Available online: https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/energy-transition/071124-fertiglobe-wins-first-german-h2global-green-ammonia-import-tender-at-eur1000mt (accessed on 20 September 2024).
- Al-Sarihi, A.; Contestabile, M.; Cherni, J.A. Renewable Energy Policy Evaluation Using A System Dynamics Approach: The Case of Oman; The 33rd International Conference of the System Dynamics Society: Cambridge, MA, USA, 2015. [Google Scholar]
- Ulussever, T.; Kartal, M.T.; Pata, U.K. Environmental Role of Technology, Income, Globalization, and Political Stability: Testing the LCC Hypothesis for the GCC Countries. J. Clean. Prod. 2024, 451, 142056. [Google Scholar] [CrossRef]
- Ulussever, T.; Kartal, M.T.; Kılıç Depren, S. Effect of Income, Energy Consumption, Energy Prices, Political Stability, and Geopolitical Risk on the Environment: Evidence from GCC Countries by Novel Quantile-Based Methods. Energy Environ. 2023. [Google Scholar] [CrossRef]
- Sherif, M.; Liaqat, M.U.; Baig, F.; Al-Rashed, M. Water Resources Availability, Sustainability and Challenges in the GCC Countries: An Overview. Heliyon 2023, 9, e20543. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.S.; Pudza, M.Y.; Yihdego, Y. Harnessing the Energy Transition from Total Dependence on Fossil to Renewable Energy in the Arabian Gulf Region, Considering Population, Climate Change Impacts, Ecological and Carbon Footprints, and United Nations’ Sustainable Development Goals. Sustain. Earth Rev. 2023, 6, 10. [Google Scholar] [CrossRef]
- Al Sheeb, M.; Al Jawad, F.A.; Nazzal, H. Parents’ Knowledge of Emergency Management of Avulsed Permanent Teeth in Children and Adolescents in the State of Qatar: A Questionnaire Cross-Sectional Study. Eur. Arch. Paediatr. Dent. 2023, 24, 643–650. [Google Scholar] [CrossRef]
- Alkhtib, A.O.; Mohamed, H.G. Current Knowledge about Early Childhood Caries in the Gulf Cooperation Council with Worldwide Reflection: Scoping Review of the Scientific Literature (2010–2021). PLOS Glob. Public Health 2023, 3, e0001228. [Google Scholar] [CrossRef]
- Alotaibi, K.O. How Internal Auditing Impacts Governance Mechanisms in Small and Medium-Sized Businesses. Int. J. Adv. Appl. Sci. 2024, 11, 199–207. [Google Scholar] [CrossRef]
- Ben Dhiab, L.; Dkhili, H. Impact of Income, Trade, Urbanization, and Financial Development on CO2 Emissions in the GCC Countries. Int. J. Adv. Appl. Sci. 2019, 6, 36–42. [Google Scholar] [CrossRef]
- Alalmai, S. Impact of Determinants on Foreign Direct Investment in Saudi Arabia: A Multiple Linear Regression Analysis. Int. J. Adv. Appl. Sci. 2024, 11, 50–56. [Google Scholar] [CrossRef]
- Wasli, A.; AlSaggaf, M.I. Effect of the Financial Integration on the International Diversification Gains: The Case of GCC Markets: Evidence from a Conditional ICAPM. Int. J. Adv. Appl. Sci. 2019, 6, 38–47. [Google Scholar] [CrossRef]
- Dkhili, H.; Ben Dhiab, L. Impact of Environmental Performance on Sustainable Development: A Case Study of GCC Companies. Int. J. Adv. Appl. Sci. 2020, 7, 33–39. [Google Scholar] [CrossRef]
- Alyami, S.H. Applicability of LEED Assessment Criteria for the Context of GCC Countries. Int. J. Adv. Appl. Sci. 2020, 7, 133–142. [Google Scholar] [CrossRef]
- Ben Mim, S.; Ben Ali, M.S. Natural Resources Curse and Economic Diversification in GCC Countries. In Economic Development in the Gulf Cooperation Council Countries: From Rentier States to Diversified Economies; Miniaoui, H., Ed.; Springer: Singapore, 2020; pp. 1–18. ISBN 9789811560583. [Google Scholar]
- Ghaleb, B.; Abbasi, S.A.; Asif, M. Application of Solar PV in the Building Sector: Prospects and Barriers in the GCC Region. Energy Rep. 2023, 9, 3932–3942. [Google Scholar] [CrossRef]
- Al Naimi, S.M. Economic Diversification Trends in the Gulf: The Case of Saudi Arabia. Circ. Econ. Sustain. 2022, 2, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Singh, M. Rentierism to Post-Oil Sustainability: Economic Diversification in the GCC and India’s Strategic Alignment. Int. J. Humanit. Soc. Sci. Manag. 2024, 4, 161–170. [Google Scholar]
- Economic Development in the Gulf Cooperation Council Countries: From Rentier States to Diversified Economies; Miniaoui, H. (Ed.) Gulf Studies; Springer: Singapore, 2020; ISBN 9789811560583. [Google Scholar]
- Al-Fayoumi, N.; Bouri, E.; Abuzayed, B. Decomposed Oil Price Shocks and GCC Stock Market Sector Returns and Volatility. Energy Econ. 2023, 126, 106930. [Google Scholar] [CrossRef]
- Sanfilippo, A.; Vermeersch, M.; Benito, V.B. Energy Transition Strategies in the Gulf Cooperation Council Countries. Energy Strategy Rev. 2024, 55, 101512. [Google Scholar] [CrossRef]
- Khan, M.I.; Al-Ghamdi, S.G. Hydrogen Economy for Sustainable Development in GCC Countries: A SWOT Analysis Considering Current Situation, Challenges, and Prospects. Int. J. Hydrogen Energy 2023, 48, 10315–10344. [Google Scholar] [CrossRef]
- Ma, N.; Zhao, W.; Wang, W.; Li, X.; Zhou, H. Large Scale of Green Hydrogen Storage: Opportunities and Challenges. Int. J. Hydrogen Energy 2024, 50, 379–396. [Google Scholar] [CrossRef]
- Sadik-Zada, E.R. Political Economy of Green Hydrogen Rollout: A Global Perspective. Sustainability 2021, 13, 13464. [Google Scholar] [CrossRef]
- Wolf, S.; Teitge, J.; Mielke, J.; Schütze, F.; Jaeger, C. The European Green Deal—More Than Climate Neutrality. Intereconomics 2021, 56, 99–107. [Google Scholar] [CrossRef]
- Pianta, M.; Lucchese, M. Rethinking the European Green Deal: An Industrial Policy for a Just Transition in Europe. Rev. Radic. Political Econ. 2020, 52, 633–641. [Google Scholar] [CrossRef]
- Sikora, A. European Green Deal—Legal and Financial Challenges of the Climate Change. ERA Forum 2021, 21, 681–697. [Google Scholar] [CrossRef]
- Filipović, S.; Lior, N.; Radovanović, M. The Green Deal—Just Transition and Sustainable Development Goals Nexus. Renew. Sustain. Energy Rev. 2022, 168, 112759. [Google Scholar] [CrossRef]
- Darvas, Z.; Wolff, G.B. A Green Fiscal Pact for the EU: Increasing Climate Investments While Consolidating Budgets. Clim. Policy 2023, 23, 409–417. [Google Scholar] [CrossRef]
- Skydan, O.V.; Dankevych, V.Y.; Fedoniuk, T.P.; Dankevych, Y.M.; Yaremova, M.I. European Green Deal: Experience of Food Safety for Ukraine. Int. J. Adv. Appl. Sci. 2022, 9, 63–71. [Google Scholar] [CrossRef]
Oman 2040 Vision Pillars | Oman 2040 National Priorities |
---|---|
(A) Competitive Economy | 1. Economic Leadership and Management |
2. Economic Diversification and Fiscal Sustainability | |
3. Labor Market and Employment | |
4. The Private Sector, Investment, and International Cooperation | |
5. Development of Governorates and Sustainable Cities | |
(B) Society of Creative Individuals | 6. Education, Learning, Scientific Research, and National Capabilities |
7. Health | |
8. Citizenship, Identity, and National Heritage and Culture | |
9. Well-being and Social Protection | |
(C) Responsible State Agencies | 10. Governance of State’s Administrative Bodies, Resources, and Projects |
11. Legislative, Judicial, and Oversight System | |
(D) Environment with Sustainable Components | 12. Environment and Natural Resources |
Development Status | Description |
---|---|
Operating | project commissioned; commercial operation started |
Construction | project construction started; ongoing site preparation; equipment being installed |
Pre-construction | project actively moving forward in securing permits or financing |
Announced | project merely proposed; described in a governmental document, a corporate plan, or a media release, but no serious implementation steps taken yet (like applying for permits) |
Shelved | project proposed but no actions taken for two years |
Mothballed | project use stopped, but not dismantled |
Cancelled | project cancellation announced or no progress for four years |
Retired | project decommissioned, dismantled, or damaged |
Energy Category (Source) | Number of Plants (per Development Status) | Sum (All Statues) | Sum (Operating, Construction, Pre-Construction Only) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Operating | Construction | Pre-construction | Announced | Shelved | Mothballed | Cancelled | Retired | |||
Coal | - | - | - | - | - | - | 2 | - | 2 | 0 |
Oil–Gas | 46 | 1 | - | - | - | 3 | 1 | - | 51 | 47 |
Nuclear | - | - | - | - | - | - | - | - | 0 | 0 |
Geothermal | - | - | - | - | - | - | - | - | 0 | 0 |
Hydropower | - | - | - | - | 1 | - | - | - | 1 | 0 |
Bioenergy | - | - | 1 | - | - | - | - | - | 1 | 1 |
Solar | 6 | 8 | 22 | 7 | - | - | 2 | - | 45 | 36 |
Wind | 1 | 2 | 12 | 4 | - | - | - | - | 19 | 15 |
Sum | 53 | 11 | 35 | 11 | 1 | 3 | 5 | 0 | 119 | 99 |
Development Status | Total Capacity in Oman (Four Energy Types), GW | Renewables Capacity (Solar and Wind), GW | Share of Renewables Capacity (within the Same Status or Statuses) |
---|---|---|---|
Operating | 15.0711 | 1.3424 | 8.907% |
Construction | 2.2850 | 2.1530 | 94.223% |
Pre-construction | 65.7710 | 65.6110 | 99.757% |
Planned (Construction and Pre-construction) | 68.0560 | 67.7640 | 99.571% |
All selected three statuses (Operating, Construction, and Pre-construction) | 83.1271 | 69.1064 | 83.133% |
Development Status | Solar PV Capacity, GW (and Number of Plants) | Solar CSP Capacity, GW (and Number of Plants) | Share of PV in Solar Capacity (within the Same Status or Statuses) |
---|---|---|---|
Operating | 1.1924 (5 plants) | 0.1000 (1 plant) | 92.262% |
Construction | 0.9320 (6 plants) | 0.9210 (2 plants) | 50.297% |
Pre-construction | 31.8610 (21 plants) | 0.6000 (1 plant) | 98.152% |
Planned (Construction and Pre-construction) | 32.7930 (27 plants) | 1.5210 (3 plants) | 95.567% |
All selected three statuses (Operating, Construction, and Pre-construction) | 33.9854 (32 plants) | 1.6210 (4 plants) | 95.447% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzouk, O.A. Portrait of the Decarbonization and Renewables Penetration in Oman’s Energy Mix, Motivated by Oman’s National Green Hydrogen Plan. Energies 2024, 17, 4769. https://doi.org/10.3390/en17194769
Marzouk OA. Portrait of the Decarbonization and Renewables Penetration in Oman’s Energy Mix, Motivated by Oman’s National Green Hydrogen Plan. Energies. 2024; 17(19):4769. https://doi.org/10.3390/en17194769
Chicago/Turabian StyleMarzouk, Osama A. 2024. "Portrait of the Decarbonization and Renewables Penetration in Oman’s Energy Mix, Motivated by Oman’s National Green Hydrogen Plan" Energies 17, no. 19: 4769. https://doi.org/10.3390/en17194769
APA StyleMarzouk, O. A. (2024). Portrait of the Decarbonization and Renewables Penetration in Oman’s Energy Mix, Motivated by Oman’s National Green Hydrogen Plan. Energies, 17(19), 4769. https://doi.org/10.3390/en17194769