Ultra-Short-Term Photovoltaic Power Prediction by NRGA-BiLSTM Considering Seasonality and Periodicity of Data
Abstract
:1. Introduction
2. Proposed Approach
- (a)
- The approach considers the influence of seasonal characteristics on the performance of PV power prediction in the time series dataset, which effectively solves the problem of the prediction model being insensitive to seasonal information.
- (b)
- The ameliorated PAM is added to the model, which helps the model effectively capture the nonlinear relationship of the data at different time points in the same daily period, and the prediction accuracy and stability are improved.
- (c)
- The model parameter optimization adopts the improved NRGA. By enriching the ability of the algorithm to find the optimal parameters both globally and locally, and the predictive performance of the model is thus enhanced.
- (d)
- The approach allows the model to have better performance in the prediction of different output time steps.
2.1. Step1: Data Process
- (i)
- SD additive model, where the total series is the sum of the subseries:
- (ii)
- SD multiplicative model, where the total series is the product of the subseries:
2.2. Step2: Model
2.3. Step3: Prediction
Algorithm 1 Newton–Raphson Genetic Algorithm (NRGA) |
|
2.4. Step4: Evaluation
3. Case Study
3.1. Experimental Design
- (a)
- By assessing the predictive performance of two seasonal decomposition models before and after seasonal division, we further analyze the impact of seasonal division and seasonal decomposition on the prediction results.
- (b)
- The NRGA, GA, and PSO algorithms were used to optimize the parameters of BiLSTM, LSTM, GRU, and BPNN prediction models, and the effectiveness of each algorithm in finding the optimal parameters was evaluated.
- (c)
- The role of PAM in the different prediction models was verified through ablation experiments.
- (d)
- The prediction results in this paper are compared and analyzed with other references to verify the performance of the proposed model. Then, the prediction performance of the proposed model at different temporal resolutions was analyzed.
- (e)
- The datasets from different locations were selected to validate the generalization performance of the proposed approach.
3.2. Dataset
3.3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations | |
ARIMA | autoregressive integrated moving average |
BiLSTM | bidirectional long short-term memory |
BPNN | backpropagation neural network |
DKASC | desert knowledge Australia solar centre |
ELM | extreme learning machine |
EMD | empirical mode decomposition |
EEMD | ensemble empirical mode decomposition |
FCM | fuzzy c-means clustering |
GA | genetic algorithm |
GRU | gated recurrent units |
LOESS | locally estimated scatterplot smoothing |
LSTM | long short-term memory |
MAE | mean absolute error |
MAPE | mean absolute percentage error |
NRGA | Newton–Raphson genetic algorithm |
PAM | periodic attention mechanism |
PSO | particle swarm optimization |
PV | photovoltaic |
RLMD | robust mean decomposition |
RMSE | root mean square error |
SAM | self-attention mechanism |
SD | seasonal decomposition |
SDA | similar day analysis |
THD | total harmonic distortion |
VMD | variational mode decomposition |
WT | wavelet decomposition |
Symbols | |
a | Old clustering categories |
b | New clustering categories |
The direction of the mutation | |
c | Crossover rate |
d | The estimate of NRGA |
e | Correlation score |
Mutation rate | |
p | The set of chromosomes |
w | Weighting parameter |
x | Data samples |
A | The input vector sets of the attention mechanism |
I | Iterations counter |
J | The objective function of the FCM algorithm |
The level estimate of the feature at moment t | |
Regularization terms | |
N | The number of vector sets |
The actual value of the feature at moment t | |
The crossover transformation | |
The values of the period component at moment t | |
The specified period of attention | |
Q | The probability of chromosomes being selected. |
The values of the residual component at moment t | |
The values of the trend component at moment t | |
X | Output vector sets of the attention mechanism |
Y | The set of parameters optimized by the NRGA |
, , | Smoothing parameters |
The scale parameter of the Cauchy mutation model | |
, | Adaptive weighting coefficients |
Membership degrees | |
Clustering center | |
Euclidean distance | |
Fuzzyness parameter | |
The Fitness function of NRGA |
References
- Bett, P.E.; Thornton, H.E.; Troccoli, A.; De Felice, M.; Suckling, E.; Dubus, L.; Saint-Drenan, Y.M.; Brayshaw, D.J. A simplified seasonal forecasting strategy, applied to wind and solar power in Europe. Clim. Serv. 2022, 27, 100318. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Puri, V.; Mahajan, S.; Abualigah, L.; Zitar, R.A.; Gandomi, A.H. Solar power forecasting beneath diverse weather conditions using GD and LM-artificial neural networks. Sci. Rep. 2023, 13, 8517. [Google Scholar] [CrossRef]
- Ye, H.; Yang, B.; Han, Y.; Chen, N. State-Of-The-Art Solar Energy Forecasting Approaches: Critical Potentials and Challenges. Front. Energy Res. 2022, 10, 875790. [Google Scholar] [CrossRef]
- Wang, M.; Peng, J.; Luo, Y.; Shen, Z.; Yang, H. Comparison of different simplistic prediction models for forecasting PV power output: Assessment with experimental measurements. Energy 2021, 224, 120162. [Google Scholar] [CrossRef]
- Oprea, S.V.; Bâra, A. A stacked ensemble forecast for photovoltaic power plants combining deterministic and stochastic methods. Appl. Soft Comput. 2023, 147, 110781. [Google Scholar] [CrossRef]
- Khan, U.A.; Khan, N.M.; Zafar, M.H. Resource efficient PV power forecasting: Transductive transfer learning based hybrid deep learning model for smart grid in Industry 5.0. Energy Convers. Manag. X 2023, 20, 100486. [Google Scholar] [CrossRef]
- Klyve, Ø.S.; Nygård, M.M.; Riise, H.N.; Fagerström, J.; Marstein, E.S. The value of forecasts for PV power plants operating in the past, present and future Scandinavian energy markets. Sol. Energy 2023, 255, 208–221. [Google Scholar] [CrossRef]
- Wang, F.; Lu, X.; Mei, S.; Su, Y.; Zhen, Z.; Zou, Z.; Zhang, X.; Yin, R.; Duić, N.; Shafie-khah, M.; et al. A satellite image data based ultra-short-term solar PV power forecasting method considering cloud information from neighboring plant. Energy 2022, 238, 121946. [Google Scholar] [CrossRef]
- Mayer, M.J.; Gróf, G. Extensive comparison of physical models for photovoltaic power forecasting. Appl. Energy 2021, 283, 116239. [Google Scholar] [CrossRef]
- Ma, W.; Qiu, L.; Sun, F.; Ghoneim, S.S.M.; Duan, J. PV Power Forecasting Based on Relevance Vector Machine with Sparrow Search Algorithm Considering Seasonal Distribution and Weather Type. Energies 2022, 15, 5231. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Liu, H.; Tong, J.; Sun, Z. Prediction of energy photovoltaic power generation based on artificial intelligence algorithm. Neural Comput. Appl. 2021, 33, 821–835. [Google Scholar] [CrossRef]
- Sharadga, H.; Hajimirza, S.; Balog, R.S. Time series forecasting of solar power generation for large-scale photovoltaic plants. Renew. Energy 2020, 150, 797–807. [Google Scholar] [CrossRef]
- Fara, L.; Diaconu, A.; Craciunescu, D.; Fara, S. Forecasting of Energy Production for Photovoltaic Systems Based on ARIMA and ANN Advanced Models. Int. J. Photoenergy 2021, 2021, 6777488. [Google Scholar] [CrossRef]
- Zhong, J.; Liu, L.; Sun, Q.; Wang, X. Prediction of Photovoltaic Power Generation Based on General Regression and Back Propagation Neural Network. Energy Procedia 2018, 152, 1224–1229. [Google Scholar] [CrossRef]
- Harendra Kumar Yadav, Y.P.; Tripathi, M.M. Short-term PV power forecasting using empirical mode decomposition in integration with back-propagation neural network. J. Inf. Optim. Sci. 2020, 41, 25–37. [Google Scholar] [CrossRef]
- Sabri, M.; El Hassouni, M. A Novel Deep Learning Approach for Short Term Photovoltaic Power Forecasting Based on GRU-CNN Model. E3S Web Conf. 2022, 336, 00064. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, Y.; Leng, M.; Yang, X.; Zhou, Q. LOWESS smoothing and Random Forest based GRU model: A short-term photovoltaic power generation forecasting method. Energy 2022, 256, 124661. [Google Scholar] [CrossRef]
- Xiao, Z.; Huang, X.; Liu, J.; Li, C.; Tai, Y. A novel method based on time series ensemble model for hourly photovoltaic power prediction. Energy 2023, 276, 127542. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, J.; Min, J. SSA-LSTM: Short-Term Photovoltaic Power Prediction Based on Feature Matching. Energies 2022, 15, 7806. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, J.; Xu, Q.; Zhen, J.; Huang, X. Short-Term Forecasting and Uncertainty Analysis of Photovoltaic Power Based on the FCM-WOA-BILSTM Model. Front. Energy Res. 2022, 10, 926774. [Google Scholar] [CrossRef]
- Wang, S.; Ma, J. A novel GBDT-BiLSTM hybrid model on improving day-ahead photovoltaic prediction. Sci. Rep. 2023, 13, 15113. [Google Scholar] [CrossRef]
- Bourakadi, D.E.; Ramadan, H.; Yahyaouy, A.; Boumhidi, J. A novel solar power prediction model based on stacked BiLSTM deep learning and improved extreme learning machine. Int. J. Inf. Technol. 2023, 15, 587–594. [Google Scholar] [CrossRef]
- Tahir, M.F.; Tzes, A.; Yousaf, M.Z. Enhancing PV power forecasting with deep learning and optimizing solar PV project performance with economic viability: A multi-case analysis of 10 MW Masdar project in UAE. Energy Convers. Manag. 2024, 311, 118549. [Google Scholar] [CrossRef]
- Rai, A.; Shrivastava, A.; Jana, K.C. A CNN-BiLSTM based deep learning model for mid-term solar radiation prediction. Int. Trans. Electr. Energy Syst. 2021, 31, e12664. [Google Scholar] [CrossRef]
- Khan, Z.A.; Hussain, T.; Baik, S.W. Dual stream network with attention mechanism for photovoltaic power forecasting. Appl. Energy 2023, 338, 120916. [Google Scholar] [CrossRef]
- Zhen, H.; Niu, D.; Wang, K.; Shi, Y.; Ji, Z.; Xu, X. Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information. Energy 2021, 231, 120908. [Google Scholar] [CrossRef]
- Guo, X.; Gao, Y.; Zheng, D.; Ning, Y.; Zhao, Q. Study on short-term photovoltaic power prediction model based on the Stacking ensemble learning. Energy Rep. 2020, 6, 1424–1431. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, L.; Gao, P.; Yang, B.; Han, Y.; Lian, C. Short-Term Power Generation Forecasting of a Photovoltaic Plant Based on PSO-BP and GA-BP Neural Networks. Front. Energy Res. 2022, 9. [Google Scholar] [CrossRef]
- Semero, Y.K.; Zhang, J.; Zheng, D. PV power forecasting using an integrated GA-PSO-ANFIS approach and Gaussian process regression based feature selection strategy. CSEE J. Power Energy Syst. 2018, 4, 210–218. [Google Scholar] [CrossRef]
- Chen, X.; Ding, K.; Zhang, J.; Han, W.; Liu, Y.; Yang, Z.; Weng, S. Online prediction of ultra-short-term photovoltaic power using chaotic characteristic analysis, improved PSO and KELM. Energy 2022, 248, 123574. [Google Scholar] [CrossRef]
- Eseye, A.T.; Zhang, J.; Zheng, D. Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information. Renew. Energy 2018, 118, 357–367. [Google Scholar] [CrossRef]
- Mishra, M.; Byomakesha Dash, P.; Nayak, J.; Naik, B.; Kumar Swain, S. Deep learning and wavelet transform integrated approach for short-term solar PV power prediction. Measurement 2020, 166, 108250. [Google Scholar] [CrossRef]
- Khelifi, R.; Guermoui, M.; Rabehi, A.; Taallah, A.; Zoukel, A.; Ghoneim, S.S.M.; Bajaj, M.; AboRas, K.M.; Zaitsev, I. Short-Term PV Power Forecasting Using a Hybrid TVF-EMD-ELM Strategy. Int. Trans. Electr. Energy Syst. 2023, 2023, 6413716. [Google Scholar] [CrossRef]
- Majumder, I.; Behera, M.K.; Nayak, N. Solar power forecasting using a hybrid EMD-ELM method. In Proceedings of the 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Kollam, India, 20–21 April 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, S.; Liu, S.; Guan, X. Ultra-Short-Term Power Prediction of a Photovoltaic Power Station Based on the VMD-CEEMDAN-LSTM Model. Front. Energy Res. 2022, 10, 945327. [Google Scholar] [CrossRef]
- Wang, S.; Wei, L.; Zeng, L. Ultra-short-term Photovoltaic Power Prediction Based on VMD-LSTM-RVM Model. IOP Conf. Ser. Earth Environ. Sci. 2021, 781, 042020. [Google Scholar] [CrossRef]
- Lin, W.; Zhang, B.; Li, H.; Lu, R. Multi-step prediction of photovoltaic power based on two-stage decomposition and BILSTM. Neurocomputing 2022, 504, 56–67. [Google Scholar] [CrossRef]
- Ngoc-Lan Huynh, A.; Deo, R.C.; Ali, M.; Abdulla, S.; Raj, N. Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition. Appl. Energy 2021, 298, 117193. [Google Scholar] [CrossRef]
- Gu, B.; Shen, H.; Lei, X.; Hu, H.; Liu, X. Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method. Appl. Energy 2021, 299, 117291. [Google Scholar] [CrossRef]
- Lin, P.; Peng, Z.; Lai, Y.; Cheng, S.; Chen, Z.; Wu, L. Short-term power prediction for photovoltaic power plants using a hybrid improved Kmeans-GRA-Elman model based on multivariate meteorological factors and historical power datasets. Energy Convers. Manag. 2018, 177, 704–717. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Y.; Luo, Q.; Huang, H.; Wei, X. Prediction of photovoltaic power output based on similar day analysis using RBF neural network with adaptive black widow optimization algorithm and K-means clustering. Front. Energy Res. 2022, 10. [Google Scholar] [CrossRef]
- Nejati, M.; Amjady, N. A New Solar Power Prediction Method Based on Feature Clustering and Hybrid-Classification-Regression Forecasting. IEEE Trans. Sustain. Energy 2022, 13, 1188–1198. [Google Scholar] [CrossRef]
- Rana, M.; Koprinska, I.; Agelidis, V.G. Solar power forecasting using weather type clustering and ensembles of neural networks. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 4962–4969. [Google Scholar] [CrossRef]
- Bin, F.; He, J. A short-term photovoltaic power prediction model using cyclical encoding and STL decomposition based on LSTM. In Proceedings of the 2023 3rd International Conference on Electronic Information Engineering and Computer Communication (EIECC), Wuhan, China, 8–10 December 2023; pp. 260–266. [Google Scholar] [CrossRef]
- Kumar, S.J.S.; Sam, K.N. Multi-Hybrid STL-LSTM-SDE-MA Model Optimized with IWOA for Solar PV-Power Forecasting. In Proceedings of the 2023 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE), Kerala, India, 17–20 December 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Lin, K.P.; Pai, P.F. Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression. J. Clean. Prod. 2016, 134, 456–462. [Google Scholar] [CrossRef]
- Hu, Z.; Gao, Y.; Ji, S.; Mae, M.; Imaizumi, T. Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data. Appl. Energy 2024, 359, 122709. [Google Scholar] [CrossRef]
- Aslam, M.; Kim, J.S.; Jung, J. Multi-step ahead wind power forecasting based on dual-attention mechanism. Energy Rep. 2023, 9, 239–251. [Google Scholar] [CrossRef]
- Lei, X. A Photovoltaic Prediction Model with Integrated Attention Mechanism. Mathematics 2024, 12, 2103. [Google Scholar] [CrossRef]
- Wang, H.; Yan, J.; Zhang, J.; Liu, S.; Liu, Y.; Han, S.; Qu, T. Short-term integrated forecasting method for wind power, solar power, and system load based on variable attention mechanism and multi-task learning. Energy 2024, 304, 132188. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, J.; Xie, S. A Novel Improved Variational Mode Decomposition-Temporal Convolutional Network-Gated Recurrent Unit with Multi-Head Attention Mechanism for Enhanced Photovoltaic Power Forecasting. Electronics 2024, 13, 1837. [Google Scholar] [CrossRef]
- He, Y.; Li, H.; Wang, S.; Yao, X. Uncertainty analysis of wind power probability density forecasting based on cubic spline interpolation and support vector quantile regression. Neurocomputing 2021, 430, 121–137. [Google Scholar] [CrossRef]
- Prema, V.; Rao, K.U. Development of statistical time series models for solar power prediction. Renew. Energy 2015, 83, 100–109. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Farakhor, A.; Khadem Haghighian, S. Novel algorithm of MPPT for PV array based on variable step Newton-Raphson method through model predictive control. In Proceedings of the 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013), Gwangju, Republic of Korea, 20–23 October 2013; pp. 1577–1582. [Google Scholar] [CrossRef]
- Kong, D.; Chang, T.; Dai, W.; Wang, Q.; Sun, H. An improved artificial bee colony algorithm based on elite group guidance and combined breadth-depth search strategy. Inf. Sci. 2018, 442–443, 54–71. [Google Scholar] [CrossRef]
- Liu, Z.F.; Li, L.L.; Tseng, M.L.; Lim, M.K. Prediction short-term photovoltaic power using improved chicken swarm optimizer–Extreme learning machine model. J. Clean. Prod. 2020, 248, 119272. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Li, N.; Li, L.; Huang, F.; Liu, X.; Wang, S. Photovoltaic power prediction method for zero energy consumption buildings based on multi-feature fuzzy clustering and MAOA-ESN. J. Build. Eng. 2023, 75, 106922. [Google Scholar] [CrossRef]
- Ahmed, R.; Sreeram, V.; Togneri, R.; Datta, A.; Arif, M.D. Computationally expedient Photovoltaic power Forecasting: A LSTM ensemble method augmented with adaptive weighting and data segmentation technique. Energy Convers. Manag. 2022, 258, 115563. [Google Scholar] [CrossRef]
- Wang, K.; Qi, X.; Liu, H. Photovoltaic power forecasting based LSTM-Convolutional Network. Energy 2019, 189, 116225. [Google Scholar] [CrossRef]
- Chen, B.; Lin, P.; Lai, Y.; Cheng, S.; Chen, Z.; Wu, L. Very-Short-Term Power Prediction for PV Power Plants Using a Simple and Effective RCC-LSTM Model Based on Short Term Multivariate Historical Datasets. Electronics 2020, 9, 289. [Google Scholar] [CrossRef]
- Huang, X.; Li, Q.; Tai, Y.; Chen, Z.; Liu, J.; Shi, J.; Liu, W. Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM. Energy 2022, 246, 123403. [Google Scholar] [CrossRef]
- Wang, K.; Qi, X.; Liu, H. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network. Appl. Energy 2019, 251, 113315. [Google Scholar] [CrossRef]
Parameters | Details |
---|---|
Array Rating | 10.5 kW |
Panel Rating | 175 W |
Number of Panels | 2 × 30 |
Panel Type | Trina TSM-175DC01 |
Array Area | 2 × 38.37 m2 |
Type of Tracker | DEGERenergie 5000NT, dual axis |
Inverter Size/Type | 2 × 6 kW, SMA SMC 6000 A |
Installation Completed | Thu, 8 January 2009 |
Array Tilt/Azimuth | Variable. Dual axis tracking. |
Manufacturer | Trina Solar, Changzhou, Jiangsu Province, China. |
Label | Definition | Label | Definition |
---|---|---|---|
F0 | Active Power | F8 | Temperature |
F1 | Current Phase Average | F9 | Humidity |
F2 | Received Energy | F10 | Global Radiation |
F3 | Power Factor Signed | F11 | Diffuse Radiation |
F4 | Average Voltage | F12 | Wind Direction |
F5 | Frequency | F13 | Daily Rainfall |
F6 | THD Average Voltage | F14 | Global Tilted |
F7 | Wind Speed | F15 | Diffuse Tilted |
Dataset | Season | MAE (Kw) | RMSE (Kw) | MAPE (Kw) | |||
---|---|---|---|---|---|---|---|
Add | Mult | Add | Mult | Add | Mult | ||
Spring | 0.15649 | 0.13752 | 0.21461 | 0.21326 | 0.03461 | 0.03232 | |
Summer | 0.13040 | 0.12325 | 0.20354 | 0.20216 | 0.03012 | 0.02977 | |
D1 | Autumn | 0.17335 | 0.15011 | 0.23493 | 0.22465 | 0.05345 | 0.05146 |
Winter | 0.17984 | 0.15215 | 0.24848 | 0.23695 | 0.05374 | 0.05528 | |
Overall | 0.16871 | 0.14123 | 0.23970 | 0.23149 | 0.04858 | 0.04522 | |
D2 | - | 0.18056 | 0.15394 | 0.24836 | 0.23722 | 0.05117 | 0.04951 |
Model | Algorithm | MAE (Kw) | RMSE (Kw) | MAPE (Kw) |
---|---|---|---|---|
BiLSTM | NRGA | 0.14123 | 0.23149 | 0.04522 |
GA | 0.14325 | 0.23721 | 0.04769 | |
PSO | 0.14463 | 0.24516 | 0.04893 | |
LSTM | NRGA | 0.17315 | 0.29837 | 0.05520 |
GA | 0.17754 | 0.30104 | 0.05864 | |
PSO | 0.18283 | 0.31776 | 0.06421 | |
GRU | NRGA | 0.17541 | 0.32285 | 0.05913 |
GA | 0.17906 | 0.32980 | 0.06396 | |
PSO | 0.18674 | 0.34172 | 0.06658 | |
BPNN | NRGA | 0.24631 | 0.37175 | 0.08952 |
GA | 0.25112 | 0.37453 | 0.09102 | |
PSO | 0.25926 | 0.38069 | 0.10433 |
Model | PAM | MAE (Kw) | RMSE (Kw) | MAPE (Kw) |
---|---|---|---|---|
BiLSTM | 1 | 0.14123 | 0.23149 | 0.04522 |
0 | 0.15254 | 0.24876 | 0.04775 | |
LSTM | 1 | 0.17315 | 0.29837 | 0.05520 |
0 | 0.18574 | 0.31614 | 0.05943 | |
GRU | 1 | 0.17541 | 0.32285 | 0.06127 |
0 | 0.18903 | 0.33910 | 0.06684 | |
BPNN | 1 | 0.24631 | 0.37175 | 0.08952 |
0 | 0.26421 | 0.39668 | 0.09710 |
Model | Paper | MAE (Kw) | RMSE (Kw) |
---|---|---|---|
LSTM | [59] | 0.29670 | 0.57250 |
LSTM-CNN | [60] | 0.22100 | 0.62100 |
RCC-LSTM | [61] | 0.58700 | 0.94000 |
TSF-LSTMs | [62] | 0.48300 | 0.96400 |
LSTM-CNN | [63] | 0.29400 | 0.69300 |
FCM-ISD-MAOA-ESN | [58] | 0.16640 | 0.21770 |
SD-PAM-NRGA-BiLSTM | This paper | 0.14123 | 0.23149 |
Resolution | Model | MAE (Kw) | RMSE (Kw) | MAPE (Kw) |
---|---|---|---|---|
5 min | BiLSTM | 0.14123 | 0.23149 | 0.04522 |
LSTM | 0.17315 | 0.29837 | 0.05520 | |
GRU | 0.17541 | 0.32285 | 0.06127 | |
BPNN | 0.24631 | 0.39668 | 0.09710 | |
10 min | BiLSTM | 0.21722 | 0.32873 | 0.07649 |
LSTM | 0.26124 | 0.44237 | 0.09813 | |
GRU | 0.28974 | 0.49791 | 0.13844 | |
BPNN | 0.37385 | 0.55134 | 0.15091 | |
15 min | BiLSTM | 0.30254 | 0.45943 | 0.10471 |
LSTM | 0.37133 | 0.51079 | 0.13329 | |
GRU | 0.38429 | 0.55865 | 0.16563 | |
BPNN | 0.46440 | 0.68163 | 0.19267 |
Case | Model | MAE (Kw) | RMSE (Kw) | MAPE (Kw) |
---|---|---|---|---|
# 1 | BiLSTM | 0.14123 | 0.23149 | 0.04522 |
LSTM | 0.17315 | 0.29837 | 0.05520 | |
GRU | 0.17541 | 0.32285 | 0.06127 | |
BPNN | 0.24631 | 0.39668 | 0.09710 | |
# 2 | BiLSTM | 0.18617 | 0.22576 | 0.02139 |
LSTM | 0.21648 | 0.31744 | 0.03070 | |
GRU | 0.30682 | 0.35796 | 0.03815 | |
BPNN | 0.46042 | 0.38605 | 0.05105 | |
# 3 | BiLSTM | 0.10396 | 0.21252 | 0.08419 |
LSTM | 0.14827 | 0.26727 | 0.08794 | |
GRU | 0.16899 | 0.29025 | 0.09154 | |
BPNN | 0.21588 | 0.36967 | 0.15969 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Liu, H.; Jin, H.; He, Y. Ultra-Short-Term Photovoltaic Power Prediction by NRGA-BiLSTM Considering Seasonality and Periodicity of Data. Energies 2024, 17, 4739. https://doi.org/10.3390/en17184739
Wu H, Liu H, Jin H, He Y. Ultra-Short-Term Photovoltaic Power Prediction by NRGA-BiLSTM Considering Seasonality and Periodicity of Data. Energies. 2024; 17(18):4739. https://doi.org/10.3390/en17184739
Chicago/Turabian StyleWu, Hong, Haipeng Liu, Huaiping Jin, and Yanping He. 2024. "Ultra-Short-Term Photovoltaic Power Prediction by NRGA-BiLSTM Considering Seasonality and Periodicity of Data" Energies 17, no. 18: 4739. https://doi.org/10.3390/en17184739
APA StyleWu, H., Liu, H., Jin, H., & He, Y. (2024). Ultra-Short-Term Photovoltaic Power Prediction by NRGA-BiLSTM Considering Seasonality and Periodicity of Data. Energies, 17(18), 4739. https://doi.org/10.3390/en17184739