Classification Method of Heavy Oil Based on Chemical Composition and Bulk Properties
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Properties Analysis
2.3. GC-FID Analysis
2.4. Semi-Quantitative Analysis of Molecular Composition Using HRMS
3. Results and Discussion
3.1. Bulk Properties
3.2. Molecular Composition
3.3. Classification Method of Heavy Oil
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Wang, H.; Blackbourn, G.; Ma, F.; He, Z.; Wen, Z.; Wang, Z.; Yang, Z.; Luan, T.; Wu, Z. Heavy Oils and Oil Sands: Global Distribution and Resource Assessment. Acta Geol. Sin. Engl. Ed. 2019, 93, 199–212. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, H.; Cai, X.; Gou, Q.; Jiang, L.; Chen, K.; Chen, Z.; Jiang, S. Current Status and Future Trends of In Situ Catalytic Upgrading of Extra Heavy Oil. Energies 2023, 16, 4610. [Google Scholar] [CrossRef]
- Xue, L.; Liu, P.; Zhang, Y. Development and Research Status of Heavy Oil Enhanced Oil Recovery. Geofluids 2022, 2022, 5015045. [Google Scholar] [CrossRef]
- Liu, H.; Dong, X. Current status and future trends of hybrid thermal EOR processes in heavy oil reservoirs. Pet. Sci. Bull. 2022, 7, 174–184. [Google Scholar] [CrossRef]
- Sun, H.; Liu, H.; Wang, H.; Shu, Q.; Wu, G.; Yang, Y. Development technology and direction of thermal recovery of heavy oil in China. Acta Pet. Sin. 2022, 43, 1664–1674. [Google Scholar]
- Briggs, P.J.; Baron, P.; Fulleylove, R.; Wright, M.S. Development of heavy-oil reservoirs. J. Pet. Technol. 1988, 40, 206–214. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, L.; Huang, Z.; Chen, L.; Jin, H.; Wang, Y. Experimental investigation on enhanced oil recovery of extra heavy oil by supercritical water flooding. Energy Fuels 2018, 32, 1685–1692. [Google Scholar] [CrossRef]
- Ke, H.; Yuan, M.; Xia, S. A review of nanomaterials as viscosity reducer for heavy oil. J. Dispers. Sci. Technol. 2020, 43, 1271–1282. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, G.; Wang, H.; Liu, Z.; Jiang, L.; Xie, F.; Fei, L.; Liang, J. Potential, distribution and exploration trend of global heavy oil and oil sand resources. J. Jilin Univ. Earth Sci. Ed. 2015, 45, 1042–1051. [Google Scholar]
- Yu, K.; Ma, H.; Hetaer, M.U.; Li, Q. Subdivision and Geological Significance of Shallow Heavy-oil Reservoirs in Junggar Basin. J. Oil Gas Technol. 2011, 33, 32–35. [Google Scholar]
- Yashchenko, I.G.; Polishchuk, Y.M. Classification of Poorly Recoverable Oils and Analyis of Their Quality Characteristics. Chem. Technol. Fuels Oils 2016, 52, 434–444. [Google Scholar] [CrossRef]
- Yashchenko, I.G.; Polishchuk, Y.M. Classification Approach to Assay of Crude Oils with Different Physicochemical Properties and Quality Parameters. Pet. Chem. 2019, 59, 1161–1168. [Google Scholar] [CrossRef]
- Bagheri Garmarudi, A.; Khanmohammadi, M.; Ghafoori Fard, H.; de la Guardia, M. Origin based classification of crude oils by infrared spectrometry and chemometrics. Fuel 2019, 236, 1093–1099. [Google Scholar] [CrossRef]
- Mohammadi, M.; Khanmohammadi Khorrami, M.; Vatani, A.; Ghasemzadeh, H.; Vatanparast, H.; Bahramian, A.; Fallah, A. Rapid determination and classification of crude oils by ATR-FTIR spectroscopy and chemometric methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 232, 118157. [Google Scholar] [CrossRef]
- Li, T.; Xu, J.; Zou, R.; Feng, H.; Li, L.; Wang, J.; Cohen Stuart, M.A.; Guo, X. Resin from Liaohe heavy oil: Molecular structure, aggregation behavior, and effect on oil viscosity. Energy Fuels 2017, 32, 306–313. [Google Scholar] [CrossRef]
- Wang, Y.; Han, X.; Li, J.; Liu, R.; Wang, Q.; Huang, C.; Wang, X.; Zhang, L.; Lin, R. Review on Oil Displacement Technologies of Enhanced Oil Recovery: State-of-the-Art and Outlook. Energy Fuels 2023, 37, 2539–2568. [Google Scholar] [CrossRef]
- Guo, K.; Li, H.; Yu, Z. In-situ heavy and extra-heavy oil recovery: A review. Fuel 2016, 185, 886–902. [Google Scholar] [CrossRef]
- Zhang, S.; Huo, J.; Sun, X.; Yang, F.; Wang, P.; Wu, J.; Zhang, Y.; Shi, Q. Molecular composition reveals unique rheological property of Karamay heavy crude oil. Energy Fuels 2020, 35, 473–478. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, Q.; Yan, Y.; Xu, Y.; Liu, S.; Zhang, S.; Xu, J.; Yang, C. Effect of Naphthenic Acid and Metal Ions on Emulsification of Heavy Oil. Energy Fuels 2022, 36, 2561–2571. [Google Scholar] [CrossRef]
- Ragunathan, N.; Krock, K.A.; Klawun, C.; Sasaki, T.A.; Wilkins, C.L. Gas chromatography with spectroscopic detectors. J. Chromatogr. A 1999, 856, 349–397. [Google Scholar] [CrossRef]
- Barman, B.N.; Cebolla, V.L.; Membrado, L. Chromatographic Techniques for Petroleum and Related Products. Crit. Rev. Anal. Chem. 2000, 30, 75–120. [Google Scholar] [CrossRef]
- Saari, E.; Perämäki, P.; Jalonen, J. Evaluating the impact of GC operating settings on GC–FID performance for total petroleum hydrocarbon (TPH) determination. Microchem. J. 2010, 94, 73–78. [Google Scholar] [CrossRef]
- Wang, Z.; Fingas, M.; Li, K. Fractionation of a Light Crude Oil and Identification and Quantitation of Aliphatic, Aromatic, and Biomarker Compounds by GC-FID and GC-MS, Part II. J. Chromatogr. Sci. 1994, 32, 367–382. [Google Scholar] [CrossRef]
- Cheng, X.; Hou, D. Characterization of Severely Biodegraded Crude Oils Using Negative-Ion ESI Orbitrap MS, GC-NCD and GC-SCD: Insights into Heteroatomic Compounds Biodegradation. Energies 2021, 14, 300. [Google Scholar] [CrossRef]
- Yan, X. Unique selective detectors for gas chromatography: Nitrogen and sulfur chemiluminescence detectors. J. Sep. Sci. 2006, 29, 1931–1945. [Google Scholar] [CrossRef]
- Marshall, A.G.; Rodgers, R.P. Petroleomics: Chemistry of the underworld. Proc. Natl. Acad. Sci. USA 2008, 105, 18090–18095. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, Y.; Xu, C.; Zhao, S.; Chung, K. Progress and prospect on petroleum analysis by Fourier transform ion cyclotron resonance mass spectrometry. Sci. Sin. Chim. 2014, 44, 694. [Google Scholar] [CrossRef]
- Borisov, R.S.; Kulikova, L.N.; Zaikin, V.G. Mass Spectrometry in Petroleum Chemistry (Petroleomics) (Review). Pet. Chem. 2019, 59, 1055–1076. [Google Scholar] [CrossRef]
- Qian, K.; Robbins, W.K. Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 2001, 15, 1505–1511. [Google Scholar] [CrossRef]
- Qian, K.; Rodgers, R.P.; Hendrickson, C.L.; Emmett, M.R.; Marshall, A.G. Reading chemical fine print: Resolution and identification of 3000 nitrogen-containing aromatic compounds from a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of heavy petroleum crude oil. Energy Fuels 2001, 15, 492–498. [Google Scholar] [CrossRef]
- Purcell, J.M.; Hendrickson, C.L.; Rodgers, R.P.; Marshall, A.G. Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Complex Mixture Analysis. Anal. Chem. 2006, 78, 5906–5912. [Google Scholar] [CrossRef]
- Jin, C.; Viidanoja, J.; Li, M.; Zhang, Y.; Ikonen, E.; Root, A.; Romanczyk, M.; Manheim, J.; Dziekonski, E.; Kenttämaa, H.I. Comparison of Atmospheric Pressure Chemical Ionization and Field Ionization Mass Spectrometry for the Analysis of Large Saturated Hydrocarbons. Anal. Chem. 2016, 88, 10592–10598. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Xu, C.; Zhao, S.; Chung, K.H.; Shi, Q. Quantitative Molecular Composition of Heavy Petroleum Fractions: A Case Study of Fluid Catalytic Cracking Decant Oil. Energy Fuels 2020, 34, 5307–5316. [Google Scholar] [CrossRef]
- Bojkovic, A.; Vermeire, F.H.; Kuzmanović, M.; Dao Thi, H.; Van Geem, K.M. Analytics Driving Kinetics: Advanced Mass Spectrometric Characterization of Petroleum Products. Energy Fuels 2022, 36, 6–59. [Google Scholar] [CrossRef]
- Li, S.; Wu, J.; Wang, Y.; Li, Y.; Zhang, W.; Zhang, Y.; He, K.; Cai, C.; Bian, G.; Wang, H.; et al. Semi-quantitative analysis of molecular composition for petroleum fractions using electrospray ionization high-resolution mass spectrometry. Fuel 2023, 335, 127049. [Google Scholar] [CrossRef]
- Wu, J.-X.; Li, S.-F.; Li, Q.-F.; Yan, F.; Zhou, Q.-L.; Ma, S.; Zhang, Y.-H.; Zhao, S.-Q.; Shi, Q. Characterization of chemical composition of high viscosity heavy oils: Macroscopic properties, and semi-quantitative analysis of molecular composition using high-resolution mass spectrometry. Pet. Sci. 2024; in press. [Google Scholar] [CrossRef]
- GB/T 18609; Determination of Acid Number of Crude Oil by Potentiometric Titration. China National Standardization Management Committee: Beijing, China, 2011.
- SY/T 0520; Viscosity Determination of Crude Petroleum. Equilibrium Method by Rotational Viscometer. National Development and Reform Commission: Beijing, China, 2008.
- NB/SH/T 0509; Test Method for Separation of Asphalt into for Fractions. National Energy Administration: Beijing, China, 2010.
- NB/SH/T 0162; Determination of Basic Nitrogen in Petroleum Distillates-Color Indicator Titration Method. National Energy Administration: Beijing, China, 2021.
- ASTM D5291; Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants. American Society for Testing and Materials: West Conshohocken, PA, USA, 2016.
- ASTM D5622; Standard Test Methods for Determination of Total Oxygen in Gasoline and Methanol Fuels by Reductive Pyrolysis. American Society for Testing and Materials: West Conshohocken, PA, USA, 2017.
- ASTM D5453; Standard Test Method for Determination of Total Sulfur in Light Hydrocarbons, Motor Fuels and Oils by Ultraviolet Fluorescence. American Society for Testing and Materials: West Conshohocken, PA, USA, 2004.
- ASTM D5762; Standard Test Method for Nitrogen in Petroleum and Petroleum Products by Boat-Inlet Chemiluminescence. American Society for Testing and Materials: West Conshohocken, PA, USA, 2012.
- Shi, Q.; Pan, N.; Long, H.; Cui, D.; Guo, X.; Long, Y.; Chung, K.H.; Zhao, S.; Xu, C.; Hsu, C.S. Characterization of middle-temperature gasification coal tar. part 3: Molecular composition of acidic compounds. Energy Fuels 2013, 27, 108–117. [Google Scholar] [CrossRef]
- Marshall, A.G.; Rodgers, R.P. Petroleomics: The next grand challenge for chemical analysis. Cheminform 2004, 35, 53–59. [Google Scholar] [CrossRef]
- Peters, K.E.; Moldowan, J.M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments; Prentice Hall: Saddle River, NJ, USA, 1993. [Google Scholar]
- Dou, L.; Hou, D.; Cheng, D.; Li, M.; Pan, X. Origin and distribution of high-acidity oils. Shiyou Xuebao/Acta Pet. Sin. 2007, 28, 8–13. [Google Scholar]
- Harrison, G.; Lamont, N.A. Simulated time-based studies to evaluate changes in crude oil composition through evaporation and biodegradation. In Proceedings of Oil and Hydrocarbon Spills III: Modelling, Analysis and Control; MIT Press: Cambridge, MA, USA, 2002; pp. 201–210. [Google Scholar]
- Sun, P.Y.; Gao, Z.H.; Zhou, Q.; Zhao, Y.H.; Wang, X.P.; Cao, X.L.; Li, G.M. Evaluation of the Oil Spill Accident in Bohai Sea, China. Environ. Forensics 2009, 10, 308–316. [Google Scholar] [CrossRef]
- Gough, M.A.; Rowland, S.J. Characterization of unresolved complex mixtures of hydrocarbons in petroleum. Nature 1990, 344, 648–650. [Google Scholar] [CrossRef]
Junggar-P601 | Henan-L3511 | Shengli-J8 | Shengli-C373 | Tahe-1 | |
---|---|---|---|---|---|
Viscosity, 50 °C mPa·s | 3033 | 1665 | 1864 | 6883 | 6732 |
TAN, mgKOH/g | 11.77 | 4.91 | 3.87 | 3.11 | 0.15 |
Saturates, wt% | 58.20 | 45.79 | 44.86 | 25.28 | 30.97 |
Aromatics, wt% | 19.73 | 22.91 | 24.85 | 39.68 | 25.91 |
Resins, wt% | 20.31 | 31.19 | 28.17 | 29.00 | 11.47 |
Asphaltenes, wt% | 0.19 | <0.05 | 1.32 | 7.69 | 23.19 |
H/C | 1.72 | 1.68 | 1.65 | 1.57 | 1.54 |
S, wt% | 0.22 | 0.27 | 0.31 | 4.98 | 0.64 |
N, wt% | 0.25 | 0.64 | 0.75 | 0.73 | 0.45 |
O, wt% | 1.91 | 1.31 | 0.57 | 0.98 | 0.63 |
First Index | Second Index | Typical Heavy Oil | ||
---|---|---|---|---|
H/C | TAN Value, mgKOH/g | Sulfur Content, wt% | ||
Low condensation | ≥1.65 | ≥6.0 | <1.0 | Junggar-P601, Junggar-H8317 |
<6.0 | <1.0 | Henan-L3511, Shengli-JX17 | ||
Medium condensation | 1.55~1.65 | 1.0~6.0 | ≥3.0 | Shengli-C373, Shengli-GD2 |
1.0~6.0 | <3.0 | Shengli-J8, Junggar-F3167 | ||
High condensation | <1.55 | <1.0 | <1.0 | Tahe-1, Tahe-2, Liaohe-H70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Wu, J.; Li, S.; Zhang, Y.; Zhao, S.; Shi, Q. Classification Method of Heavy Oil Based on Chemical Composition and Bulk Properties. Energies 2024, 17, 3733. https://doi.org/10.3390/en17153733
Zhang W, Wu J, Li S, Zhang Y, Zhao S, Shi Q. Classification Method of Heavy Oil Based on Chemical Composition and Bulk Properties. Energies. 2024; 17(15):3733. https://doi.org/10.3390/en17153733
Chicago/Turabian StyleZhang, Weilai, Jianxun Wu, Shuofan Li, Yahe Zhang, Suoqi Zhao, and Quan Shi. 2024. "Classification Method of Heavy Oil Based on Chemical Composition and Bulk Properties" Energies 17, no. 15: 3733. https://doi.org/10.3390/en17153733
APA StyleZhang, W., Wu, J., Li, S., Zhang, Y., Zhao, S., & Shi, Q. (2024). Classification Method of Heavy Oil Based on Chemical Composition and Bulk Properties. Energies, 17(15), 3733. https://doi.org/10.3390/en17153733