Novel Approach to Analyzing Friction Losses by Modeling the Microflow of Lubricating Oil between the Piston Rings and Cylinder in Internal Combustion Engines
Abstract
:1. Introduction
2. Methodology Section
2.1. Model Assumptions of the Physical Field of Solid Heat Transfer
2.2. Rheological Compound of Oil Lubricating Engine Components
2.3. Numerical Models of the Oil Film and Energy Losses
2.4. Analytical Models of Rough Surface Statistics
3. Results and Discussion
3.1. Input Data for the Simulation Model
3.2. Simulation Results Performed Only for the Fluid Friction Regime
3.3. Simulation Results When Introducing a Mixed Friction Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pinkus, O.; Sternlicht, B. Theory of Hydrodynamic Lubrication; McGraw-Hill Book Company, Inc.: New York, NY, USA; Toronto, ON, Canada; London, UK, 1961. [Google Scholar]
- Iskra, A. Distribution of the Oil Film on the Cylinder Bearing Surface of a Piston Engine. Ph.D. Thesis, Wydawnictwo Politechniki Poznańskiej, Poznań, Poland, 1987. [Google Scholar]
- Wróblewski, P.; Iskra, A. Problems of Reducing Friction Losses of a Piston-Ring-Cylinder Configuration in a Combustion Piston Engine with an Increased Isochoric Pressure Gain. In Proceedings of the SAE Powertrains, Fuels & Lubricants Meeting, Online Event, 22–23 September 2020; SAE Technical Paper 2020-01-2227. SAE International: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Wróblewski, P. Technology for Obtaining Asymmetries of Stereometric Shapes of the Sealing Rings Sliding Surfaces for Selected Anti-Wear Coatings. In Proceedings of the SAE Powertrains, Fuels & Lubricants Meeting, Online Event, 22–23 September 2020; SAE Technical Paper 2020-01-2229. SAE International: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Wróblewski, P.; Iskra, A. Geometry of shape of profiles of the sliding surface of ring seals in the aspect of friction losses and oil film parameters. Combust. Engines 2016, 167, 24–38. [Google Scholar] [CrossRef]
- Wróblewski, P. Effect of asymmetric elliptical shapes of the sealing ring sliding surface on the main parameters of the oil film. Combust. Engines 2017, 168, 84–93. [Google Scholar] [CrossRef]
- Wróblewski, P. The effect of the distribution of variable characteristics determining the asymmetry of the sealing rings sliding surfaces on the values of friction loss coefficients and other selected parameters of oil film. Combust. Engines 2017, 171, 107–116. [Google Scholar] [CrossRef]
- Greenwood, J. A Unified Theory of Surface Roughness. Proc. R. Soc. A Math. Phys. Eng. Sci. 1984, 393, 133–157. [Google Scholar] [CrossRef]
- Whitehouse, D.J.; Archard, J.F. The properties of random surfaces of significance in their contact. Proc. R. Soc. Lond. A Math. Phys. Sci. 1970, 316, 97–121. [Google Scholar] [CrossRef]
- Nayak, P.B. Random process model of rough surfaces in plastic contact. Wear 1974, 26, 165–174. [Google Scholar] [CrossRef]
- Li, D.F.; Ezzat, H.A. An automotive piston lubrication model. ASLE Trans. 1983, 26, 151–160. [Google Scholar] [CrossRef]
- Patir, N.; Cheng, H.S. An Average Flow Model for Determining Effects of Three-Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication. J. Lubr. Technol. 1979, 100, 12–17. [Google Scholar] [CrossRef]
- Patir, N.; Cheng, M.S. Application of average flow model to lubrication between rough sliding surfaces. J. Tribol. 1979, 101, 220–229. [Google Scholar] [CrossRef]
- Zhu, D.; Cheng, H.S.; Arai, T.; Hamai, K. A numerical analysis for piston skirts in mixed lubrication-part I: Basic modeling. J. Tribol. 1992, 114, 553–562. [Google Scholar] [CrossRef]
- Zhu, D.; Hu, Y.Z.; Cheng, H.S.; Arai, T.; Hamai, K. A numerical analysis for piston skirts in mixed lubrication-part II: Deformation considerations. J. Tribol. 1993, 115, 125–133. [Google Scholar] [CrossRef]
- Keribar, R.; Dursunkaya, Z. A comprehensive model of piston skirt lubrication. J. Engines 1992, 101, 844–852. [Google Scholar] [CrossRef]
- Wong, V.W.; Tian, T.; Lang, H.; Ryan, J.P.; Sekiya, Y.; Kobayashi, Y.; Aoyama, S. A numerical model of piston secondary motion and piston slap in partially flooded elastohydrodynamic skirt lubrication. J. Engines 1994, 103, 1276–1290. [Google Scholar] [CrossRef]
- Liu, K.; Xie, Y.B.; Gui, C.L. A comprehensive study of the friction and dynamic motion of the piston assembly. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 1998, 212, 221–226. [Google Scholar] [CrossRef]
- Meng, X.; Xie, Y. A new numerical analysis for piston skirtliner system lubrication considering the effects of connecting rod inertia. Tribol. Int. 2012, 47, 235–243. [Google Scholar] [CrossRef]
- Meng, X.; Ning, L.; Xie, Y.; Wong, V.W. Effects of the connecting-rod-related design parameters on the piston dynamics and the skirt-liner lubrication. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2013, 227, 885–898. [Google Scholar] [CrossRef]
- Flores, P.; Ambrósio, J.; Claro, J.P. Dynamic Analysis for Planar Multibody Mechanical Systems with Lubricated Joints. Multibody Syst. Dyn. 2004, 12, 47–74. [Google Scholar] [CrossRef]
- Ravn, P.; Shivaswamy, S.; Alshaer, B.J.; Lankarani, H.M. Joint Clearances with Lubricated Long Bearings in Multibody Mechanical Systems. J. Mech. Des. 2000, 122, 484–488. [Google Scholar] [CrossRef]
- Tian, Q.; Zhang, Y.; Chen, L.; Yang, J. Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 2010, 60, 489–511. [Google Scholar] [CrossRef]
- Tian, Q.; Flores, P.; Lankarani, H.M. A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 2018, 122, 1–57. [Google Scholar] [CrossRef]
- Zhao, B.; Dai, X.D.; Zhang, Z.N.; Xie, Y.B. A new numerical method for piston dynamics and lubrication analysis. Tribol. Int. 2016, 94, 395–408. [Google Scholar] [CrossRef]
- Zhao, B.; Cui, Y.; Xie, Y.; Zhou, K. Dynamics and lubrication analyses of a planar multibody system with multiple lubricated joints. Proc. Inst. Mech. Eng. Part J Eng. Tribol. 2018, 232, 326–346. [Google Scholar] [CrossRef]
- Littlefair, B.; Cruz MD, L.; Mills, R.; Theodossiades, S.; Rahnejat, H.; Dwyer-Joyce, R.; Howell-Smith, S. Lubrication of a flexible piston skirt conjunction subjected to thermo-elastic deformation: A combined numerical and experimental investigation. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2014, 228, 69–81. [Google Scholar] [CrossRef]
- Oh, K.P.; Li, C.H.; Goenka, P.K. Elastohydrodynamic lubrication of piston skirts. J. Tribol. 1987, 109, 356–362. [Google Scholar] [CrossRef]
- Dursunkaya, Z.; Keribar, R.; Ganapathy, V. A model of piston secondary motion and elastohydrodynamic skirt lubrication. J. Tribol. 1994, 116, 777–785. [Google Scholar] [CrossRef]
- Ahmed, K.; Benyoucef, K.; Redha, M.; Mourad, L. The effect of piston skirt profile on EHD lubrication in an internal combustion engine. Adv. Mater. Res. 2013, 787, 704–710. [Google Scholar] [CrossRef]
- Offner, G.; Lorenz, N.; Knaus, O. Piston Clearance Optimization Using Thermo-Elasto Hydrodynamic Simulation to Reduce Piston Slap Excitation and Friction Loss; SAE Technical Paper 2012-01-1530; SAE: Warrendale, PA, USA, 2012. [Google Scholar] [CrossRef]
- Meng, F.M.; Wang, X.F.; Li, T.T.; Chen, Y.P. Influence of cylinder liner vibration on lateral motion and tribological behaviors for piston in internal combustion engine. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2015, 229, 151–167. [Google Scholar] [CrossRef]
- Meng, F.; Du, M.; Wang, X.; Chen, Y.; Zhang, Q. Effect of axial piston pin motion on tribo-dynamics of piston skirt-cylinder liner system. Ind. Lubr. Tribol. 2018, 70, 140–154. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, X.; Xiang, P.; Dong, D. Analysis of thermal temperature fields and thermal stress under steady temperature field of diesel engine piston. Appl. Therm. Eng. 2017, 113, 796–812. [Google Scholar] [CrossRef]
- Wróblewski, P.; Kachel, S. The concept of the contact angle in the process of oil film formation in internal combustion piston engines. Sci. Rep. 2023, 13, 20715. [Google Scholar] [CrossRef]
- Wróblewski, P. The Theory of the Surface Wettability Angle in the Formation of an Oil Film in Internal Combustion Piston Engines. Materials 2023, 16, 4092. [Google Scholar] [CrossRef] [PubMed]
- Wróblewski, P. Reduction of friction energy in a piston combustion engine for hydrophobic and hydrophilic multilayer nanocoatings surrounded by soot. Energy 2023, 271, 126974. [Google Scholar] [CrossRef]
- Wróblewski, P. Investigation of energy losses of the internal combustion engine taking into account the correlation of the hydrophobic and hydrophilic. Energy 2023, 264, 126002. [Google Scholar] [CrossRef]
- Nie, W.; Liao, Q.; Zhang, C.; He, J. Micro-/nanoscaled irreversible Otto engine cycle with friction loss and boundary effects and its performance characteristics. Energy 2010, 35, 4658–4662. [Google Scholar] [CrossRef]
- Deligant, M.; Podevin, P.; Descombes, G. Experimental identification of turbocharger mechanical friction losses. Energy 2012, 39, 388–394. [Google Scholar] [CrossRef]
- Wang, C.; Liu, M.; Wang, B.; Xing, Z.; Shu, Y. Research on power consumption distribution characteristics of a water-lubricated twin-screw air compressor for fuel cell applications. Energy 2022, 256, 124673. [Google Scholar] [CrossRef]
- Koszalka, G.; Hunicz, J. Comparative study of energy losses related to the ring pack operation in homogeneous charge compression ignition and spark ignition combustion. Energy 2021, 235, 121388. [Google Scholar] [CrossRef]
- Dziubak, T. Material Properties Analysis with Addition of Nanofibres for Air Intake Filtration in Internal Combustion Engines. Int. J. Automot. Mech. Eng. 2021, 18, 8621–8636. [Google Scholar] [CrossRef]
- Dziubak, T.; Bąkała, L.; Dziubak, S.D.; Sybilski, K.; Tomaszewski, M. Experimental Research of Fibrous Materials for Two-Stage Filtration of the Intake Air of Internal Combustion Engines. Materials 2021, 14, 7166. [Google Scholar] [CrossRef]
- Oszczypała, M.; Ziółkowski, J.; Małachowski, J. Modelling the Operation Process of Light Utility Vehicles in Transport Systems Using Monte Carlo Simulation and Semi-Markov Approach. Energies 2023, 16, 2210. [Google Scholar] [CrossRef]
- Dziubak, T. Theoretical and Experimental Studies of Uneven Dust Suction from a Multi-Cyclone Settling Tank in a Two-Stage Air Filter. Energies 2021, 14, 8396. [Google Scholar] [CrossRef]
- Karabulut, H.; Okur, M.; Halis, S.; Altin, M. Thermodynamic, dynamic and flow friction analysis of a Stirling engine with Scotch yoke piston driving mechanism. Energy 2019, 168, 169–181. [Google Scholar] [CrossRef]
- Ziółkowski, J.; Lęgas, A. Problem of Modelling Road Transport. J. KONBiN 2019, 49, 159–193. [Google Scholar] [CrossRef]
- Fridrichová, K.; Drápal, L.; Raffai, P.; Böhm, M. Comparative study of engine dynamics for rolling and selective cylinder deactivation. Energy 2024, 303, 131946. [Google Scholar] [CrossRef]
- Szkutnik-Rogoż, J.; Małachowski, J.; Ziołkowski, J. An innovative computational algorithm for modelling technical readiness coefficient: A case study in automotive industry. Comput. Ind. Eng. 2023, 176, 108942. [Google Scholar] [CrossRef]
- Milojević, S.; Glišović, J.; Savić, S.; Bošković, G.; Bukvić, M.; Stojanović, B. Particulate Matter Emission and Air Pollution Reduction by Applying Variable Systems in Tribologically Optimized Diesel Engines for Vehicles in Road Traffic. Atmosphere 2024, 15, 184. [Google Scholar] [CrossRef]
- Milojević, S.; Savić, S.; Mitrović, S.; Marić, D.; Krstić, B.; Stojanović, B.; Popović, V. Solving the Problem of Friction and Wear in Auxiliary Devices of Internal Combustion Engines on the Example of Reciprocating Air Compressor for Vehicles. Teh. Vjesn. 2023, 30, 122–130. [Google Scholar] [CrossRef]
- Skulić, A.; Milojević, S.; Marić, D.; Ivanović, L.; Krstić, B.; Radojković, M.; Stojanović, B. The impact of lubricant viscosity and materials on power losses and efficiency of worm gearbox. Teh. Vjesn. 2022, 29, 1853–1860. [Google Scholar]
- Milojević, S.; Džunić, D.; Marić, D.; Skrúcaný, T.; Mitrović, S.; Pešić, R. Tribological Assessment of Aluminum Cylinder Material for Piston Compressors in Trucks and Buses Brake Systems. Teh. Vjesn.-Tech. Gaz. 2021, 28, 1268–1276. [Google Scholar]
- Blagojević, M.; Bojović, M.; Milojević, S.; Marković, P.; Lazarević, D. Modification of Racing Car Cylinder Head Using 3D Digitization and Reverse Engineering. In Proceedings of the International Congress Motor Vehicles & Motors 2020, Kragujevac, Serbia, 8–9 October 2020. [Google Scholar]
- Chengwei, W.; Linqing, Z. An Average Reynolds Equation for Partial Film Lubrication with a Contact Factor. J. Tribol. 1989, 111, 189. [Google Scholar]
- Hamrock, B.J.; Schmid, S.R.; Jacobson, B.O. Fundamentals of Fluid Film Lubrication; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Ma, M.T. Incorporation of Lubricant Shear-Thinning in a Two-Dimensional Lubrication Analysis for Automotive Piston-Ring Packs; SAE Technical Paper 2000-01-1786; SAE: Warrendale, PA, USA, 2000. [Google Scholar] [CrossRef]
- Delprete, C.; Razavykia, A. Piston dynamics, lubrication and tribological performance evaluation: A review. Int. J. Engine Res. 2020, 21, 725–741. [Google Scholar] [CrossRef]
- Gu, C.; Meng, X.; Xie, Y.; Zhang, D. Mixed lubrication problems in the presence of textures: An efficient solution to the cavitation problem with consideration of roughness effects. Tribol. Int. 2016, 103, 516–528. [Google Scholar] [CrossRef]
- Greenwood, J.; Tripp, J. The contact of two nominally flat rough surfaces. Exp. Mycol. 1981, 5, 323–329. [Google Scholar] [CrossRef]
- Akalin, O.; Newaz, G.M. Piston ring-cylinder bore friction modeling in mixed lubrication regime: Part I—Analytical results. J. Tribol. 2001, 123, 211–218. [Google Scholar] [CrossRef]
- Rokad, V.; Pandya, D.H. Development of 3D improved acoustic transient model for vibro cleaner using COMSOL multiphysics. Mater. Today Proc. 2021, 44, 776–781. [Google Scholar] [CrossRef]
- Antony Samy, A.; Golbang, A.; Harkin-Jones, E.; Archer, E.; McIlhagger, A. Prediction of part distortion in Fused Deposition Modelling (FDM) of semi-crystalline polymers via COMSOL: Effect of printing conditions. CIRP J. Manuf. Sci. Technol. 2021, 33, 443–453. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
piston tilt angle | α = 0.0002 rad | medium pressure of the upper sealing ring | pśr-1 = 0.21 MPa |
dynamic viscosity coefficient of the oil 10 W/20–90 °C | η1 = 0.0073 Pa×s | medium pressure of the lower sealing ring | pśr-2 = 0.20 MPa |
dynamic viscosity coefficient of the oil 10 W/30–90 °C | η2 = 0.0154 Pa×s | medium scraper ring pressure | pśr-3 = 1.00 MPa |
piston diameter | dt = 82.500 mm | piston stroke | s = 92.800 mm |
piston height | ht = 58.500 mm | distance of the upper and lower sealing ring | a1 = 3.000 mm |
axial height of the upper seal ring | h1 = 1.736 mm | distance of the lower sealing and scraper rings | a2 = 3.800 mm |
axial height of the lower seal ring | h2 = 1.735 mm | isochoric pressure increase coefficient | φcn = 3.0 |
height of the scraper ring shelf | hz = 0.400 mm | compression polytropic exponent | n1 = 1.35 |
piston height | ht = 58.510 mm | expansion polytropic exponent | n2 = 1.38 |
compression ratio | ε = 12.00 | number of cylinders | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróblewski, P.; Kachel, S. Novel Approach to Analyzing Friction Losses by Modeling the Microflow of Lubricating Oil between the Piston Rings and Cylinder in Internal Combustion Engines. Energies 2024, 17, 3697. https://doi.org/10.3390/en17153697
Wróblewski P, Kachel S. Novel Approach to Analyzing Friction Losses by Modeling the Microflow of Lubricating Oil between the Piston Rings and Cylinder in Internal Combustion Engines. Energies. 2024; 17(15):3697. https://doi.org/10.3390/en17153697
Chicago/Turabian StyleWróblewski, Piotr, and Stanisław Kachel. 2024. "Novel Approach to Analyzing Friction Losses by Modeling the Microflow of Lubricating Oil between the Piston Rings and Cylinder in Internal Combustion Engines" Energies 17, no. 15: 3697. https://doi.org/10.3390/en17153697
APA StyleWróblewski, P., & Kachel, S. (2024). Novel Approach to Analyzing Friction Losses by Modeling the Microflow of Lubricating Oil between the Piston Rings and Cylinder in Internal Combustion Engines. Energies, 17(15), 3697. https://doi.org/10.3390/en17153697