Impact of Overpressure on the Preservation of Liquid Petroleum: Evidence from Fluid Inclusions in the Deep Reservoirs of the Tazhong Area, Tarim Basin, Western China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
4. Results
4.1. Petrography
4.2. Microthermometry
4.3. PVT Simulation
5. Discussion
5.1. Petroleum Charging Process and Overpressure Formation
5.2. The Role of Overpressure in the Preservation of Liquid Petroleum
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, X.S.; Liu, K.Y.; Zhao, M.J.; Zhang, B.S.; Chen, Y.; Fan, J.J.; Li, X.L. Accumulation mechanism analysis of the typical deep reservoirs in Tarim Basin. J. Northeast Pet. Univ. 2016, 40, 62–73. [Google Scholar]
- Luo, X.R.; Yang, H.J.; Wang, Z.L.; Zhang, L.Q.; Zhang, L.K.; Lei, Y.H.; Zhou, L.; Zhang, B.S.; Yan, Y.M.; Cao, B.F.; et al. Heterogeneity characteristics of clastic reservoirs and hydrocarbon accumulation mode in deep-ultradeep basins. Acta Geol. Sin. 2023, 97, 2802–2819. [Google Scholar] [CrossRef]
- Li, Q.C.; Li, Y.D.; Cheng, Y.F.; Li, Q.; Wang, F.L.; Wei, J. Numerical simulation of fracture reorientation during hydraulic fracturing in perforated horizontal well in shale reservoirs. Energy Sources Part A 2018, 40, 1807–1813. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Yang, H.J.; Su, J.; He, K.; Han, J.F.; Gu, L.J.; Zhu, Y.F.; Zhang, B.T. True exploration potential of marine oils in the Tarim Basin. Acta Petrol. Sin. 2012, 28, 1333–1347. [Google Scholar]
- Sun, L.D.; Zou, C.N.; Zhu, R.K.; Zhang, Y.H.; Zhang, S.C.; Zhang, B.M.; Zhu, G.Y.; Gao, Z.Y. Formation, distribution and potential of deep hydrocarbon resources in China. Pet. Explor. Dev. 2013, 40, 687–695. [Google Scholar] [CrossRef]
- Ren, Z.L.; Cui, J.P.; Qi, K.; Yang, G.L.; Chen, Z.J.; Yang, P.; Wang, K. Control effects of temperature and thermal evolution history of deep and ultra-deep layers on hydrocarbon phase state and hydrocarbon generation history. Nat. Gas Ind. 2021, 7, 453–461. [Google Scholar] [CrossRef]
- Gu, Y.; Wan, Y.L.; Huang, J.W.; Zhuang, X.B.; Wang, B.; Li, M. Prospects for ultra-deep oil and gas in the “deep burial and high pressure” Tarim Basin. Pet. Geol. Exp. 2019, 41, 157–164. [Google Scholar]
- Lin, T.; Wang, T.S.; Li, Z.S.; Yuan, W.F.; Ma, W.; Xu, Z.H.; Li, Q.F. Hydrocarbon filling evolution and exploration direction of the middle-lower Cambrian interval in Tazhong area, Tarim Basin. J. China Univ. Pet. Ed. Nat. Sci. 2021, 45, 42–54. [Google Scholar]
- Yi, S.W.; Li, M.M.; Guo, X.J.; Yang, F.; Miao, W.D.; Lin, S.G.; Gao, Y. Breakthrough direction of Cambrian pre-salt exploration fields in Tarim Basin. Acta Pet. Sin. 2019, 40, 1281–1295. [Google Scholar]
- Wang, Z.M.; Xie, H.W.; Chen, Y.Q.; Qi, Y.M.; Zhang, K. Discovery and Exploration of Cambrian Subsalt Dolomite Original Hydrocarbon Reservoir at Zhongshen-1 Well in Tarim Basin. China Pet. Explor. 2014, 19, 1–13. [Google Scholar]
- Ma, A.L.; Jin, Z.J.; Liu, J.Z. Hydrocarbon phase in the deep Cambrian of the Tarim Basin. Pet. Geol. Exp. 2015, 37, 681–688. [Google Scholar]
- Guan, S.W.; Zhang, C.Y.; Ren, R.; Zhang, S.C.; Wu, L.; Wang, L.; Ma, P.L.; Han, C.W. Early Cambrian syndepositional structure of the northern Tarim Basin and a discussion of Cambrian subsalt and deep exploration. Pet. Explor. Dev. 2019, 46, 1075–1086. [Google Scholar] [CrossRef]
- Yang, H.J.; Chen, Y.Q.; Tian, J.; Du, J.H.; Zhu, Y.F.; Li, H.H.; Pan, W.Q.; Yang, P.F.; Li, Y.; An, H.T. An important discovery in Well Luntan-1 of the Tarim Basin, China, and its significance for ultra-deep oil and gas exploration. China Pet. Explor. 2020, 5, 62–72. [Google Scholar]
- Zhang, J.Z.; Wang, Z.M.; Yang, H.J.; Xu, Z.M.; Xiao, Z.Y.; Li, Z.X. Origin and differential accumulation of hydrocarbons in Cambrian sub-salt dolomite reservoirs in Zhongshen Area, Tarim Basin, NW China. Pet. Explor. Dev. 2017, 44, 40–47. [Google Scholar] [CrossRef]
- Song, D.F.; Wang, T.G.; Li, M.J. Geochemistry and possible origin of the hydrocarbons from Wells Zhongshen1 and Zhongshen1C, Tazhong Uplift. Sci. China Earth Sci. 2016, 46, 107–117. [Google Scholar] [CrossRef]
- Shi, J.L.; Li, J.; Li, Z.S.; Hao, A.S. Geochemical characteristics and origin of the deep Cambrian oil and gas in the Tazhong Uplift, Tarim Basin. Oil Gas Geol. 2017, 38, 302–310. [Google Scholar]
- Jiang, T.W.; Han, J.F.; Wu, G.H.; Yu, H.F.; Su, Z.; Xiong, C.; Chen, J.; Zhang, H.F. Differences and controlling factors of composite hydrocarbon accumulations in the Tazhong uplift, Tarim Basin, NW China. Pet. Explor. Dev. 2020, 47, 229–241. [Google Scholar] [CrossRef]
- Yang, P.; Wu, G.H.; Ren, Z.L.; Zhou, R.J.; Zhao, J.X.; Zhang, L.P. Tectono-thermal evolution of Cambrian-Ordovician source rocks and implications for hydrocarbon generation in the eastern Tarim Basin, NW China. J. Asian Earth Sci. 2020, 194, 104267. [Google Scholar] [CrossRef]
- Yang, P.; Wu, G.H.; Nuriel, P.; Nguyen, A.D.; Chen, Y.Q.; Yang, S.; Feng, Y.X.; Ren, Z.L.; Zhao, J.X. In situ LA-ICPMS U-Pb dating and geochemical characterization of fault-zone calcite in the central Tarim Basin, northwest China: Implications for fluid circulation and fault reactivation. Chem. Geol. 2021, 568, 120125. [Google Scholar] [CrossRef]
- Chen, F.R.; Zhang, Y.J.; Zhu, G.Y.; Zhang, B.S.; Lu, Y.H.; Zhang, Z.Y. Geochemistry and accumulation process of deep natural gas in the platform-basin region, Tarim Basin. Nat. Gas Geosci. 2018, 29, 880–891. [Google Scholar]
- Han, J.F.; Wu, G.H.; Yang, H.J.; Dai, L.; Su, Z.; Tang, H.; Xiong, C. Type and genesis of condensate gas reservoir in the Tazhong uplift of the Tarim Basin. Nat. Gas Ind. 2021, 41, 24–32. [Google Scholar]
- Chen, Y.; Steele-Macinnis, M.; Ge, Y.J.; Zhou, Z.Z.; Zhou, Y.Q. Synthetic saline-aqueous and hydrocarbon fluid inclusions trapped in calcite at temperatures and pressures relevant to hydrocarbon basins: A reconnaissance study. Mar. Pet. Geol. 2016, 76, 88–97. [Google Scholar] [CrossRef]
- Tian, T.; Yang, P.; Ren, Z.L.; Fu, D.L.; Zhou, S.X.; Yang, F.; Li, J. Hydrocarbon migration and accumulation in the Lower Cambrian to Neoproterozoic reservoirs in the Micangshan tectonic zone, China: New evidence of fluid inclusions. Energy Rep. 2020, 6, 721–733. [Google Scholar] [CrossRef]
- Chen, X.L.; Zhou, Z.Z.; Xia, H.Y.; Chen, Y.; Wang, J. A new view of trapping pressure estimation using PVT simulation of hydrocarbon inclusions in petroliferous basins. J. Pet. Sci. Eng. 2021, 204, 108715. [Google Scholar] [CrossRef]
- He, D.F.; Jia, C.Z.; Li, D.S. Formation and evolution of polycyclic superimposed Tarim Basin. Oil Gas Geol. 2005, 26, 64–77. [Google Scholar]
- Li, S.; Amrani, A.; Pang, X.; Yang, H.; Said-Ahmad, W.; Zhang, B.; Pang, Q. Origin and quantitative source assessment of deep oils in the Tazhong Uplift, Tarim Basin. Org. Geochem. 2015, 78, 1–22. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Li, J.F.; Zhang, Z.Y. Origin of deep oil and gas phase state diversity and evaluation of secondary geochemical intensity—A case study of marine oil and gas in Tarim Basin. Earth Sci. 2021. Available online: https://kns.cnki.net/kcms/detail/42.1874.P.20211108.1622.004.html (accessed on 9 November 2021).
- Zheng, M.L.; Wang, Y.; Jin, Z.J.; Li, J.C.; Zhang, Z.P.; Jiang, H.S.; Xie, D.Q.; Guo, X. Superimposition, evolution and petroleum accumulation of Tarim Basin. Oil Gas Geol. 2014, 35, 925–933. [Google Scholar]
- Chen, X.L.; Zhou, Z.Z.; Chen, Y.; Barrier, J.; Steele-MacInnis, M. Fluid boiling during high-grade gold deposition in an epithermal gold-telluride deposit, Guilaizhuang, China. J. Geochem. Explor. 2022, 240, 107048. [Google Scholar] [CrossRef]
- Bodnar, R.J.; Vityk, M.O. Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In Fluid Inclusions in Minerals, Methods and Applications; De Vivo, B., Frezzotti, M.L., Eds.; Virginia Tech: Blacksburg, VA, USA, 1994; pp. 117–130. [Google Scholar]
- Steele-MacInnis, M.; Lecumberri-Sanchez, P.; Bodnar, R.J. HokieFlincs_H2O-NaCl: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O-NaCl. Comput. Geosci. 2012, 49, 334–337. [Google Scholar] [CrossRef]
- Wang, D.W.; Wang, T.G.; Li, M.J.; Song, D.F.; Shi, S.B. The distribution of chrysene and methylchrysenes in oils from wells ZS5 and ZS1 in the Tazhong Uplift and its implications in oil-to-source correlation. Geochimica 2016, 45, 451–461. [Google Scholar]
- Aplin, A.C.; Macleod, G.; Larter, S.R.; Pedersen, K.S.; Sorensen, H.; Booth, T. Combined use of confocal laser scanning microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions. Mar. Pet. Geol. 1999, 16, 97–110. [Google Scholar] [CrossRef]
- Cai, C.F.; Hu, G.Y.; Li, H.X.; Jiang, L.; He, W.X.; Zhang, B.S.; Jia, L.Q.; Wang, T.K. Origins and fates of H2S in the Cambrian and Ordovician in Tazhong area: Evidence from sulfur isotopes, fluid inclusions and production data. Mar. Pet. Geol. 2015, 67, 408–418. [Google Scholar] [CrossRef]
- Ge, Y.J. Trapping Mechanism of Hydrocabon Inclusion in Carbonate and Its Response to Hydrocarbon Accumulation. Ph.D. Thesis, China University of Petroleum, Qingdao, China, 2010. [Google Scholar]
- Liang, Y.L.; Wu, N.; Feng, Y.; Wang, S.P.; Wang, J. Hydrocarbon Accumulation Period of Cambrian in Zhongshen 5 Well in Tazhong Area. Xinjiang Geol. 2019, 37, 226–230. [Google Scholar]
- Chen, J.X.; Wang, B.; Guo, X.W.; Cao, Z.C.; Liu, Y.L.; Geng, F.; Zhang, X.Y.; Xu, H.; Zhao, J.X. Application of laser in-situ U-Pb dating of calcite to determination of the absolute time of hydrocarbon accumulation in polycyclic superimposed basins: A case study on Tahe oilfield, Tarim Basin. Oil Gas Geol. 2021, 42, 1365–1375. [Google Scholar]
- Yang, P.; Liu, K.Y.; Zhen, L.; Rankenburg, K.; McInnes, B.I.A.; Liu, J.L.; Evans, N.J. Direct dating Paleo-fluid flow events in sedimentary basins. Chem. Geol. 2022, 588, 120642. [Google Scholar] [CrossRef]
- Wei, D.; Gao, Z.Q.; Zhang, L.L.; Fan, T.L.; Wang, J.B.; Zhang, C.; Zhu, D.Y.; Ju, J.H.; Luo, W.J. Application of blocky calcite vein LA-MC-ICP-MS U-Pb dating and geochemical analysis to the study of tectonic-fult-fluid evolutionary history of the Tabei Uplift, Tarim Basin. Sediment. Geol. 2023, 453, 106425. [Google Scholar] [CrossRef]
- Zheng, J.F.; Wang, H.; Shen, A.J.; Luo, X.Y.; Cheng, Z.; Dai, K. Genesis of Dolomite Reservoir in Ediacaran Chigbrak Formation of Tarim Basin, NW China: Evidence from U–Pb Dating, Isotope and Element Geochemistry. Minerals 2023, 13, 725. [Google Scholar] [CrossRef]
- Wang, J.; Ma, L.B.; Tao, C.; Liu, W.H.; Dong, Q.W. Generation Time and Accumulation of Lower Paleozoic Petroleum in Sichuan and Tarim Basins Determined by Re–Os Isotopic Dating. Processes 2023, 11, 1472. [Google Scholar] [CrossRef]
- Wu, G.H.; Ma, B.S.; Han, J.F.; Guan, B.Z.; Chen, X.; Yang, P.; Xie, Z. Origin and growth mechanisms of strike-slip faults in the central Tarim cratonic basin, NW China. Pet. Explor. Dev. 2021, 48, 595–607. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Huang, H.P.; Wang, H.T. Geochemical Significance of Discovery in Cambrian Reservoirs at Well ZS1 of the Tarim Basin, Northwest China. Energy Fuels 2015, 29, 1332–1344. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Cao, Y.H.; Yan, L.; Yang, H.J.; Sun, C.H.; Zhang, Z.Y.; Chen, Y.Q. Petroleum exploration potential and favorable areas of ultra-deep marine strata deeper than 8000 meters in Tarim Basin. Nat. Gas Geosci. 2018, 29, 755–772. [Google Scholar]
- Zhu, G.Y.; Milkov, A.V.; Zhang, Z.Y.; Sun, C.H.; Zhou, X.X.; Chen, F.R.; Han, J.F.; Zhu, Y.F. Formation and preservation of a giant petroleum accumulation in superdeep carbonate reservoirs in the southern Halahatang oil field area, Tarim Basin, China. Am. Assoc. Pet. Geol. Bull. 2019, 103, 1703–1743. [Google Scholar] [CrossRef]
Component | Oil | Gas | Recombined Hydrocarbon | Component | Oil | Gas | Recombined Hydrocarbon |
---|---|---|---|---|---|---|---|
N2 | 0.3 | 0.234 | C9 | 5.391 | 1.27 | ||
CO2 | 9.7 | 7.555 | C10 | 4.713 | 1.042 | ||
H2S | 0.19 | 0.148 | C11 | 4.463 | 0.987 | ||
C1 | 59.3 | 46.188 | C12 | 4.141 | 0.916 | ||
C2 | 13.9 | 10.827 | C13 | 3.927 | 0.868 | ||
C3 | 9.66 | 7.524 | C14 | 2.963 | 0.655 | ||
iC4 | 1.607 | 1.53 | 1.547 | C15 | 3.463 | 0.766 | |
nC4 | 1.607 | 3.32 | 2.941 | C16 | 3.035 | 0.671 | |
iC5 | 2.249 | 0.78 | 1.105 | C17 | 1.856 | 0.41 | |
nC5 | 2.249 | 0.79 | 1.113 | C18 | 2.035 | 0.45 | |
C6 | 13.674 | 0.53 | 3.148 | C19 | 1.464 | 0.324 | |
C7 | 5.070 | 1.238 | C20 | 1.178 | 0.261 | ||
C8 | 31.596 | 7.08 | C20+ | 3.321 | 0.736 |
FIA No. | Host Mineral | Type | Number | Th (Ave.)/°C | Salinity (Ave.)/wt% |
---|---|---|---|---|---|
1 | Quartz | Oil–gas | 2 | 60.2–62.0 (61.1) | / |
Aqueous | 3 | 120.2–127.8 (124.3) | 8.68–8.81 (8.72) | ||
2 | Anhydrite | Oil–gas | 10 | 29.6–47.7 (39.9) | |
Aqueous | 11 | 121.4–139.8 (129.2) | 11.22–11.93 (11.69) | ||
Dolomite | Oil–gas | 3 | 36.6–43.7 (40.5) | ||
3 | Calcite | Oil | 3 | 8.2–8.8 (8.5) | |
Aqueous | 1 | 118.6 | 10.11 | ||
4 | Quartz | Aqueous | 4 | 134.1–50.2 (142.5) | 15.57–17.08 (16.07) |
FIA No. | Th of HI/°C | Th of AI/°C | Tt/°C | Pt (bar) | Paleo-Depth/m | Pressure Coefficient |
---|---|---|---|---|---|---|
1 | 61.1 | 124.3 | 145.5 | 469.2 | 4600 | 1.02 |
2 | 39.9 | 129.2 | 158.3 | 648.4 | 5350 | 1.21 |
3 | 8.5 | 118.6 | 152.8 | 789.7 | 5300 | 1.49 |
4 | / | 142.5 | 167.0 | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, P.; Zhang, J.; Zhou, Z.; Chen, X.; Zhang, C. Impact of Overpressure on the Preservation of Liquid Petroleum: Evidence from Fluid Inclusions in the Deep Reservoirs of the Tazhong Area, Tarim Basin, Western China. Energies 2024, 17, 4765. https://doi.org/10.3390/en17194765
Su P, Zhang J, Zhou Z, Chen X, Zhang C. Impact of Overpressure on the Preservation of Liquid Petroleum: Evidence from Fluid Inclusions in the Deep Reservoirs of the Tazhong Area, Tarim Basin, Western China. Energies. 2024; 17(19):4765. https://doi.org/10.3390/en17194765
Chicago/Turabian StyleSu, Peng, Jianyong Zhang, Zhenzhu Zhou, Xiaolan Chen, and Chunrong Zhang. 2024. "Impact of Overpressure on the Preservation of Liquid Petroleum: Evidence from Fluid Inclusions in the Deep Reservoirs of the Tazhong Area, Tarim Basin, Western China" Energies 17, no. 19: 4765. https://doi.org/10.3390/en17194765
APA StyleSu, P., Zhang, J., Zhou, Z., Chen, X., & Zhang, C. (2024). Impact of Overpressure on the Preservation of Liquid Petroleum: Evidence from Fluid Inclusions in the Deep Reservoirs of the Tazhong Area, Tarim Basin, Western China. Energies, 17(19), 4765. https://doi.org/10.3390/en17194765