A Defect Detection Method for Grading Rings of Transmission Lines Based on Improved YOLOv8
Abstract
:1. Introduction
2. Methods
2.1. CloAttention
2.2. CARAFE
3. Datasets and Evaluation Indicators
3.1. Experimental Environment and Data
3.2. Evaluation Indicators
4. Experimental Results and Analysis
4.1. Results and Analysis of Ablation Experiments
4.2. Confusion Matrix
4.3. Comparative Experiments
4.4. Visualization of the Results of Different Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Full Name |
LN | Layer normalization |
FC | Fully connected layer |
pool | Pooling |
DWconv | Depth-wise convolution |
cat | Concat |
mul | Hadamard product |
References
- Rodgers, W.; Cardenas, J.A.; Gemoets, L.A.; Sarfi, R.J. A smart grids knowledge transfer paradigm supported by experts’ throughput modeling artificial intelligence algorithmic processes. Technol. Forecast. Soc. Chang. 2023, 190, 122373. [Google Scholar] [CrossRef]
- Zhao, Z.B.; Jiang, Z.G.; Li, Y.X.; Qi, Y.C.; Zhai, Y.J.; Zhao, W.Q.; Zhang, K. Overview of visual defect detection of transmission line components. J. Image Graph. 2021 26, 2545–2560.
- Luo, P.; Wang, B.; Wang, H.; Ma, F.; Ma, H.; Wang, L. An ultrasmall bolt defect detection method for transmission line inspection. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [Google Scholar] [CrossRef]
- Li, L.R.; Chen, P.; Zhang, Y.L.; Mei, B.; Gong, P.C.; Yu, H.J. Detection of power devices and abnormal objects in transmission lines based on improved CenterNet. High Volt. Eng. 2023, 49, 4757–4765. [Google Scholar]
- Zhao, Z.B.; Xiong, J.; Xu, H.D.; Zhang, J.H. Integrating Structural Reasoning for Deep Model Transmission Line Fittings and Their Defects Detection. High Volt. Eng. 2023, 8, 3346–3353. [Google Scholar]
- Yang, J.; Zhang, K.; Shi, C.; Zheng, F. SBD-YOLOv5: An Enhanced YOLOv5-Based Method for Transmission Line Fitting Defect Detection. In Proceedings of the 2023 China Automation Congress (CAC), Chongqing, China, 17–19 November 2023; pp. 8090–8095. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Tang, Y.; Han, J.; Wei, W.L.; Ding, J.; Peng, X.J. Research on part recognition and defect detection of transmission line in deep learning. Electron. Meas. Technol. 2018, 41, 60–65. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Chen, Z.; Wang, R. Research on Transmission Line Defect Detection System Based on Cloud-Edge-End Collaboration. In Proceedings of the 2023 China Automation Congress (CAC), Chongqing, China, 17–19 November 2023; pp. 1829–1834. [Google Scholar]
- Dai, Y.D.; Jiang, Z.J.; Wang, M.F.; Chen, S.H. Deep Learning Based Transmission Line Mean-Voltage Ring Tilt Identification. Process Autom. Instrum. 2022, 43, 106–110. [Google Scholar]
- Fu, Q.; Liu, J.; Zhang, X.; Zhang, Y.; Ou, Y.; Jiao, R.; Li, C.; Mazzanti, G. A Small-Sized Defect Detection Method for Overhead Transmission Lines Based on Convolutional Neural Networks. IEEE Trans. Instrum. Meas. 2023, 72, 3524612. [Google Scholar] [CrossRef]
- Hu, C.L.; Pei, S.T.; Liu, Y.P.; Yang, W.J.; Yang, R.; Zhang, H.Y.; Liu, H.F. Real-time Defect Detection Method for Transmission Line Edge end Based on LEE-YOLOv7. High Volt. Eng. 2024, 1–14. [Google Scholar]
- Cui, C.; Gao, T.; Wei, S.; Du, Y.; Guo, R.; Dong, S.; Liu, B.; Zhou, Y.; Lv, X.; Liu, Q.; et al. PP-LCNet: A lightweight CPU convolutional neural network. arXiv 2021, arXiv:2109.15099. [Google Scholar]
- Bhattacharyya, S.; Mtsuko, D.; Allen, C.; Coleman, C. Effects of Rashba-spin–orbit coupling on superconducting boron-doped nanocrystalline diamond films: Evidence of interfacial triplet superconductivity. New J. Phys 2020, 22, 093039. [Google Scholar] [CrossRef]
- Tong, Z.; Chen, Y.; Xu, Z.; Yu, R. Wise-IoU: Bounding box regression loss with dynamic focusing mechanism. arXiv 2023, arXiv:2301.10051. [Google Scholar]
- Fan, Q.; Huang, H.; Guan, J.; He, R. Rethinking local perception in lightweight vision transformer. arXiv 2023, arXiv:2303.17803. [Google Scholar]
- Wang, J.; Chen, K.; Xu, R.; Liu, Z.; Loy, C.C.; Lin, D. Carafe: Content-aware reassembly of features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3007–3016. [Google Scholar]
- Si, C.; Yu, W.; Zhou, P.; Zhou, Y.; Wang, X.; Yan, S. Inception transformer. Adv. Neural Inf. Process. Syst. 2022, 35, 23495–23509. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
Parameter | Configure |
---|---|
Operating System | Ubuntu 16.04 |
Deep Learning Framework | Pytorch 1.9.0. |
CPU Model | i7-5930K |
Graphics Card (GPU) Model | 1080Ti |
CUDA | 10.2 |
Programming Language | Python 3.8 |
Method | YOLOv8-M | CloAttention | CARAFE | [email protected]/% | ||||
---|---|---|---|---|---|---|---|---|
NormalGrading Ring | Defective GradingRing | All | ||||||
A | √ | 86.4 | 60.8 | 73.6 | 25.8 | 78.7 | ||
B | √ | √ | 87.5 | 62.0 | 74.8 | 27.3 | 81.0 | |
C | √ | √ | √ | 88.1 | 67.6 | 77.9 | 27.4 | 81.3 |
Model | Detection Target | mAP50/% | mAP50:95/% | |||
---|---|---|---|---|---|---|
YOLOv5-M | Normal and defective grading ring | 72.2 | 46.4 | 20.8 | 47.9 | 142.8 |
Defective grading ring | 58.6 | 35.4 | ||||
YOLOv6-M | Normal and defective grading ring | 71.7 | 46.0 | 34.8 | 85.6 | 111.7 |
Defective grading ring | 57.6 | 35.7 | ||||
YOLOv7 | Normal and defective grading ring | 68.3 | 40.2 | 36.4 | 103.2 | 65.3 |
Defective grading ring | 51.9 | 28.1 | ||||
YOLOv8-M | Normal and defective grading ring | 73.6 | 46.2 | 25.8 | 78.7 | 91.7 |
Defective grading ring | 60.8 | 35.5 | ||||
YOLOv9-C | Normal and defective grading ring | 73.9 | 47.0 | 50.7 | 236.6 | 43.3 |
Defective grading ring | 60.0 | 35.5 | ||||
Ours | Normal and defective grading ring | 77.9 | 47.3 | 27.4 | 81.3 | 37.7 |
Defective grading ring | 67.6 | 36.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, S.; Zhang, L.; Chen, Y.; Du, P.; Wang, Y.; Xi, Y.; Li, B.; Zhao, Z. A Defect Detection Method for Grading Rings of Transmission Lines Based on Improved YOLOv8. Energies 2024, 17, 4767. https://doi.org/10.3390/en17194767
Xiang S, Zhang L, Chen Y, Du P, Wang Y, Xi Y, Li B, Zhao Z. A Defect Detection Method for Grading Rings of Transmission Lines Based on Improved YOLOv8. Energies. 2024; 17(19):4767. https://doi.org/10.3390/en17194767
Chicago/Turabian StyleXiang, Siyu, Linghao Zhang, Yumin Chen, Peike Du, Yao Wang, Yue Xi, Bing Li, and Zhenbing Zhao. 2024. "A Defect Detection Method for Grading Rings of Transmission Lines Based on Improved YOLOv8" Energies 17, no. 19: 4767. https://doi.org/10.3390/en17194767
APA StyleXiang, S., Zhang, L., Chen, Y., Du, P., Wang, Y., Xi, Y., Li, B., & Zhao, Z. (2024). A Defect Detection Method for Grading Rings of Transmission Lines Based on Improved YOLOv8. Energies, 17(19), 4767. https://doi.org/10.3390/en17194767