Estimation of the Values of Electrical Shock Currents during Live-Line Work in Multi-Circuit, Multi-Voltage HVAC Transmission Lines
Abstract
:1. Introduction
2. Methodology
- Determination of the admittance matrix of the system Y,
- Determination of the impedance matrix of the system Z:Z = Y−1,
- Determination of the voltage vector of system U:U = ZI,
- Determination of the touch current It:It = UnLYhuman,
3. Results
3.1. Influence of the Mode of Operation of the Ends of the Disconnected Circuit Section on the Values of Induced Voltages
3.2. Influence of the Mode of Operation of the Ends of the Disconnected Circuit Section on the Values of Touch Currents
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eblen, M.L.; Ramirez-Bettoni, E.; Wallace, K. Analysis of accidents caused by inducted current and voltage on transmission lines and substations between 1985–2021. In Proceedings of the IEEE IAS Electrical Safety Workshop (ESW), Jacksonville, FL, USA, 7–11 March 2022. [Google Scholar]
- Joint Working Group B2/B3.27. In CIGRE Report 561 Live Work—A Management Perspective, 1st ed.; CIGRE: Paris, France, 2013; ISBN 978-85873-256-2.
- Sadurski, K.J.; Van Der Merwe, C.W.; Muftic, D. Live Line Maintenance of EHV and UHV Transmission Lines—Factors Influencing the Dielectric Strength at the Work Site. In Proceedings of the CIGRE Paris Session, Paris, France, 28 August–3 September 1994. [Google Scholar]
- Wallis, D.; Erga, B. Protecting workers from electromagnetic induction during line-stringing operations. In Proceedings of the IEEE IAS Electrical Safety Workshop (ESW), Tucson, AZ, USA, 7–12 March 2021. [Google Scholar]
- Dudek, B.; Loboda, M.; Kubica, P.; Nazimek, Ł. An outline of over 45 year period of live working technology development in Poland. In Proceedings of the 13th International Conference on Live Maintenance (ICOLIM), Turin, Italy, 15–17 June 2022. [Google Scholar]
- Chatzargyros, G.; Papakonstantinou, A.; Kotoula, V.; Stimoniaris, D.; Tsiamitros, D. UAV Inspections of Power Transmission Networks with AI Technology: A Case Study of Lesvos Island in Greece. Energies 2024, 17, 3518. [Google Scholar] [CrossRef]
- Zormpas, A.; Moirogiorgou, K.; Kalaitzakis, K.; Plokamakis, G.; Partsinevelos, P.; Giakos, G.; Zervakis, M. Power Transmission Lines Inspection using Properly Equipped Unmanned Aerial Vehicle (UAV). In Proceedings of the 2018 IEEE International Conference on Imaging Systems and Techniques (IST), Krakow, Poland, 16–18 October 2018; pp. 1–5. [Google Scholar]
- Xu, B.; Zhao, Y.; Wang, T.; Chen, Q. Development of power transmission line detection technology based on unmanned aerial vehicle image vision. SN Appl. Sci. 2023, 5, 72. [Google Scholar] [CrossRef]
- Yang, L.; Fan, J.; Liu, Y.; Li, E.; Peng, J.; Liang, Z. A Review on State-of-the-Art Power Line Inspection Techniques. IEEE Trans. Instrum. Meas. 2020, 69, 9350–9365. [Google Scholar] [CrossRef]
- Tao, X.; Zhang, D.; Wang, Z.; Liu, X.; Zhang, H.; Xu, D. Detection of Power Line Insulator Defects Using Aerial Images Analyzed With Convolutional Neural Networks. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 1486–1498. [Google Scholar] [CrossRef]
- Phillips, A.J.; Ferraro, R.; Kuffel, J.; Engelbrecht, C.S. Development of an Overhead Transmission Line Portable Protective Arrester (PPA) for Live Work. In Proceedings of the CIGRE Paris Session, Paris, France, 24 August–3 September 2020. [Google Scholar]
- Liang, J.K.; Zhu, K.; Zhou, X.Y.; Cai, D.L.; Lei, X.L.; Lin, F.; Li, D.K. Research on Live Working Safety of 110 kV and 220 kV Mixed Lines Based on Vertical Lifting Method. In Proceedings of the 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), Chongqing, China, 25–29 September 2022. [Google Scholar]
- Chazot, J. Special Operating Modes for Live Working. In Proceedings of the 13th International Conference on Live Maintenance (ICOLIM), Turin, Italy, 15–17 June 2022. [Google Scholar]
- Göcsei, G.; Szabó, D.; Németh, B.; Faradzhev, V. Inducted Voltage: A Major Risk Not Only During Live Working. In Proceedings of the 2022 13th International Conference on Live Maintenance (ICOLIM), Turin, Italy, 15–17 June 2022; pp. 1–5. [Google Scholar]
- Lovrenčić, V.; Ribič, P.; Ogrizek, P.; Lušin, M.; Lovrenčič, A. Safe Work in The Vicinity of Live Parts on High Voltage Double-Circuit Overhead Lines. In Proceedings of the 2022 13th International Conference on Live Maintenance (ICOLIM), Turin, Italy, 15–17 June 2022; pp. 1–6. [Google Scholar]
- Su, Y.; Wang, X.; Li, Y.; Pan, Z.; Liu, Z. Analysis of the conductivity property of live working shielding clothing. J. Ind. Text. 2018, 48, 643–659. [Google Scholar] [CrossRef]
- Higuero-Torres, I.; Gil-Prieto, G.; Fuster-Roig, V. Compliance analysis of exposure limit values of power frequency electromagnetic fields during live-line working on HV overhead lines. In Proceedings of the CIGRE Paris Session, Paris, France, 28 August–2 September 2022. [Google Scholar]
- Shao, J.; Fu, H.; Jiang, K.; Meng, X. Electric Field Distribution and Protection of Live Working on EHV Transmission Lines with Arresters. In Proceedings of the 5th International Conference on Electrical Engineering and Control Technology (CEECT), Chengdu, China, 15–17 December 2023. [Google Scholar]
- Yang, Q.; Zou, D.; Tong, C.; Xia, Z.; Yan, Y.; Li, J. The Safety Analysis of LiveWorking on 500/220 kV Four-parallel Lines on the Same Tower. In Proceedings of the IEEE International Conference on Power System and Renewable Energy, Shanghai, China, 21–23 October 2016. [Google Scholar]
- Riberio, M.F.; Vasconcelos, J.A.; Teixeira, D.A. Optimization of Compact Overhead Lines of 138/230 kV: Optimal Selection and Arrangement of Cables and Definition of the Best Transmission Line Tower Topology. In Proceedings of the IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe, Milan, Italy, 6–9 June 2017. [Google Scholar]
- Wasilewski, J.; Kubek, P. Multi-Criteria Phase Sequence Optimization in Selected the Highest-Voltage Power Lines Using Evolutionary Algorithm. Acta Energetica 2019, 2, 73–79. Available online: https://actaenergetica.org/index.php/journal/article/view/60/58 (accessed on 18 August 2024).
- Dziendziel, A.; Kocot, H.; Kubek, P. Construction and Modeling of Multi-Circuit, Multi-Voltage HVAC Transmission Lines. Energies 2021, 14, 421. [Google Scholar] [CrossRef]
- Dziendziel, A.; Kocot, H. Methods to Minimize the Effects of Geometric Asymmetry of Multi-Circuit, Multi-Voltage Overhead Lines on Transmission Network Operation. Energies 2023, 16, 7611. [Google Scholar] [CrossRef]
- Nowak, W.; Tarko, R. Analysis of electrical shock hazard caused by electromagnetic coupling effects in parallel overhead high-voltage power lines. IET Gener. Transm. Distrib. 2018, 12, 3398–3404. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Xia, Z.; Wang, T.; Zeng, W.; Yan, Y.; Yang, Q.; Li, W.; Long, C.; Ren, H. Research for the Maintenance Way of Partial Outage on 500 kV/220 kV Four-circuit Mixed-voltage Transmission Lines on the Same Tower. In Proceedings of the 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Chengdu, China, 19–22 September 2016. [Google Scholar]
- Konotop, I.; Novitskiy, A.; Westermann, D. Constraints on the Use of Local Compensation for the Correction of Neutral Voltage Displacement Caused by the Influence of Nearby Power Lines. In Proceedings of the 2014 Electric Power Quality and Supply Reliability Conference (PQ), Rakvere, Estonia, 11–13 June 2014. [Google Scholar]
- Clarke, E. Circuit Analysis of A-C Power Systems; John Wiley & Sons Inc.: New York, NY, USA, 1943; Volume 1. [Google Scholar]
- Carson, J.R. Wave Propagation in Overhead Wires with Ground Return. Bell Syst. Tech. J. 1926, 5, 539–554. [Google Scholar] [CrossRef]
- Dommel, H.W. Electro-Magnetic Transients Program (EMTP) Theory Book, 2nd ed.; Microtran Power System Analysis Corporation: Portland, OR, USA, 1996. [Google Scholar]
- IEEE Std 80-2013 (Revision of IEEE Std 80-2000/Incorporates IEEE Std 80-2013/Cor 1-2015); IEEE Guide for Safety in AC Substation Grounding. IEEE: Piscataway, NJ, USA, 2015.
- IEEE Standard 81.2-1991; Guide for Measurement of Impedance and Safety Characteristics of Large, Extended or Interconnected Grounding Systems. IEEE: Piscataway, NJ, USA, 1992.
- PN-EN IEC 60895:2021-01; Live Work—Conductive Clothing. Polish Committee for Standardization: Konstancin-Jeziorna, Poland, 2021.
- Kocot, H.; Dziendziel, A. Chosen analyses for multi-circuit multi-voltage overhead lines capacitances. Prz. Elektrotech. 2020, 96, 71–74. [Google Scholar] [CrossRef]
- IEEE Standard 524-2016; Guide for the Installation of Overhead Line Conductors. IEEE: Piscataway, NJ, USA, 2016.
- PSE-TS.UZIEM.LN.PL/2019v1; Specification—Grounding of Overhead Lines. PSE: Konstancin-Jeziorna, Poland, 2019. (In Polish)
- Department of Health and Human Services. Electrical Safety and Health for Electrical Trades; NIOSH, Publication No. 2002-123; NIOSH: Washington, DC, USA, 2002; p. 6. [Google Scholar]
- IEC 60479-1; Effects of Current on Human Beings and Livestock—Part 1: General Aspects. International Electrotechnical Commission: Geneva, Switzerland, 2018.
- Ramirez-Bettoni, E.; Nemeth, B. AC Induction Conductive Suit—A New Way of Protecting Linemen in the Vicinity of Energized Parts. IEEE Trans. Ind. Appl. 2023, 59, 5169–5177. [Google Scholar] [CrossRef]
- Fernandez, E.; Patric, J. Safety Limit Calculations to IEEE and IEC Standards. Available online: https://elek.com/articles/safety-limit-calculations-to-ieee-and-iec-standards/ (accessed on 18 August 2024).
- Ferris, L.P.; King, B.G.; Spence, P.W.; Williams, H. Effect of the electric shock on the heart. AIEE Trans. Power Appar. Syst. 1936, 55, 498–515. [Google Scholar]
- Biegelmeier, U.G. Die Bedeatung der Z-Schwelle des Herzkammerfilim-merns fur die Festlegung von Beruhrunnggsspanungs greuzeu bei den Schutzma Bradhmer Gegen elektrische Unfate. E&M 1976, 93, 1–8. [Google Scholar]
Analyzed Silhouette (Figure 7) | Scenario | Circuits I and II | Beginning of the Section (C.III) | End of the Section (C.III) | Potential at the Beginning of the Section Vb, V | Potential at the End of the Section Ve, V | ||||
---|---|---|---|---|---|---|---|---|---|---|
Phase A | Phase B | Phase C | Phase A | Phase B | Phase C | |||||
a | S1 | No-load | Insulated | Insulated | 38,490 | 15,807 | 38,490 | 38,490 | 15,807 | 38,490 |
S2 | On-load, Iz * | Insulated | Insulated | 38,488 | 15,805 | 38,483 | 38,450 | 15,803 | 38,519 | |
S3 | On-load, Iz | Insulated | Earthed | 1.5 | 0.6 | 1.5 | 186.8 | 81.8 | 190.4 | |
S4 | On-load, Iz | Earthed | Earthed | 94.3 | 41.3 | 96.8 | 92.9 | 40.7 | 95.3 | |
b | S1 | No-load | Insulated | Insulated | 32,603 | 27,011 | 20,895 | 32,603 | 27,011 | 20,895 |
S2 | On-load, Iz | Insulated | Insulated | 32,600 | 26,996 | 20,875 | 32,575 | 27,009 | 20,916 | |
S3 | On-load, Iz | Insulated | Earthed | 1.0 | 0.7 | 0.6 | 229.9 | 191.3 | 143.1 | |
S4 | On-load, Iz | Earthed | Earthed | 114.6 | 95.5 | 71.9 | 113.6 | 94.8 | 71.4 | |
b ** | S1 | No-load | Insulated | Insulated | 30,110 | 38,985 | 39,487 | 30,110 | 38,985 | 39,487 |
S2 | On-load, Iz | Insulated | Insulated | 30,101 | 38,982 | 39,488 | 30,139 | 38,998 | 39,492 | |
S3 | On-load, Iz | Insulated | Earthed | 0.8 | 1.0 | 1.1 | 67.9 | 91.0 | 100.1 | |
S4 | On-load, Iz | Earthed | Earthed | 33.9 | 46.2 | 50.9 | 33.2 | 45.2 | 49.8 | |
c | S1 | No-load | Insulated | Insulated | 32,742 | 32,829 | 32,742 | 32,742 | 32,829 | 32,742 |
S2 | On-load, Iz | Insulated | Insulated | 32,731 | 32,837 | 32,731 | 32,780 | 32,822 | 32,780 | |
S3 | On-load, Iz | Insulated | Earthed | 1.1 | 1.1 | 1.1 | 196.7 | 212.0 | 196.7 | |
S4 | On-load, Iz | Earthed | Earthed | 99.0 | 105.9 | 99.0 | 97.9 | 104.8 | 97.9 | |
d | S1 | No-load | Insulated | Insulated | 17,435 | 15,167 | 12,188 | 17,435 | 15,167 | 12,188 |
S2 | On-load, Iz | Insulated | Insulated | 17,441 | 15,168 | 12,178 | 17,410 | 15,154 | 12,204 | |
S3 | On-load, Iz | Insulated | Earthed | 0.6 | 0.4 | 0.4 | 113.3 | 108.7 | 93.3 | |
S4 | On-load, Iz | Earthed | Earthed | 56.4 | 54.2 | 46.9 | 55.9 | 53.8 | 46.5 | |
e | S1 | No-load | Insulated | Insulated | 27,234 | 22,498 | 32,893 | 27,234 | 22,498 | 32,893 |
S2 | On-load, Iz | Insulated | Insulated | 27,240 | 22,505 | 32,895 | 27,195 | 22,463 | 32,850 | |
S3 | On-load, Iz | Insulated | Earthed | 0.7 | 0.5 | 0.9 | 230.2 | 210.5 | 242.3 | |
S4 | On-load, Iz | Earthed | Earthed | 114.7 | 104.7 | 121.0 | 114.1 | 104.2 | 120.1 | |
f | S1 | No-load | Insulated | Insulated | 46,727 | 49,303 | 46,727 | 46,727 | 49,303 | 46,727 |
S2 | On-load, Iz | Insulated | Insulated | 46,737 | 49,311 | 46,737 | 46,663 | 49,239 | 46,663 | |
S3 | On-load, Iz | Insulated | Earthed | 1.6 | 1.5 | 1.4 | 330.4 | 343.8 | 330.5 | |
S4 | On-load, Iz | Earthed | Earthed | 165.6 | 172.2 | 165.5 | 164.0 | 170.8 | 164.1 |
Analyzed Silhouette (Figure 7) | Scenario | Circuits I, II and III | Beginning of the Section (C.IV) | End of the Section (C.IV) | Potential at the Beginning of the Section Vb, V | Potential at the End of the Section Ve, V | ||||
---|---|---|---|---|---|---|---|---|---|---|
Phase A | Phase B | Phase C | Phase A | Phase B | Phase C | |||||
g | S1 | No-load | Insulated | Insulated | 43,267 | 38,440 | 66,823 | 43,267 | 38,440 | 66,823 |
S2 | On-load, Iz * | Insulated | Insulated | 43,276 | 38,450 | 66,823 | 43,169 | 38,360 | 66,712 | |
S3 | On-load, Iz | Insulated | Earthed | 1.1 | 0.9 | 2.1 | 311.2 | 288.9 | 391.2 | |
S4 | On-load, Iz | Earthed | Earthed | 155.2 | 143.9 | 195.9 | 154.2 | 143.1 | 193.9 | |
h | S1 | No-load | Insulated | Insulated | 56,717 | 50,270 | 31,849 | 56,717 | 50,270 | 31,849 |
S2 | On-load, Iz | Insulated | Insulated | 56,707 | 50,263 | 31,849 | 56,693 | 50,239 | 31,813 | |
S3 | On-load, Iz | Insulated | Earthed | 1.8 | 1.4 | 0.7 | 262.1 | 240.7 | 174.4 | |
S4 | On-load, Iz | Earthed | Earthed | 131.9 | 120.6 | 86.6 | 130.2 | 119.3 | 85.9 | |
i | S1 | No-load | Insulated | Insulated | 31,697 | 29,088 | 55,140 | 31,697 | 29,088 | 55,140 |
S2 | On-load, Iz | Insulated | Insulated | 31,710 | 29,100 | 55,144 | 31,626 | 29,031 | 55,041 | |
S3 | On-load, Iz | Insulated | Earthed | 0.7 | 0.6 | 1.8 | 299.6 | 281.0 | 377.2 | |
S4 | On-load, Iz | Earthed | Earthed | 149.1 | 139.9 | 188.5 | 148.4 | 139.3 | 186.9 |
Scenario | Circuit I | Beginning of the Section | End of the Section | Section’s Length L, km | Electrical Shock Current It, mA | ||
---|---|---|---|---|---|---|---|
Phase A | Phase B | Phase C | |||||
S1 | No-load | Insulated | Insulated | 1 | 22.3 | 32.1 | 66.8 |
150 | <1 | <1 | <1 | ||||
S2 | On-load, 0.5 Iz * | Insulated | Insulated | 1 | 22.3 | 32.2 | 66.9 |
150 | <1 | <1 | <1 | ||||
S3 | On-load, 0.5 Iz | Insulated | Earthed | 1 | 108.3 | 51,3 | 29.7 |
150 | 10,147.4 | 3815.2 | 6737.7 | ||||
S4 | On-load, 0.5 Iz | Earthed | Earthed | 1 | 54.3 | 25.8 | 15.3 |
150 | 2357.0 | 796.6 | 2046.9 |
Scenario | Circuit I | Beginning of the Section | End of the Section | Section’s Length l, km | Electrical Shock Current It, mA | ||
---|---|---|---|---|---|---|---|
Phase A | Phase B | Phase C | |||||
S1 | No-load | Insulated | Insulated | 1 | 17.0 | 24.9 | 52.2 |
150 | <1 | <1 | <1 | ||||
S2 | On-load, 0.5 Iz * | Insulated | Insulated | 1 | 17.0 | 25.0 | 52.1 |
150 | <1 | <1 | <1 | ||||
S3 | On-load, 0.5 Iz | Insulated | Earthed | 1 | <1 | <1 | <1 |
150 | 41.6 | 15.6 | 27.6 | ||||
S4 | On-load, 0.5 Iz | Earthed | Earthed | 1 | <1 | <1 | <1 |
150 | 9.5 | 3.2 | 8.3 |
Analyzed Silhouette (Figure 7) | Scenario | Itmin, mA | Phase Configuration Graphic for Itmin | Itmax, mA | Figure of Phase Configuration Graphic for Itmax |
---|---|---|---|---|---|
a | S2 | 37.7 | 96.2 | ||
S3 | 57.6 | 187.6 | |||
S4 | 28.8 | 94.6 | |||
b | S2 | 28.2 | 76.7 | ||
S3 | 49.9 | 226.4 | |||
S4 | 25.5 | 113.4 | |||
b * | S2 | 35.9 | 90.6 | ||
S3 | 33.2 | 114.5 | |||
S4 | 16.2 | 57.7 | |||
c | S2 | 37.7 | 130.2 | ||
S3 | 57.6 | 293.8 | |||
S4 | 28.8 | 146.9 | |||
d | S2 | 22.5 | 43.6 | ||
S3 | 25.7 | 111.6 | |||
S4 | 13.0 | 55.5 | |||
e | S2 | 15.5 | 77.9 | ||
S3 | 27.7 | 238.7 | |||
S4 | 13.9 | 119.2 | |||
f | S2 | 57.1 | 121.3 | ||
S3 | 70.1 | 338.7 | |||
S4 | 35.1 | 169.5 |
Analyzed Silhouette (Figure 7) | Scenario | Itmin, mA | Phase Configuration Graphic for Itmin | Itmax, mA | Figure of Phase Configuration Graphic for Itmax |
---|---|---|---|---|---|
g | S2 | 19.3 | 163.5 | ||
S3 | 25.6 | 405.7 | |||
S4 | 13.0 | 202.6 | |||
h | S2 | 50.9 | 135.9 | ||
S3 | 45.4 | 311.4 | |||
S4 | 23.0 | 155.3 | |||
i | S2 | 37.7 | 136.6 | ||
S3 | 38.2 | 387.8 | |||
S4 | 19.0 | 193.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziendziel, A. Estimation of the Values of Electrical Shock Currents during Live-Line Work in Multi-Circuit, Multi-Voltage HVAC Transmission Lines. Energies 2024, 17, 4276. https://doi.org/10.3390/en17174276
Dziendziel A. Estimation of the Values of Electrical Shock Currents during Live-Line Work in Multi-Circuit, Multi-Voltage HVAC Transmission Lines. Energies. 2024; 17(17):4276. https://doi.org/10.3390/en17174276
Chicago/Turabian StyleDziendziel, Agnieszka. 2024. "Estimation of the Values of Electrical Shock Currents during Live-Line Work in Multi-Circuit, Multi-Voltage HVAC Transmission Lines" Energies 17, no. 17: 4276. https://doi.org/10.3390/en17174276
APA StyleDziendziel, A. (2024). Estimation of the Values of Electrical Shock Currents during Live-Line Work in Multi-Circuit, Multi-Voltage HVAC Transmission Lines. Energies, 17(17), 4276. https://doi.org/10.3390/en17174276