Railway Infrastructure Management: Selection of Overhead Contact Line Ampacity Considering Operational and Design Factors
Abstract
:1. Introduction
- -
- The tension and ordinates of the sag curves of freely suspended overhead contact wires and uncompensated chain suspension wires change. In addition, the droppers, clamps and brackets become misaligned in the latter;
- -
- Accelerated ageing of wires, which is expressed in a decrease in the elastic limit and breaking tension and, consequently, in a decrease in the safety margin of the structure.
- -
- the material from which the current path is made;
- -
- maximum allowable temperature increments;
- -
- shape and dimensions;
- -
- surface condition;
- -
- current path operating environment (air, gas, oil, solid insulation);
- -
- heat sources in the neighborhood;
- -
- flow of cooling medium.
- Natural Current Distribution Model. In this model, the current is distributed among the contact wire, catenary wire, and reinforcing wires in inverse proportion to their resistance. Transverse electrical connectors and other elements are not considered, which limits the accuracy of the model [15].
- Linear Analytical Model. This model uses simplified assumptions, such as zero resistance of electrical connectors and representation of the contact line by two wires. It is suitable for choosing the location of transverse electrical connectors but requires improvements for analyzing other wires [16].
- A model proposed by K.L. Kostyuchenko. In this model, the current distribution in the reinforcing wire is calculated more accurately, but results may vary due to unaccounted droppers and other elements [17].
- A model with an Infinite Number of Droppers. All connections between contact wires and catenary wires are expressed through the equivalent transverse resistance, which allows for considering local resistance differences. This model is not suitable for catenaries with RW and analyzing local connections [18,19].
- Model KONT-3. This software considers the topology of the contact suspension. This model cannot calculate the elements heating during passage of the train [20].
- Model of current distribution in the contact line based on EasyEDA ver. 2.2.26.6 software package [25].
- scientific approaches to determining the distribution of currents in the elements of contact lines on direct and alternating current;
- an adapted method for determining the ampacity of contact lines taking into account the requirements of PN-EN 50119:2020 [30].
2. Materials and Methods
2.1. Matrix of Variables Defining Conditions Affecting Catenaries Ampacity
- -
- maximum long-term temperature;
- -
- short-term maximum temperature (duration up to 30 min);
- -
- short-term maximum temperature (duration up to 1 s).
- Design parameters
- 1.1.
- 3 kV traction power supply system
- -
- Cross section of catenary wires—95 mm2, 120 mm2, 150 mm2;
- -
- Cross section of contact wires—100 mm2, 150 mm2;
- -
- Material of catenary wire—Cu;
- -
- Material of contact wires—CuETP, CuAg0.10 (alloy of copper and 0.10% silver), CuMg0.02 (alloy of copper and 0.02% magnesium);
- -
- Numbers of catenary and contact wires
- The number of catenary wires—1 and 2;
- The number of contact wires—1 and 2.
- 1.2.
- 1 × 25 kV and 2 × 25 kV traction power supply systems
- -
- Cross section of catenary wires—70 mm2, 95 mm2, 120 mm2;
- -
- Cross section of contact wires—100 mm2, 120 mm2, 150 mm2;
- -
- Cross section of traction power feeder line (for 2 × 25 kV), mm2—120, 150, 185, 240, 300;
- -
- Material of catenary wires—CuSn (Bz);
- -
- Material of contact wires—CuETP, CuAg0.10, CuMg0.2 (alloy of copper and 0.2% magnesium), CuMg0.5 (alloy of copper and 0.5% magnesium), CuSn0.2 (alloy of copper and 0.2% selenium);
- -
- Traction power feeder line material (for 2 × 25 kV)—Al;
- -
- Numbers of catenary wires and contact wires
- The number of catenary wires—1;
- number of contact wires—1.
- Operating parameters
- -
- Average annual wind speed in the direction perpendicular to the axis of the wires Vw, m/s—0.6, 2,
- -
- Average wear of contact wires, %—5, 10, 15, 20, 30;
- -
- Ambient temperature: +40 °C.
2.2. Adopted Methodology for Calculation of Current Ampacity of Wires
- -
- energy introduced by the Joule heat NJ due to the resistance of the conductor;
- -
- energy provided by solar radiation NS;
- -
- energy consumed by magnetic losses NM;
- -
- energy loss by radiation NR;
- -
- energy loss by convection NC.
- C—specific heat (can be selected according to tab.11.5 [14]),
- T—temperature of the wire,
- dt—derivative with respect to time.
2.3. Adapted Methodology for Calculation of Ampacity of Contact Lines
2.3.1. Calculation of Current Distribution in DC Contact Lines
- -
- maintaining the contact wire at the proper height relative to the track plane;
- -
- withstand the load cycle caused by the passage of trains.
2.3.2. Calculation of Current Distribution in AC Contact Lines
2.3.3. Principles of Calculating the Ampacity of Contact Line
3. Results
- for DC contact lines up to 14–22% (depending on the type of contact lines);
- for AC 1 × 25 kV contact lines up to 8–11% (depending on the type of contact lines);
- for AC 2 × 25 kV contact lines up to 1% (depending on the type of contact lines).
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Commission Regulation (EU) No 1301/2014 of 18 November 2014 on the Technical Specifications for Interoperability Relating to the ‘Energy’ Subsystem of the Rail System in the Union (TSI Energy); European Union: Brussels, Belgium, 2014.
- Commission Implementing Regulation (EU) 2023/1694 of 10 August 2023 amending Regulations (EU) No 321/2013, (EU) No 1299/2014, (EU) No 1300/2014, (EU) No 1301/2014, (EU) No 1302/2014, (EU) No 1304/2014 and Implementing Regulation (EU) 2019/777; European Union: Brussels, Belgium, 2023.
- EN 50388-1:2022; Railway Applications—Fixed Installations and Rolling Stock—Technical Criteria for the Coordination between Electric Traction Power Supply Systems and Rolling Stock to Achieve Interoperability—Part 1: General: EN 50388-1:2022. CENELEC: Brussels, Belgium, 2022; 66p.
- Rojek, A.; Majewski, W.; Kaniewski, M.; Knych, T. Current ampacity of overhead contact line//Technical Journal. Elektrotechnika 2007, 104, 147–157. (In Polish) [Google Scholar]
- Mikheev, V.P. Contact Lines and Power Lines: Textbook for Universities of Railway Transport; Marshrut: Moscow, Russia, 2003. (In Russian) [Google Scholar]
- Kneschke, T. Overhead conductor selection based on transient current and temperature analysis for better traction electrification system economics. In Proceedings of the 2003 IEEE/ASME Joint Railroad Conference, Chicago, IL, USA, 22–24 April 2003; pp. 1–10. [Google Scholar]
- Jin, X.; Cai, F.; Wang, M.; Sun, Y. Prediction of overhead transmission line ampacity based on extreme learning machine. IOP Conf. Ser. Earth Environ. Sci. 2020, 617, 012013. [Google Scholar] [CrossRef]
- Jin, X.; Cai, F.; Wang, M.; Sun, Y.; Zhou, S. Probabilistic prediction for the ampacity of overhead lines using Quantile Regression Neural Network. E3S Web Conf. 2020, 185, 02022. [Google Scholar] [CrossRef]
- Alberdi, R.; Albizu, I.; Fernandez, E.; Fernandez, R.; Bedialauneta, M.T. Overhead Line Ampacity Forecasting with a Focus on Safety. IEEE Trans. Power Deliv. 2022, 37, 329–337. [Google Scholar] [CrossRef]
- Hamed, Y.; Abd Rahman, M.S.; Ab Kadir, M.Z.; Osman, M.; Ariffin, A.M.; Ab Aziz, N.F. Artificial Intelligence Forecasting for Transmission Line Ampacity. In Towards Intelligent Systems Modeling and Simulation: With Applications to Energy, Epidemiology and Risk Assessment; Abdul Karim, S.A., Shafie, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 217–234. [Google Scholar]
- Maksić, M.; Djurica, V.; Souvent, A.; Slak, J.; Depolli, M.; Kosec, G. Cooling of overhead power lines due to the natural convection. Int. J. Electr. Power Energy Syst. 2019, 113, 333–343. [Google Scholar] [CrossRef]
- Batrashov, A.B. Improvement of Electrothermal Calculations and Characteristics of DC Contact Lines. Ph.D. Thesis, UrGUPS, Yekaterinburg, Russia, 2019. (In Russian). [Google Scholar]
- Anwar, M.; Bernal, E.; Spiryagin, M.; Shrestha, S.; Wu, Q.; Bosomworth, C.; Cole, C.; Mc Sweeney, T. Temperature Prediction of Railway Overhead Contact Wire. In Proceedings of the 10th Australasian Congress on Applied Mechanics, Online, 29 November–1 December 2021. [Google Scholar]
- Kiessling, F.; Puschmann, R.; Schmieder, A.; Schneider, E. Contact Lines for Electric Railways: Planning, Design, Implementation, Maintenance, 3rd ed.; Wiley: New York, NY, USA, 2018. [Google Scholar]
- Voronin, A.V. Current Distribution between Longitudinal Wires of the Contact Network and Thermal Calculation of Its Elements. Ph.D. Thesis, TsNII MPS, Moscow, Russia, 1946. (In Russian). [Google Scholar]
- Markvardt, K.G. Contact Line: Textbook; Transport: Moscow, Russia, 1994. (In Russian) [Google Scholar]
- Kostyuchenko, K.L. New Nodes of Electrical and Mechanical Connections of Contact Line Wires. Doctoral Thesis, MIIT, Moscow, Russia, 1994. (In Russian). [Google Scholar]
- Batrashov, A.V. Analysis of the physical properties of the contact wire material according to the characteristics of the railway line. Eureka! Mater. Postgrad. Semin. USURT 2016, 2, 6–18. [Google Scholar]
- Batrashov, A.B. Comparison of the current distribution models in the DC contact suspensions. Izv. Transsib 2017, 4, 54–66. (In Russian) [Google Scholar]
- Kosarev, A.V. (Ed.) Determination of the Ampacity of DC Contact Lines and Their Elements; Intext: Moscow, Russia, 2003. [Google Scholar]
- Ivanov, V.A.; Kudryashov, E.V.; Galkin, A.G.; Kovalev, A.A. Development of contact lines for the Russian High-Speed Railway. Innov. Transp. 2011, 1, 16. (In Russian) [Google Scholar]
- Burkov, A.T.; Seronosov, V.V.; Kudryashov, E.V. Physical bases of design of electric traction networks of high-speed railroads. Transp. Russ. Fed. 2015, 57, 36–41. (In Russian) [Google Scholar]
- Paranin, A.V. Calculation of current and temperature distribution in a DC contact suspension based on the finite element method. Vestn. VNIIZhT 2015, 6, 33–38. (In Russian) [Google Scholar]
- Paranin, A.V.; Leonov, A.G. Calculation of heat characteristics and permissible current at a limited railway section. Innotrans Ural. State Univ. Railw. Transp. (USURT) 2016, 2, 62–66. [Google Scholar] [CrossRef]
- Kuznetsov, V.; Rojek, A.; Hubskyi, P.; Skrzyniarz, M.; Stypułkowski, P.; Szulc, W. Simulation of Current Distribution through Elements of the Overhead Contact Line. J. KONBiN 2022, 52, 197–206. [Google Scholar] [CrossRef]
- Guidelines for the Design, Construction and Acceptance of Overhead Contact Line and 2 × 25 kV AC Power Supply Systems for Railway Lines with Speeds up to 350 km/h IET-6. 2010. Available online: https://www.plk-sa.pl/files/public/user_upload/pdf/Akty_prawne_i_przepisy/Instrukcje/Wydruk/Iet/Iet-6.pdf (accessed on 28 August 2024). (In Polish).
- Chernov, Y.A. Electric Power Supply of Railways: Textbook; Training and Methodical Centre for Education on Railway Transport: Moskow, Russia, 2016. (In Russian) [Google Scholar]
- Marquardt, K.G. Power Supply of Electrified Railways: Textbook for Universities of Railway Transport; Transport: Moscow, Russia, 1982. (In Russian) [Google Scholar]
- IEEE Std. 738-2012; IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors. IEEE SA: Piscataway, NJ, USA, 2012; 72p.
- EN 50119:2020; Railway Applications—Fixed Installations—Electric Traction Overhead Contact Lines. CENELEC: Brussels, Belgium, 2020; 109p.
- Żurek, Z.H.; Duka, P. Thermal load capacity of the railway contact line. Drives Control. 2019, 12, 52–57. (In Polish) [Google Scholar]
- IEC TR 61597:2021; Overhead Electrical Conductors—Calculation Methods for Stranded Bare Conductors. IEC: Geneva, Switzerland, 2021; 30p.
- PN-EN 60865-1:2012; Short-Circuit Currents—Calculation of the Effects of Short-Circuit Currents—Part 1: Definitions and Methods of Calculation. English Version. European Standard: Brussels, Belgium, 2012; 54p.
- KOLPROJEKT. Traction contact line catalogue. PKP overhead contact line. In Tubular Suspensions; Kolprojekt: Warsaw, Poland, 2004. (In Polish) [Google Scholar]
- Overhead Contact Line Catalogue; Kolprojekt: Warsaw, Poland, 2010. (In Polish)
- Normative Document 01-3/ET/2008 Contact Wires Profiled Iet-113. 2008. Available online: https://www.plk-sa.pl/files/public/user_upload/pdf/Akty_prawne_i_przepisy/Instrukcje/Wydruk/Iet/let-113_WCAG.pdf (accessed on 28 August 2024). (In Polish).
- PKPPLK. Standard Document 01-4/ET/2008 Catenary Wires (Bare Multi-Stranded Conductors) Iet-114; PKP PLK: Warsaw, Poland, 2008. [Google Scholar]
- Lafarga. Catalog of Railway Products; Lafarga: Barcelona, Spain, 2023. [Google Scholar]
- Liljedachl Bare Wire. Catalog of Overhead Catenary Wire. Available online: https://www.kummlermatter.nl/resources/public/lava3/media/kcfinder/files/Isodraht-brochure.pdf (accessed on 28 August 2024).
- Power Wire Catalogue. Available online: https://www.fpe.com.pl/materialy/pliki/3.pdf (accessed on 28 August 2024). (In Polish).
- An Easier and Powerful Online PCB Design Tool [Electronic Resource]. 2022. Available online: https://easyeda.com/ (accessed on 1 August 2023).
- Keenor, G. Overhead Line Electrification for Railways, 6th ed.; The PWI: Essex, UK, 2021. [Google Scholar]
- Rojek, A. Change of the Electric Traction Power Supply System in Poland from 3 kV DC to 25 kV AC. Probl. Kolejnictwa 2023, 200, 229–241. [Google Scholar]
Material | Permissible Temperature, °C | ||
---|---|---|---|
Up to 1 s | Short-Term (30 min) | Long-Term | |
Pure copper CuETP | 170 | 120 | 80 |
CuAg | 200 | 150 | 100 |
Tin copper (0.1–0.4) | 200 | 150 | 100 |
CuMg (0.2; 0.5) | 200 | 150 | 100 |
Aluminum Alloys | 130 | - | 80 |
ACSR/AACSR | 160 | - | 80 |
Type of Wire or Cable | Resistance, Ω/km | |
---|---|---|
Symbol | Function of Wire | |
Djp150 | Contact wire with a cross section of 150 mm2 | 0.122 |
Djp120 | Contact wire with a cross section of 120 mm2 | 0.153 |
Djp100 | Contact wire with a cross section of 100 mm2 | 0.183 |
DjpS150 | Contact wire with a cross section of 150 mm2 | 0.122 |
DjpS120 | Contact wire with a cross section of 120 mm2 | 0.153 |
DjpS100 | Contact wire with a cross section of 100 mm2 | 0.183 |
DjpMg0.2 150 | Contact wire with a cross section of 150 mm2 | 0.154 |
DjpMg0.2 120 | Contact wire with a cross section of 120 mm2 | 0.192 |
DjpMg0.2 100 | Contact wire with a cross section of 100 mm2 | 0.231 |
DjpMg0.5 150 | Contact wire with a cross section of 150 mm2 | 0.191 |
DjpMg0.5 120 | Contact wire with a cross section of 120 mm2 | 0.239 |
DjpMg0.5 100 | Contact wire with a cross section of 100 mm2 | 0.286 |
L10 | Dropper wire with a cross section of 10 mm2 | 1.8 |
L25 | Stitch wire “Y” with a section of 25 mm2 | 0.7361 |
L35 | Stitch wire “Y” with a section of 35 mm2 | 0.5259 |
L95 | Catenary wire with a section of 95 mm2 | 0.1938 |
L120 | Catenary wire with a section of 120 mm2 | 0.1570 |
L150 | Catenary with a section of 150 mm2 | 0.1237 |
L2 185 | Wire for electrical connections with a cross section of 185 mm2 | 0.1015 |
AFL-6 120 | 120 mm2 traction power feeder line | 0.2356 |
AFL-6 150 | 150 mm2 traction power feeder line | 0.1940 |
AFL-6 185 | 185 mm2 traction power feeder line | 0.1571 |
AFL-6 240 | 240 mm2 traction power feeder line | 0.1223 |
AFL-6 300 | 300 mm2 traction power feeder line | 0.0979 |
Contact Line Type | Djp Material | Djp Wear, % | Distribution of Currents | Vw = 0.6 m/s | Vw = 2 m/s | The Weakest Element of the Contact Line 1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
KLN, % | KDjp, % | KY, % | Idd, A | Idk, A | Idd, A | Idk, A | ||||||
C95-C | CuETP | 0 | 49 | 51 | - | 847 | 1298 | 27.2 | 1171 | 1690 | 27.2 | LN |
5 | 50 | 50 | - | 830 | 1294 | 26.6 | 1147 | 1681 | 26.6 | LN | ||
10 | 51 | 49 | - | 814 | 1273 | 25.7 | 1125 | 1661 | 25.7 | LN | ||
15 | 52 | 48 | - | 798 | 1248 | 24.8 | 1103 | 1629 | 24.8 | LN | ||
20 | 53 | 47 | - | 783 | 1225 | 23.8 | 1082 | 1598 | 23.8 | LN | ||
30 | 57 | 43 | - | 728 | 1139 | 22.8 | 1006 | 1486 | 22.8 | LN | ||
CuAg0.10 | 0 | 49 | 51 | - | 847 | 1324 | 27.2 | 1171 | 1729 | 27.2 | LN | |
5 | 50 | 50 | - | 830 | 1298 | 26.6 | 1147 | 1694 | 26.6 | LN | ||
10 | 51 | 49 | - | 814 | 1273 | 26.1 | 1125 | 1661 | 26.1 | LN | ||
15 | 52 | 48 | - | 798 | 1248 | 25.6 | 1103 | 1629 | 25.6 | LN | ||
20 | 53 | 47 | - | 783 | 1225 | 25.1 | 1082 | 1598 | 25.1 | LN | ||
30 | 57 | 43 | - | 728 | 1139 | 23.4 | 1006 | 1486 | 23.4 | LN | ||
C95-2C | CuETP | 0 | 32 | 68 | - | 1286 | 1948 | 41.2 | 1781 | 2535 | 41.2 | Djp |
5 | 33 | 67 | - | 1258 | 1931 | 39.7 | 1738 | 2508 | 39.7 | LN | ||
10 | 34 | 66 | - | 1221 | 1909 | 38.2 | 1687 | 2492 | 38.2 | LN | ||
15 | 35 | 65 | - | 1186 | 1854 | 36.6 | 1639 | 2421 | 36.6 | LN | ||
20 | 36 | 64 | - | 1153 | 1803 | 35.0 | 1593 | 2353 | 35.0 | LN | ||
30 | 40 | 60 | - | 1038 | 1623 | 32.7 | 1434 | 2118 | 32.7 | LN | ||
CuAg0.10 | 0 | 32 | 68 | - | 1297 | 2028 | 41.6 | 1793 | 2648 | 41.6 | LN | |
5 | 33 | 67 | - | 1258 | 1967 | 40.3 | 1738 | 2567 | 40.3 | LN | ||
10 | 34 | 66 | - | 1221 | 1909 | 39.1 | 1687 | 2492 | 39.1 | LN | ||
15 | 35 | 65 | - | 1186 | 1854 | 38.0 | 1639 | 2421 | 38.0 | LN | ||
20 | 36 | 64 | - | 1153 | 1803 | 37.0 | 1593 | 2353 | 37.0 | LN | ||
30 | 40 | 60 | - | 1038 | 1623 | 33.3 | 1434 | 2118 | 33.3 | LN | ||
C120-2C | CuETP | 0 | 37 | 63 | 7 | 1322 | 2035 | 44.3 | 1830 | 2636 | 44.3 | LN |
5 | 38 | 62 | 7 | 1280 | 1971 | 42.9 | 1773 | 2553 | 42.9 | LN | ||
10 | 39 | 61 | 7 | 1238 | 1906 | 41.5 | 1715 | 2470 | 41.5 | LN | ||
15 | 41 | 59 | 7 | 1196 | 1842 | 40.1 | 1657 | 2386 | 40.1 | LN | ||
20 | 42 | 58 | 8 | 1155 | 1778 | 38.7 | 1599 | 2303 | 38.7 | LN | ||
30 | 45 | 55 | 8 | 1071 | 1649 | 35.9 | 1484 | 2137 | 35.9 | LN | ||
CuAg0.10 | 0 | 37 | 63 | 7 | 1322 | 2035 | 45.7 | 1830 | 2636 | 45.7 | LN | |
5 | 38 | 62 | 7 | 1280 | 1971 | 44.2 | 1773 | 2553 | 44.2 | LN | ||
10 | 39 | 61 | 7 | 1238 | 1906 | 42.8 | 1715 | 2470 | 42.8 | LN | ||
15 | 41 | 59 | 7 | 1196 | 1842 | 41.3 | 1657 | 2386 | 41.3 | LN | ||
20 | 42 | 58 | 8 | 1155 | 1778 | 39.9 | 1599 | 2303 | 39.9 | LN | ||
30 | 45 | 55 | 8 | 1071 | 1649 | 37.0 | 1484 | 2137 | 37.0 | LN |
Contact Line Type | Djp Material | Djp Wear, % | Distribution of Currents | Vw = 0.6 m/s | Vw = 2 m/s | The Weakest Element of the Contact Line | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
KLN, % | KDjp,% | Idd, A | Idk, A | Idd, A | Idk, A | ||||||
YBz70-CS120 | CuAg0.10 | 0 | 39 | 61 | 864 | 1230 | 17.3 | 1175 | 1784 | 17.3 | LN |
5 | 39 | 61 | 850 | 1210 | 17.0 | 1155 | 1754 | 17.0 | LN | ||
10 | 40 | 60 | 838 | 1193 | 16.8 | 1139 | 1729 | 16.8 | LN | ||
15 | 41 | 59 | 825 | 1175 | 16.6 | 1122 | 1704 | 16.6 | LN | ||
20 | 41 | 59 | 813 | 1157 | 16.3 | 1105 | 1678 | 16.3 | LN | ||
30 | 43 | 57 | 787 | 1120 | 15.8 | 1070 | 1624 | 15.8 | LN | ||
YBz70-CSn120 | CuSn0.2 | 0 | 41 | 59 | 808 | 1156 | 16.4 | 1100 | 1654 | 16.4 | Djp |
5 | 42 | 58 | 797 | 1144 | 16.2 | 1085 | 1634 | 16.2 | Djp | ||
10 | 42 | 58 | 792 | 1129 | 15.9 | 1078 | 1626 | 15.9 | Djp | ||
15 | 43 | 57 | 780 | 1110 | 15.6 | 1060 | 1609 | 15.6 | LN | ||
20 | 44 | 56 | 766 | 1091 | 15.4 | 1042 | 1582 | 15.4 | LN | ||
30 | 45 | 55 | 738 | 1051 | 14.6 | 1004 | 1524 | 14.6 | LN | ||
YBz95-CMg150 | CuMg0.2 | 0 | 44 | 56 | 927 | 1352 | 20.8 | 1261 | 1947 | 20.8 | LN |
5 | 45 | 55 | 914 | 1333 | 20.5 | 1244 | 1920 | 20.5 | LN | ||
10 | 45 | 55 | 903 | 1316 | 20.2 | 1229 | 1897 | 20.2 | LN | ||
15 | 46 | 54 | 891 | 1300 | 20.0 | 1213 | 1873 | 20.0 | LN | ||
20 | 46 | 54 | 880 | 1283 | 19.7 | 1198 | 1849 | 19.7 | LN | ||
30 | 48 | 52 | 855 | 1247 | 19.2 | 1164 | 1797 | 19.2 | LN | ||
YBz95-CMg150 | CuMg0.5 | 0 | 45 | 55 | 897 | 1309 | 20.1 | 1221 | 1885 | 20.1 | LN |
5 | 46 | 54 | 884 | 1289 | 19.8 | 1203 | 1857 | 19.8 | LN | ||
10 | 47 | 53 | 872 | 1272 | 19.5 | 1188 | 1833 | 19.5 | LN | ||
15 | 47 | 53 | 861 | 1255 | 19.3 | 1171 | 1808 | 19.3 | LN | ||
20 | 48 | 52 | 848 | 1237 | 19.0 | 1155 | 1782 | 19.0 | LN | ||
30 | 49 | 51 | 822 | 1199 | 18.4 | 1119 | 1727 | 18.4 | LN |
Contact Line Type | Djp Material | Djp Wear, % | Distribution of Currents | Vw = 0.6 m/s | Vw = 2 m/s | The Weakest Element of the Contact Line | ||||
---|---|---|---|---|---|---|---|---|---|---|
KLN, % | KDjp, % | Kz, % | Idd, A | Idd, A | ||||||
YBz70-CS120 | CuAg0.10 | 0 | 21.5 | 34.3 | 44.2 | 802 | 12.5 | 1110 | 12.5 | Z |
5 | 21.8 | 33.9 | 44.3 | 800 | 12.5 | 1108 | 12.5 | Z | ||
10 | 22.1 | 33.6 | 44.3 | 800 | 12.4 | 1107 | 12.4 | Z | ||
15 | 22.4 | 33.2 | 44.4 | 799 | 12.4 | 1106 | 12.4 | Z | ||
20 | 22.8 | 32.8 | 44.4 | 798 | 12.4 | 1105 | 12.4 | Z | ||
30 | 23.5 | 32.0 | 44.5 | 797 | 12.4 | 1103 | 12.4 | Z | ||
YBz70-CSn120 | CuSn0.2 | 0 | 22.8 | 33.0 | 44.2 | 802 | 12.5 | 1110 | 12.5 | Z |
5 | 23.2 | 32.6 | 44.3 | 801 | 12.5 | 1108 | 12.5 | Z | ||
10 | 23.5 | 32.2 | 44.3 | 800 | 12.4 | 1107 | 12.4 | Z | ||
15 | 23.9 | 31.7 | 44.4 | 799 | 12.4 | 1106 | 12.4 | Z | ||
20 | 24.3 | 31.3 | 44.5 | 798 | 12.4 | 1104 | 12.4 | Z | ||
30 | 25.1 | 30.3 | 44.6 | 795 | 12.4 | 1101 | 12.4 | Z | ||
YBz95-CMg150 | CuMg0.2 | 0 | 24.8 | 31.7 | 43.6 | 814 | 12.7 | 1127 | 12.7 | Z |
5 | 25.1 | 31.3 | 43.6 | 813 | 12.7 | 1125 | 12.7 | Z | ||
10 | 25.4 | 31.0 | 43.7 | 812 | 12.6 | 1124 | 12.6 | Z | ||
15 | 25.7 | 30.7 | 43.7 | 811 | 12.6 | 1123 | 12.6 | Z | ||
20 | 26.0 | 30.3 | 43.7 | 811 | 12.6 | 1122 | 12.6 | Z | ||
30 | 26.7 | 29.5 | 43.8 | 809 | 12.6 | 1120 | 12.6 | Z | ||
YBz95-CMg150 | CuMg0.5 | 0 | 25.6 | 30.9 | 43.6 | 814 | 12.7 | 1127 | 12.7 | Z |
5 | 26.0 | 30.5 | 43.6 | 813 | 12.7 | 1125 | 12.7 | Z | ||
10 | 26.3 | 30.1 | 43.7 | 812 | 12.6 | 1124 | 12.6 | Z | ||
15 | 26.6 | 29.7 | 43.7 | 811 | 12.6 | 1122 | 12.6 | Z | ||
20 | 27.0 | 29.3 | 43.8 | 810 | 12.6 | 1121 | 12.6 | Z | ||
30 | 27.8 | 28.3 | 43.9 | 807 | 12.6 | 1118 | 12.6 | Z |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsov, V.; Hubskyi, P.; Rojek, A.; Ciekanowski, Z. Railway Infrastructure Management: Selection of Overhead Contact Line Ampacity Considering Operational and Design Factors. Energies 2024, 17, 4393. https://doi.org/10.3390/en17174393
Kuznetsov V, Hubskyi P, Rojek A, Ciekanowski Z. Railway Infrastructure Management: Selection of Overhead Contact Line Ampacity Considering Operational and Design Factors. Energies. 2024; 17(17):4393. https://doi.org/10.3390/en17174393
Chicago/Turabian StyleKuznetsov, Valeriy, Petro Hubskyi, Artur Rojek, and Zbigniew Ciekanowski. 2024. "Railway Infrastructure Management: Selection of Overhead Contact Line Ampacity Considering Operational and Design Factors" Energies 17, no. 17: 4393. https://doi.org/10.3390/en17174393
APA StyleKuznetsov, V., Hubskyi, P., Rojek, A., & Ciekanowski, Z. (2024). Railway Infrastructure Management: Selection of Overhead Contact Line Ampacity Considering Operational and Design Factors. Energies, 17(17), 4393. https://doi.org/10.3390/en17174393