Non-Industrial Solar Energy Use, Barriers, and Readiness: Case Study of Oman
Abstract
:1. Introduction
2. Literature Review
2.1. Solar Energy in Oman
2.2. Barriers and Adoption Factors Affecting Rooftop Solar PV
2.2.1. Installation and Maintenance Costs
2.2.2. Technical Expertise and Support
2.2.3. Solar PV Awareness and Benefits
2.2.4. Incentives and Financial Support
2.2.5. Public-Private Partnership and Clear Solar Energy Policy
3. Research Methodology
3.1. Survey Design
3.2. Data Collection and Validation
3.3. Analysis Technique: Principal Component Analysis (PCA), and Kruskal–Wallis Test
3.4. Preliminary Analysis
4. Data Analysis
4.1. Proportion of Omani Population Using Solar Energy
4.2. Barriers to Solar Energy Consumption and Use in Oman
4.3. People’s Perceptions and Experience of Solar Energy Barriers
4.4. Promotion of Solar Energy Programs in Oman
4.5. Willingness of Omanis to Use Solar Energy in the Future
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. Renewables 2023: Analysis and Forecast to 2028. 2023. Available online: https://www.iea.org/reports/renewables-2023 (accessed on 15 March 2023).
- Pater, S. Increasing energy self-consumption in residential photovoltaic systems with heat pumps in Poland. Energies 2023, 16, 4003. [Google Scholar] [CrossRef]
- Duman, A.C.; Güler, Ö. Economic analysis of grid-connected residential rooftop PV systems in Turkey. Renew. Energy 2020, 148, 697–711. [Google Scholar] [CrossRef]
- Bekti, D.B.M.; Prasetyo, Y.T.; Redi, A.A.N.P.; Budiman, A.S.; Mandala, I.M.P.L.; Putra, A.R.; Persada, S.F.; Nadlifatin, R.; Young, M.N. Determining factors affecting customer intention to use rooftop solar photovoltaics in Indonesia. Sustainability 2021, 14, 280. [Google Scholar] [CrossRef]
- O’Shaughnessy, E.; Barbose, G.; Wiser, R.; Forrester, S.; Darghouth, N. The impact of policies and business models on income equity in rooftop solar adoption. Nat. Energy 2021, 6, 84–91. [Google Scholar] [CrossRef]
- Colasante, A.; D’Adamo, I.; Morone, P. Nudging for the increased adoption of solar energy? Evidence from a survey in Italy. Energy Res. Soc. Sci. 2021, 74, 101978. [Google Scholar] [CrossRef]
- CR, V.; John, J. Reflections on solar energy adoption research: A semi-systematic review. Int. J. Energy Sect. Manag. 2024; 1–28, online print ahead. [Google Scholar]
- Kuzior, A.; Samusevych, Y.; Lyeonov, S.; Krawczyk, D.; Grytsyshen, D. Applying energy taxes to promote a clean, sustainable and secure energy system: Finding the preferable approaches. Energies 2023, 16, 4203. [Google Scholar] [CrossRef]
- Amighini, A.; Giudici, P.; Ruet, J. Green finance: An empirical analysis of the Green Climate Fund portfolio structure. J. Clean. Prod. 2022, 350, 1–8. [Google Scholar] [CrossRef]
- Anantharajah, K.; Setyowati, A.B. Beyond promises: Realities of climate finance justice and energy transitions in Asia and the Pacific. Energy Res. Soc. Sci. 2022, 89, 102550. [Google Scholar] [CrossRef]
- Ojong, N. Solar Home Systems in South Asia: Examining Adoption, Energy Consumption, and Social Practices. Sustainability 2021, 13, 7754. [Google Scholar] [CrossRef]
- Eshchanov, B.; Abdurazzakova, D.; Yuldashev, O.; Salahodjaev, R.; Ahrorov, F.; Komilov, A.; Eshchanov, R. Is there a link between cognitive abilities and renewable energy adoption: Evidence from Uzbekistan using micro data. Renew. Sustain. Energy Rev. 2021, 141, 110819. [Google Scholar] [CrossRef]
- Zander, K.K. Adoption behaviour and the optimal feed-in-tariff for residential solar energy production in Darwin (Australia). J. Clean. Prod. 2021, 299, 126879. [Google Scholar] [CrossRef]
- Alsabbagh, M. Public perception toward residential solar panels in Bahrain. Energy Rep. 2019, 5, 253–261. [Google Scholar] [CrossRef]
- Tseng, M.-L.; Ardaniah, V.; Sujanto, R.Y.; Fujii, M.; Lim, M.K. Multicriteria assessment of renewable energy sources under uncertainty: Barriers to adoption. Technol. Forecast. Soc. Change 2021, 171, 120937. [Google Scholar] [CrossRef]
- Hanger, S.; Komendantova, N.; Schinke, B.; Zejli, D.; Ihlal, A.; Patt, A. Community acceptance of large-scale solar energy installations in developing countries: Evidence from Morocco. Energy Res. Soc. Sci. 2016, 14, 80–89. [Google Scholar] [CrossRef]
- Brewer, J.; Ames, D.P.; Solan, D.; Lee, R.; Carlisle, J. Using GIS analytics and social preference data to evaluate utility-scale solar power site suitability. Renew. Energy 2015, 81, 825–836. [Google Scholar]
- Batel, S.; Devine-Wright, P.; Tangeland, T. Social acceptance of low carbon energy and associated infrastructures: A critical discussion. Energy Policy 2013, 58, 1–5. [Google Scholar] [CrossRef]
- Alhmoud, L. Why does the PV solar power plant operate ineffectively? Energies 2023, 16, 4074. [Google Scholar] [CrossRef]
- Wang, C.N.; Chung, Y.C.; Wibowo, F.D.; Dang, T.T.; Nguyen, N.A.T. Site selection of solar power plants using hybrid MCDM models: A case study in Indonesia. Energies 2023, 16, 4042. [Google Scholar] [CrossRef]
- Hassan, I.; Alhamrouni, I.; Azhan, N.H. A CRITIC–TOPSIS multi-criteria decision-making approach for optimum site selection for solar PV farm. Energies 2023, 16, 4245. [Google Scholar] [CrossRef]
- Barwińska-Małajowicz, A.; Pyrek, R.; Szczotka, K.; Szymiczek, J.; Piecuch, T. Improving the Energy Efficiency of Public Utility Buildings in Poland through Thermomodernization and Renewable Energy Sources—A Case Study. Energies 2023, 16, 4021. [Google Scholar] [CrossRef]
- Sustainable Development Report Dashboards. Sustainable Development Report 2021 Oman. 2021. Available online: https://s3.amazonaws.com/sustainabledevelopment.report/2021/2021-sustainable-development-report.pdf (accessed on 20 March 2023).
- Market Intelligence. Oman’s Renewable Energy Projects. 2020. Available online: https://www.trade.gov/market-intelligence/omans-renewable-energy-projects (accessed on 15 April 2023).
- Oxford Business Group. High Solar Insolation Puts Oman’s Renewable Energy Goals within Reach. 2018. Available online: https://oxfordbusinessgroup.com/reports/oman/2018-report/economy/a-bright-future-high-solar-insolation-levels-put-omans-renewable-energy-goals-within-reach (accessed on 16 April 2023).
- Gill-Wiehl, A.; Ojong, N. Yours, mine, and ours: Gender, intra-household dynamics, and financing solar home systems in Tanzania. Environ. Res. Lett. 2023, 18, 084018. [Google Scholar] [CrossRef]
- Roy, S.; Mohapatra, S. Problems of adoption of solar power and subsequent switching behavior: An exploration in India. Int. J. Energy Sect. Manag. 2022, 16, 78–94. [Google Scholar] [CrossRef]
- Aggarwal, A.K.; Syed, A.A.; Garg, S. Factors driving Indian consumer’s purchase intention of roof top solar. Int. J. Energy Sect. Manag. 2019, 13, 539–555. [Google Scholar] [CrossRef]
- Authority for Public Services Regulation. Annual Report, 2021. 2020. Available online: https://www.apsr.om/downloadsdocs/annual-reports/2020EnglishAnnualReportFinal.pdf (accessed on 25 April 2023).
- IEA. How Is Electricity Used in Oman? 2021. Available online: https://www.iea.org/countries/oman/electricity#how-is-electricity-used-in-oman (accessed on 15 March 2023).
- Global Solar Atlas. Photovoltaic Power Potential. 2018. Available online: https://globalsolaratlas.info/download/oman (accessed on 15 March 2024).
- Wassie, Y.T.; Adaramola, M.S. Socio-economic and environmental impacts of rural electrification with Solar Photovoltaic systems: Evidence from southern Ethiopia. Energy Sustain. Dev. 2021, 60, 52–66. [Google Scholar] [CrossRef]
- Karakaya, E.; Sriwannawit, P. Barriers to the adoption of photovoltaic systems: The state of the art. Renew. Sustain. Energy Rev. 2015, 49, 60–66. [Google Scholar] [CrossRef]
- Bollinger, B.; Gillingham, K. Peer effects in the diffusion of solar photovoltaic panels. Mark. Sci. 2012, 31, 900–912. [Google Scholar] [CrossRef]
- Nabaweesi, J.; Kabuye, F.; Adaramola, M.S. Households’ willingness to adopt solar energy for business use in Uganda. Int. J. Energy Sect. Manag. 2024, 18, 26–42. [Google Scholar] [CrossRef]
- Zahari, A.R.; Esa, E. Drivers and inhibitors adopting renewable energy: An empirical study in Malaysia. Int. J. Energy Sect. Manag. 2018, 12, 581–600. [Google Scholar] [CrossRef]
- Barbose, G.L.; Forrester, S.; O’Shaughnessy, E.; Darghouth, N.R. Residential Solar-Adopter Income and Demographic Trends: 2022 Update. Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory. 2022. Available online: https://escholarship.org/uc/item/5vd6w51m (accessed on 25 April 2024).
- Schelly, C. Residential solar electricity adoption: What motivates, and what matters? A case study of early adopters. Energy Res. Soc. Sci. 2014, 2, 183–191. [Google Scholar] [CrossRef]
- Dharshing, S. Household dynamics of technology adoption: A spatial econometric analysis of residential solar photovoltaic (PV) systems in Germany. Energy Res. Soc. Sci. 2017, 23, 113–124. [Google Scholar] [CrossRef]
- Schaffer, A.J.; Brun, S. Beyond the sun—Socioeconomic drivers of the adoption of small-scale photovoltaic installations in Germany. Energy Res. Soc. Sci. 2015, 10, 220–227. [Google Scholar] [CrossRef]
- Palm, J. Household installation of solar panels–Motives and barriers in a 10-year perspective. Energy Policy 2018, 113, 1–8. [Google Scholar] [CrossRef]
- Haukkala, T. Does the sunshine in the High North? Vested interests as a barrier to solar energy deployment in Finland. Energy Res. Soc. Sci. 2015, 6, 50–58. [Google Scholar] [CrossRef]
- Rai, V.; Robinson, S.A. Effective information channels for reducing costs of environmentally friendly technologies: Evidence from residential PV markets. Environ. Res. Lett. 2013, 8, 014044. [Google Scholar] [CrossRef]
- Barbose, G. Tracking the Sun V: An Historical Summary of the Installed Price of Photovoltaics in the United States from 1998 to 2011. Lawrence Berkeley National Laboratory. 2012. Available online: https://escholarship.org/uc/item/7qw2t0td (accessed on 25 April 2024).
- Timilsina, G.R.; Kurdgelashvili, L.; Narbel, P.A. Solar energy: Markets, economics, and policies. Renew. Sustain. Energy Rev. 2012, 16, 449–465. [Google Scholar] [CrossRef]
- Nagamatsu, A.; Watanabe, C.; Shum, K.L. Diffusion trajectory of self-propagating innovations interacting with institutions—Incorporation of multi-factors learning function to model PV diffusion in Japan. Energy Policy 2006, 34, 411–421. [Google Scholar] [CrossRef]
- Akrofi, M.M.; Okitasari, M.; Korwatanasakul, U. Stakeholders’ awareness of urban form effects on rooftop solar photovoltaic in Ghana: Implications for integrated solar energy and urban planning. Energy Sustain. Dev. 2024, 78, 101377. [Google Scholar] [CrossRef]
- Campton, M.; Aznar, A.; Gokhale-Welch, C.; Repins, I. Rooftop Solar PV Quality and Safety in Developing Countries-Key Issues and Potential Solutions (No. NREL/TP-7A40-81594); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2022. Available online: https://www.osti.gov/biblio/1841962 (accessed on 25 April 2024).
- Sarkar, S.; Bhaskar, M.S.; Rao, K.U.; Prema, V.; Almakhles, D.; Subramaniam, U. Solar PV network installation standards and cost estimation guidelines for smart cities. Alex. Eng. J. 2022, 61, 1277–1287. [Google Scholar] [CrossRef]
- Segreto, M.; Principe, L.; Desormeaux, A.; Torre, M.; Tomassetti, L.; Tratzi, P.; Paolini, V.; Petracchini, F. Trends in social acceptance of renewable energy across Europe—A literature review. Int. J. Environ. Res. Public Health 2020, 17, 9161. [Google Scholar] [CrossRef]
- Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A.A.; Kim, K.H. Solar energy: Potential and future prospects. Renew. Sustain. Energy Rev. 2018, 82, 894–900. [Google Scholar] [CrossRef]
- Kumar, V.; Hundal, B.S. Evaluating the service quality of solar product companies using SERVQUAL model. Int. J. Energy Sect. Manag. 2018, 13, 670–693. [Google Scholar] [CrossRef]
- Momotaz, S.N.; Karim, A.M. Customer satisfaction of the solar home system service in Bangladesh. World 2012, 2, 193–210. [Google Scholar]
- Ansari, S.; Ayob, A.; Lipu, M.H.; Saad, M.H.M.; Hussain, A. Comparison of the IoT Based Modules for Solar PV Environment: A Review. In Proceedings of the IEEE Student Conference on Research and Development, Johor, Malaysia, 27–28 September 2020. [Google Scholar]
- Dutta, A.; Das, S. Adoption of grid-connected solar rooftop systems in the state of Jammu and Kashmir: A stakeholder analysis. Energy Policy 2020, 140, 111382. [Google Scholar] [CrossRef]
- Malik, S.A.; Ayop, A.R. Solar energy technology: Knowledge, awareness, and acceptance of B40 households in one district of Malaysia towards government initiatives. Technol. Soc. 2020, 63, 101416. [Google Scholar] [CrossRef]
- Opiyo, N.N. Impacts of neighbourhood influence on social acceptance of small solar home systems in rural western Kenya. Energy Res. Soc. Sci. 2019, 52, 91–98. [Google Scholar] [CrossRef]
- Walker, C.; Devine-Wright, P.; Rohse, M.; Gooding, L.; Devine-Wright, H.; Gupta, R. What is ‘local’about Smart Local Energy Systems? Emerging stakeholder geographies of decentralised energy in the United Kingdom. Energy Res. Soc. Sci. 2021, 80, 102182. [Google Scholar] [CrossRef]
- Graff, M.; Carley, S.; Konisky, D.M. Stakeholder perceptions of the United States energy transition: Local-level dynamics and community responses to national politics and policy. Energy Res. Soc. Sci. 2018, 43, 144–157. [Google Scholar] [CrossRef]
- Boon, F.P.; Dieperink, C. Local civil society based renewable energy organisations in the Netherlands: Exploring the factors that stimulate their emergence and development. Energy Policy 2014, 69, 297–307. [Google Scholar] [CrossRef]
- Islam, T. Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data. Energy Policy 2014, 65, 340–350. [Google Scholar] [CrossRef]
- Palm, A. Peer effects in residential solar photovoltaics adoption—A mixed methods study of Swedish users. Energy Res. Soc. Sci. 2017, 26, 1–10. [Google Scholar] [CrossRef]
- Sütterlin, B.; Siegrist, M. Public acceptance of renewable energy technologies from an abstract versus concrete perspective and the positive imagery of solar power. Energy Policy 2017, 106, 356–366. [Google Scholar] [CrossRef]
- Rai, V.; Reeves, D.C.; Margolis, R. Overcoming barriers and uncertainties in the adoption of residential solar PV. Renew. Energy 2016, 89, 498–505. [Google Scholar] [CrossRef]
- Sindhu, S.; Nehra, V.; Luthra, S. Identification and analysis of barriers in implementation of solar energy in Indian rural sector using integrated ISM and fuzzy MICMAC approach. Renew. Sustain. Energy Rev. 2016, 62, 70–88. [Google Scholar] [CrossRef]
- Sadat, S.A.; Fini, M.V.; Hashemi-Dezaki, H.; Nazififard, M. Barrier analysis of solar PV energy development in the context of Iran using fuzzy AHP-TOPSIS method. Sustain. Energy Technol. Assess. 2021, 47, 101549. [Google Scholar]
- Girardeau, H.; Oberholzer, A.; Pattanayak, S.K. The enabling environment for household solar adoption: A systematic review. World Dev. Perspect. 2021, 21, 100290. [Google Scholar] [CrossRef]
- Crago, C.L.; Chernyakhovskiy, I. Are policy incentives for solar power effective? Evidence from residential installations in the Northeast. J. Environ. Econ. Manag. 2017, 81, 132–151. [Google Scholar] [CrossRef]
- Hughes, J.E.; Podolefsky, M. Getting green with solar subsidies: Evidence from the California solar initiative. J. Assoc. Environ. Resour. Econ. 2015, 2, 235–275. [Google Scholar] [CrossRef]
- Zander, K.K.; Simpson, G.; Mathew, S.; Nepal, R.; Garnett, S.T. Preferences for and potential impacts of financial incentives to install residential rooftop solar photovoltaic systems in Australia. J. Clean. Prod. 2019, 230, 328–338. [Google Scholar] [CrossRef]
- Nemet, G.F. How Solar Energy became Cheap: A Model for Low-Carbon Innovation; Routledge: London, UK; Taylor and Francis: Abingdon, UK, 2019; pp. 1–280. [Google Scholar]
- Dutt, D. Understanding the barriers to the diffusion of rooftop solar: A case study of Delhi (India). Energy Policy 2020, 144, 111674. [Google Scholar] [CrossRef]
- Burke, P.J.; Widnyana, J.; Anjum, Z.; Aisbett, E.; Resosudarmo, B.; Baldwin, K.G. Overcoming barriers to solar and wind energy adoption in two Asian giants: India and Indonesia. Energy Policy 2019, 132, 1216–1228. [Google Scholar] [CrossRef]
- Luthra, S.; Govindan, K.; Kharb, R.K.; Mangla, S.K. Evaluating the enablers in solar power developments in the current scenario using fuzzy DEMATEL: An Indian perspective. Renew. Sustain. Energy Rev. 2016, 63, 379–397. [Google Scholar] [CrossRef]
- Devine-Wright, P. Reconsidering Public Attitudes and Public Acceptance of Renewable Energy Technologies: A Critical Review. Beyond Nimbyism: A Multidisciplinary Investigation of Public Engagement with Renewable Energy Technologies. Working Paper 1.4. 2007. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=8d23c43b8af92fc8a4a8668b5cd4efc5a2e2391e (accessed on 25 April 2024).
- Sauter, R.; Watson, J. Strategies for the deployment of micro-generation: Implications for social acceptance. Energy Policy 2007, 35, 2770–2779. [Google Scholar] [CrossRef]
- Willis, K.; Scarpa, R.; Gilroy, R.; Hamza, N. Renewable energy adoption in an ageing population: Heterogeneity in preferences for micro-generation technology adoption. Energy Policy 2011, 39, 6021–6029. [Google Scholar] [CrossRef]
- Sommerfeld, J.; Buys, L.; Vine, D. Residential consumers’ experiences in the adoption and use of solar PV. Energy Policy 2017, 105, 10–16. [Google Scholar] [CrossRef]
- Greene, D.L. Energy policy: Where are the boundaries? Energy Policy 2013, 62, 1–2. [Google Scholar] [CrossRef]
- Sardianou, E.; Genoudi, P. Which factors affect the willingness of consumers to adopt renewable energies? Renew. Energy 2013, 57, 1–4. [Google Scholar] [CrossRef]
- Del Río, P.; Mir-Artigues, P. Support for solar PV deployment in Spain: Some policy lessons. Renew. Sustain. Energy Rev. 2012, 16, 5557–5566. [Google Scholar] [CrossRef]
- Graziano, M.; Gillingham, K. Spatial patterns of solar photovoltaic system adoption: The influence of neighbors and the built environment. J. Econ. Geogr. 2015, 15, 815–839. [Google Scholar] [CrossRef]
- Solangi, K.H.; Islam, M.R.; Saidur, R.; Rahim, N.A.; Fayaz, H. A review of global solar energy policy. Renew. Sustain. Energy Rev. 2011, 15, 2149–2163. [Google Scholar] [CrossRef]
- Jacobsson, S.; Lauber, V. The politics and policy of energy system transformation—Explaining the German diffusion of renewable energy technology. Energy Policy 2006, 34, 256–276. [Google Scholar] [CrossRef]
- Etikan, I.; Bala, K. Sampling and sampling methods. Biom. Biostat. Int. J. 2017, 5, 215–217. [Google Scholar] [CrossRef]
- Singh, A.S.; Masuku, M.B. Sampling techniques & determination of sample size in applied statistics research: An overview. Int. J. Econ. Commer. Manag. 2014, 2, 1–22. [Google Scholar]
- Copas, J.B.; Li, H.G. Inference for non-random samples. J. R. Stat. Soc. Ser. B Stat. Methodol. 1997, 59, 55–95. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Kruskal, W.H. A nonparametric test for the several sample problems. Ann. Math. Stat. 1952, 23, 525–540. [Google Scholar] [CrossRef]
- McKight, P.E.; Najab, J. Kruskal-wallis test. Corsini Encycl. Psychol. 2010, 1, 1–10. [Google Scholar]
- Miller, R.G., Jr. Beyond ANOVA: Basics of Applied Statistics; Routledge: London, UK; Taylor and Francis: Abingdon, UK, 1997; pp. 1–336. [Google Scholar]
- Siegel, S. Nonparametric statistics. Am. Stat. 1957, 11, 13–19. [Google Scholar] [CrossRef]
- Gernaat, D.E.; de Boer, H.S.; Dammeier, L.C.; van Vuuren, D.P. The role of residential rooftop photovoltaic in long-term energy and climate scenarios. Appl. Energy 2020, 279, 115705. [Google Scholar] [CrossRef]
- Ntsaluba, S.B.; Dlamini, I. Performance and Cost analysis for a university based Solar PV installation. In Proceedings of the IEEE PES/IAS PowerAfrica, Nairobi, Kenya, 25–28 August 2020. [Google Scholar]
- Liyanage, D.; Rajakaruna, S. Performance evaluation and cost-benefit analysis of a large solar PV installation at a mine site in Western Australia. In Proceedings of the IEEE PES Innovative Smart Grid Technologies, Perth, Australia, 13–16 November 2011. [Google Scholar]
- International Renewable Energy Agency. Sultanate of Oman Renewable Readiness Assessment 2021. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2014/IRENA_RRA_Oman_2014_LR.pdf (accessed on 20 March 2023).
- Oudes, D.; Van Den Brink, A.; Stremke, S. Towards a typology of solar energy landscapes: Mixed-production, nature based and landscape inclusive solar power transitions. Energy Res. Soc. Sci. 2022, 91, 102742. [Google Scholar] [CrossRef]
- Merleau-Ponty, M.; Landes, D.; Carman, T.; Lefort, C. Phenomenology of Perception; Routledge: London, UK; Taylor and Francis: Abingdon, UK, 2013; pp. 1–696. [Google Scholar]
- Hargreaves, N.; Hargreaves, T.; Chilvers, J. Socially smart grids? A multi-criterion mapping of diverse stakeholder perspectives on smart energy futures in the United Kingdom. Energy Res. Soc. Sci. 2022, 90, 102610. [Google Scholar] [CrossRef]
- Shum, R.Y. Heliopolitics: The international political economy of solar supply chains. Energy Strategy Rev. 2019, 26, 100390. [Google Scholar] [CrossRef]
- O’Shaughnessy, E. Rooftop solar incentives remain effective for low-and moderate-income adoption. Energy Policy 2022, 163, 112881. [Google Scholar] [CrossRef]
- Feng, X.; Ma, T.; Yamaguchi, Y.; Peng, J.; Dai, Y.; Ji, D. Potential of residential building integrated photovoltaic systems in different regions of China. Energy Sustain. Dev. 2023, 72, 19–32. [Google Scholar] [CrossRef]
- Pramadya, F.A.; Kim, K.N. Promoting residential rooftop solar photovoltaics in Indonesia: Net-metering or installation incentives? Renew. Energy 2024, 222, 119901. [Google Scholar] [CrossRef]
- Kleanthis, N.; Stavrakas, V.; Ceglarz, A.; Süsser, D.; Schibline, A.; Lilliestam, J.; Flamos, A. Eliciting knowledge from stakeholders to identify critical issues of the transition to climate neutrality in Greece, the Nordic Region, and the European Union. Energy Res. Soc. Sci. 2022, 93, 102836. [Google Scholar] [CrossRef]
- Koasidis, K.; Nikas, A.; Karamaneas, A.; Saulo, M.; Tsipouridis, I.; Campagnolo, L.; Gambhir, A.; Van de Ven, D.-J.; McWilliams, B.; Doukas, H. Climate and sustainability co-governance in Kenya: A multi-criteria analysis of stakeholders’ perceptions and consensus. Energy Sustain. Dev. 2022, 68, 457–471. [Google Scholar] [CrossRef]
- Wang, X.; Guan, Z.; Wu, F. Solar energy adoption in rural China: A sequential decision approach. J. Clean. Prod. 2017, 168, 1312–1318. [Google Scholar] [CrossRef]
- Mishrif, A.; Khan, A. Clean Energy Transition through the Sustainable Exploration and Use of Lithium in Oman: Potential and Challenges. Sustainability 2023, 15, 15173. [Google Scholar] [CrossRef]
Gender | % of Total | Cumulative % | Solar Energy Use at Home in Oman | % of Total | Cumulative % |
Female | 43.4% | 43.4% | Never | 68.1% | 68.1% |
Male | 56.6% | 100.0% | using the last 1–2 years | 8.0% | 76.1% |
using the last 6–12 months | 6.2% | 82.3% | |||
Resident | % of Total | Cumulative % | using less than 6-month | 8.0% | 90.3% |
Al Batinah North | 10.6% | 10.6% | using more than 3 years | 7.1% | 97.3% |
Al Batinah South | 6.2% | 16.8% | using the last 2–3 years | 2.7% | 100.0% |
Al Buraymi | 0.9% | 17.7% | Age (Years) | % of Total | Cumulative % |
Al Dakhiliyah | 22.1% | 39.8% | 20–25 | 25.7% | 25.7% |
Al Dhahirah | 3.5% | 43.4% | 26–31 | 13.3% | 38.9% |
Al Sharqiyah North | 2.7% | 46.0% | 32–37 | 17.7% | 56.6% |
Al Sharqiyah South | 2.7% | 48.7% | 38–43 | 15.0% | 71.7% |
Al Wusta | 0.9% | 49.6% | 44–49 | 14.2% | 85.8% |
Dhofar | 0.9% | 50.4% | Above 50 | 14.2% | 100.0% |
Muscat | 49.6% | 100.0% | |||
Aware of the SAHIM II and I projects in Oman | % of Total | Cumulative % | Awareness of the solar energy programs in Oman | % of Total | Cumulative % |
No | 68.1% | 68.1% | No | 40.7% | 40.7% |
Yes | 31.9% | 100.0% | Yes | 59.3% | 100.0% |
Variables | χ2 | df | p | ε2 |
---|---|---|---|---|
Solar energy use under various constraints | ||||
High installation cost | 0.0921 | 1 | 0.762 | 0.00008 |
High maintenance cost | 1.4366 | 1 | 0.231 | 0.0128 |
Lack of technical support | 5.772 | 1 | 0.016 | 0.0515 |
Lack of awareness | 8.8869 | 1 | 0.003 | 0.0793 |
Solar energy awareness | ||||
High installation cost | 0.352 | 1 | 0.553 | 0.00314 |
High maintenance cost | 1.552 | 1 | 0.213 | 0.01386 |
Lack of technical support | 0.811 | 1 | 0.368 | 0.00724 |
Lack of awareness | 5.053 | 1 | 0.025 | 0.04512 |
Solar Energy Use under Various Constraints (Lack of Technical Support) | W | p | |
---|---|---|---|
No | Yes | −3.40 | 0.0016 |
Solar Energy Use under Various Constraints (Lack of Awareness) | |||
No | Yes | −4.22 | 0.003 |
Variables | χ2 | df | p | ε2 |
---|---|---|---|---|
Solar energy use under various promotion constraints | ||||
Government incentives | 5.27 | 5 | 0.384 | 0.047 |
Financial support | 5.34 | 5 | 0.375 | 0.0477 |
Improved quality | 6.38 | 5 | 0.271 | 0.057 |
Public-private partnership | 5.18 | 5 | 0.395 | 0.0462 |
Solar energy future use under various promotion constraints | ||||
Government incentives | 0.04487 | 1 | 0.832 | 0.0004 |
Financial support | 0.0038 | 1 | 0.951 | 0.00003 |
Improved quality | 0.1101 | 1 | 0.74 | 0.0001 |
Public-private partnership | 0.39313 | 1 | 0.531 | 0.00351 |
SAHIM project awareness under various promotion constraints | ||||
Government incentives | 0.0201 | 1 | 0.887 | 0.0002 |
Financial support | 0.9393 | 1 | 0.332 | 0.00839 |
Improved quality | 3.7239 | 1 | 0.054 | 0.03325 |
Public-private partnership | 2.1032 | 1 | 0.147 | 0.01878 |
Perceptions of residents under various promotion constraints | ||||
Government incentives | 14.63 | 9 | 0.101 | 0.1307 |
Financial support | 10.82 | 9 | 0.288 | 0.0966 |
Improved quality | 5.15 | 9 | 0.821 | 0.0459 |
Public-private partnership | 11.21 | 9 | 0.262 | 0.1001 |
Clear solar energy policy | 10.26 | 9 | 0.33 | 0.0916 |
SAHIM Project Awareness under Various Promotions Constraints (Improved Quality) | W | p | |
---|---|---|---|
No | Yes | −2.73 | 0.054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishrif, A.; Khan, A. Non-Industrial Solar Energy Use, Barriers, and Readiness: Case Study of Oman. Energies 2024, 17, 3917. https://doi.org/10.3390/en17163917
Mishrif A, Khan A. Non-Industrial Solar Energy Use, Barriers, and Readiness: Case Study of Oman. Energies. 2024; 17(16):3917. https://doi.org/10.3390/en17163917
Chicago/Turabian StyleMishrif, Ashraf, and Asharul Khan. 2024. "Non-Industrial Solar Energy Use, Barriers, and Readiness: Case Study of Oman" Energies 17, no. 16: 3917. https://doi.org/10.3390/en17163917
APA StyleMishrif, A., & Khan, A. (2024). Non-Industrial Solar Energy Use, Barriers, and Readiness: Case Study of Oman. Energies, 17(16), 3917. https://doi.org/10.3390/en17163917