Distribution System State Estimation Based on Power Flow-Guided GraphSAGE
Abstract
:1. Introduction
- (1)
- By leveraging the generalization ability of GraphSAGE for unknown nodes, inductive learning is performed using measurement information. The simulation results show that even for measurement points not present in the training set, this approach can still qualitatively predict state variables.
- (2)
- The training process is guided by power flow equations, ensuring that the model remains physically meaningful.
- (3)
- The potential application of the proposed approach to real-world distribution systems is explored. Equivalent preprocessing of three-phase voltage measurement data is performed to improve the estimation accuracy at transformer measurement points and simplify the computation involved in DSSE.
2. Methodology
2.1. Traditional Model-Based Method
2.2. GraphSAGE
2.3. Proposed Approach
- The GraphSAGE algorithm estimates the state vector x from the input topological graph and the measurement vector z;
- The state vector x is used to derive the network values through the power flow equations h(x);
- The estimated values h(x) are compared to the actual measurements z using the WLS loss function, with each estimation error weighted by the inverse of its measurement variance;
- The gradient descent method is applied to the loss function L to adjust the GraphSAGE model based on the computed partial derivatives.
Algorithm 1: GraphSAGE Algorithm |
Input: Graph (, ε); depth K; input features zi{Vi, σVi, θi, σθi, Pi, σPi, Qi, σQi}, ∀i ∈ ; weight matrices Wk, ∀k ∈ {1, …, K}; non-linearity ϕ; differentiable aggregator functions AGGREGATEk, ∀k ∈ {1, …, K}; neighborhood function : i→2 |
Output: output features xi {Vi, θi, ∀i ∈ } |
3. Distribution System Three-Phase Data Preprocessing
4. Case Studies
4.1. Test Systems
- Monte Carlo simulation
- Actual power system database
4.2. Simulation Setup
4.3. Analysis
4.3.1. Accuracy and Computation Speed
4.3.2. Generalization and Robustness
4.3.3. Actual Distribution System Testing
5. Conclusions
- (1)
- The approach proposed in this paper effectively fits the state variables under non-Gaussian noise and demonstrates tolerance for faulty data, exhibiting strong adaptability and robustness.
- (2)
- The method does not require true values as labels and has a certain degree of generalization for unseen data.
- (3)
- Through guidance with power flow equations rather than simple numerical analysis, the method becomes more in line with distribution systems’ physical characteristics.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yadav, A.P.; Nutaro, J.; Park, B.; Dong, J.; Liu, B.; Yoginath, S.B.; Yin, H.; Dong, J.; Dong, Y.; Liu, Y.; et al. Review of Emerging Concepts in Distribution System State Estimation: Opportunities and Challenges. IEEE Access 2023, 11, 70503–70515. [Google Scholar] [CrossRef]
- Ali, M.; Dimitrovski, A.; Qu, Z.; Sun, W. A Voltage Inference Framework for Real-Time Observability in Active Distribution Grids. In Proceedings of the 2023 IEEE Power & Energy Society General Meeting (PESGM), Orlando, FL, USA, 16–20 July 2023; pp. 1–5. [Google Scholar]
- Lin, S.; Zhu, H. Enhancing the Spatio-Temporal Observability of Grid-Edge Resources in Distribution Grids. IEEE Trans. Smart Grid 2021, 12, 5434–5443. [Google Scholar] [CrossRef]
- Lin, S.; Zhu, H. Data-driven Modeling for Distribution Grids under Partial Observability. In Proceedings of the 2021 North American Power Symposium (NAPS), College Station, TX, USA, 14–16 November 2021; pp. 1–6. [Google Scholar]
- Cao, D.; Zhao, J.; Hu, W.; Yu, N.; Hu, J.; Chen, Z. Physics-Informed Graphical Learning and Bayesian Averaging for Robust Distribution State Estimation. IEEE Trans. Power Syst. 2024, 39, 2879–2892. [Google Scholar] [CrossRef]
- Ngo, Q.-H.; Nguyen, B.L.H.; Vu, T.V.; Ngo, T. State Estimation for Power Distribution System Using Graph Neural Networks. In Proceedings of the 2023 IEEE Electric Ship Technologies Symposium (ESTS), Alexandria, VA, USA, 1–4 August 2023; pp. 441–446. [Google Scholar]
- Tian, G.; Gu, Y.; Shi, D.; Fu, J.; Yu, Z.; Zhou, Q. Neural-network-based Power System State Estimation with Extended Observability. J. Mod. Power Syst. Clean Energy 2021, 9, 1043–1053. [Google Scholar] [CrossRef]
- Azimian, B.; Biswas, R.S.; Moshtagh, S.; Pal, A.; Tong, L.; Dasarathy, G. State and Topology Estimation for Unobservable Distribution Systems Using Deep Neural Networks. IEEE Trans. Instrum. Meas. 2022, 71, 9003514. [Google Scholar] [CrossRef] [PubMed]
- Zamzam, A.S.; Fu, X.; Sidiropoulos, N.D. Data-Driven Learning-Based Optimization for Distribution System State Estimation. IEEE Trans. Power Syst. 2019, 34, 4796–4805. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, G.; Giannakis, G.B. Real-Time Power System State Estimation and Forecasting via Deep Unrolled Neural Networks. IEEE Trans. Signal Process. 2019, 67, 4069–4077. [Google Scholar] [CrossRef]
- Yarlagadda, R.; Kosana, V.; Teeparthi, K. Power System State Estimation and Forecasting using CNN based Hybrid Deep Learning Models. In Proceedings of the 2021 IEEE International Conference on Technology, Research, and Innovation for Betterment of Society (TRIBES), Raipur, India, 17–19 December 2021; pp. 1–6. [Google Scholar]
- He, Y.; Chai, S.; Xu, Z.; Lai, C.S.; Xu, X. Power system state estimation using conditional generative adversarial network. IET Gener. Transm. Distrib. 2020, 14, 5823–5833. [Google Scholar] [CrossRef]
- Mestav, K.R.; Luengo-Rozas, J.; Tong, L. Bayesian State Estimation for Unobservable Distribution Systems via Deep Learning. IEEE Trans. Power Syst. 2019, 34, 4910–4920. [Google Scholar] [CrossRef]
- Massignan, J.A.D.; London, J.B.A.; Bessani, M.; Maciel, C.D.; Fannucchi, R.Z.; Miranda, V. Bayesian Inference Approach for Information Fusion in Distribution System State Estimation. IEEE Trans. Smart Grid 2022, 13, 526–540. [Google Scholar] [CrossRef]
- Vu, T.V.; Nguyen, B.L.H.; Cheng, Z.; Chow, M.-Y.; Zhang, B. Cyber-Physical Microgrids: Toward Future Resilient Communities. IEEE Ind. Electron. Mag. 2020, 14, 4–17. [Google Scholar] [CrossRef]
- Huang, B.; Wang, J. Applications of physics-informed neural networks in power systems—A review. IEEE Trans. Power Syst. 2023, 38, 572–588. [Google Scholar] [CrossRef]
- Wang, G.; Giannakis, G.B.; Chen, J. Robust and scalable power system state estimation via composite optimization. IEEE Trans. Smart Grid 2019, 10, 6137–6147. [Google Scholar] [CrossRef]
- Stiasny, J.; Misyris, G.S.; Chatzivasileiadis, S. Physics-informed neural networks for non-linear system identification for power system dynamics. In Proceedings of the 2021 IEEE Madrid PowerTech, Madrid, Spain, 28 June–2 July 2021; pp. 1–6. [Google Scholar]
- Ostrometzky, J.; Berestizshevsky, K.; Bernstein, A.; Zussman, G. Physics-informed deep neural network method for limited observability state estimation. In Proceedings of the Workshop Autonomous Energy Systems, Online, 19–20 August 2020; pp. 1–6. [Google Scholar]
- Yang, Q.; Sadeghi, A.; Wang, G.; Giannakis, G.B.; Sun, J. GaussNewton unrolled neural networks and data-driven priors for regularized PSSE with robustness. arXiv 2020, arXiv:2003.01667. [Google Scholar]
- Wang, L.; Zhou, Q.; Jin, S. Physics-guided deep learning for power system state estimation. J. Mod. Power Syst. Clean Energy 2020, 8, 607–615. [Google Scholar] [CrossRef]
- Tian, G.; Zhou, Q.; Birari, R.; Qi, J.; Qu, Z. A hybrid-learning algorithm for online dynamic state estimation in multimachine power systems. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 5497–5508. [Google Scholar] [CrossRef]
- Zamzam, A.S.; Sidiropoulos, N.D. Physics-aware neural networks for distribution system state estimation. IEEE Trans. Power Syst. 2020, 35, 4347–4356. [Google Scholar] [CrossRef]
- Tran, M.-Q.; Zamzam, A.S.; Nguyen, P.H. Enhancement of distribution system state estimation using pruned physics-aware neural networks. In Proceedings of the IEEE Madrid PowerTech, Madrid, Spain, 28 June–2 July 2021; pp. 1–5. [Google Scholar]
- Wang, W.; Yu, N. Estimate three-phase distribution line parameters with physics-informed graphical learning method. IEEE Trans. Power Syst. 2022, 37, 3577–3591. [Google Scholar] [CrossRef]
- Pagnier, L.; Chertkov, M. Physics-informed graphical neural network for parameter & state estimations in power systems. arXiv 2021, arXiv:2102.06349. [Google Scholar]
- Habib, B.; Isufi, E.; van Breda, W.; Jongepier, A.; Cremer, J.L. Deep Statistical Solver for Distribution System State Estimation. IEEE Trans. Power Syst. 2024, 39, 4039–4050. [Google Scholar] [CrossRef]
- Cao, D.; Zhao, J.; Liao, Q.; Huang, Q.; Chen, Z. Topology change aware data-driven probabilistic distribution state estimation based on Gaussian process. IEEE Trans. Smart Grid 2023, 14, 1317–1320. [Google Scholar] [CrossRef]
- Hamilton; William, L.; Ying, Z.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Dai, Z.; Shi, K.; Zhu, Y.; Zhang, X.; Luo, Y. Intelligent Prediction of Transformer Loss for Low Voltage Recovery in Distribution Network with Unbalanced Load. Energies 2023, 16, 4432. [Google Scholar] [CrossRef]
- Thurner, L.; Scheidler, A.; Schäfer, F.; Menke, J.H.; Dollichon, J.; Meier, F.; Meinecke, S.; Braun, M. Pandapower—An Open-Source Python Tool for Convenient Modeling, Analysis, and Optimization of Electric Power Systems. IEEE Trans. Power Syst. 2018, 33, 6510–6521. [Google Scholar] [CrossRef]
- Rudion, K.; Orths, A.; Styczynski, Z.A.; Strunz, K. Design of Benchmark of Medium Voltage Distribution Network for Investigation of DG Integration. In Proceedings of the IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006. [Google Scholar]
- Ahmad, F.; Rasool, A.; Ozsoy, E.; Sekar, R.; Sabanovic, A.; Elita, M. Distribution system state estimation-a step towards smart grid. Renew. Sustain. Energy Rev. 2018, 81, 2659–2671. [Google Scholar] [CrossRef]
Parameter | Case (IEEE14, IEEE33) | Actual (CNEDA404) |
---|---|---|
epochs | 500 | 1000 |
batch_size | 64 | 64 |
hidden_layers | 3 | 3 |
internal_dim | 48 | 48 |
sample_nums | 5 | 5 |
training_steps | 20 | 20 |
learning_rate | 0.01 | 0.006 |
dropout_rate | 0.4 | 0.4 |
time_iterations | 30 × 24 | 5 × 96 |
Evaluation Index | WLS | LAV | PF-GraphSAGE |
---|---|---|---|
Voltage RMSE mean | 10.630 | 9.8945 | 3.243 |
(standard deviation) [10−3] | (0.58) | (0.23) | (0.17) |
Voltage RMSE max [10−3] | 17.332 | 12.358 | 4.274 |
Convergence [%] | 100 | 100 | 100 |
Computation time [ms] | 453.049 | 93.738 | 9.764 |
Evaluation Index | WLS | LAV | PF-GraphSAGE |
---|---|---|---|
Voltage RMSE mean | 11.844 | 6.233 | 4.031 |
(standard deviation) [10−3] | (0.76) | (0.28) | (0.19) |
Voltage RMSE max [10−3] | 17.307 | 7.982 | 6.499 |
Convergence [%] | 100 | 87.5 | 100 |
Computation time [ms] | 501.57 | 109.42 | 11.65 |
Evaluation Index | WLS* | LAV | PF-GraphSAGE |
---|---|---|---|
Voltage RMSE mean | 12.14 | 12.36 | 1.653 |
(standard deviation) [10−3] | (0.45) | (0.31) | (0.04) |
Voltage RMSE max [10−3] | 16.12 | 14.72 | 3.628 |
Convergence [%] | 100 | 91.66 | 100 |
Computation time [ms] | 671.74 | 2440.71 | 41.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, B.; Yang, D.; Zhou, B.; Li, G. Distribution System State Estimation Based on Power Flow-Guided GraphSAGE. Energies 2024, 17, 4317. https://doi.org/10.3390/en17174317
Zhai B, Yang D, Zhou B, Li G. Distribution System State Estimation Based on Power Flow-Guided GraphSAGE. Energies. 2024; 17(17):4317. https://doi.org/10.3390/en17174317
Chicago/Turabian StyleZhai, Baitong, Dongsheng Yang, Bowen Zhou, and Guangdi Li. 2024. "Distribution System State Estimation Based on Power Flow-Guided GraphSAGE" Energies 17, no. 17: 4317. https://doi.org/10.3390/en17174317
APA StyleZhai, B., Yang, D., Zhou, B., & Li, G. (2024). Distribution System State Estimation Based on Power Flow-Guided GraphSAGE. Energies, 17(17), 4317. https://doi.org/10.3390/en17174317