Co-Pyrolysis of Sewage Sludge, Two-Component Special Municipal Waste and Plastic Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Pyrolysis Process
2.3. Analysis
2.4. Calculation Methods
3. Results
3.1. Thermogravimetric Experiments
3.2. Scaled-Up Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations/Acronyms
DTG | derivative thermogravimetric |
FID | flame ionization detector |
HDPE | high-density polyethylene |
LDPE | low-density polyethylene |
PET | polyethylene terephthalate |
PP | polypropylene |
PUR | polyurethane |
PVC | polyvinylchloride |
SMW | two-component special municipal waste |
SS | sewage sludge |
TCD | thermal conductivity detector |
TG | thermogravimetric |
References
- Lee, S.; Kim, Y.-M.; Siddiqui, M.Z.; Park, Y.-K. Different pyrolysis kinetics and product distribution of municipal and livestock manure sewage sludge. Environ. Pollut. 2021, 285, 117197. [Google Scholar] [CrossRef] [PubMed]
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods—A review. Renew. Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Lamastra, L.; Suciu, N.A.; Trevisan, M. Sewage sludge for sustainable agriculture: Contaminants’ contents and potential use as a fertilizer. Chem. Biol. Technol. Agric. 2018, 5, 10. [Google Scholar] [CrossRef]
- López, A.; Rodrígez-Chueca, J.; Mosteo, R.; Gómez, J.; Ormad, M.P. Microbiological quality of sewage sludge after digestion treatment: A pilot scale case of study. J. Clean. Prod. 2020, 254, 120101. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Tariq, R.; Hameed, Z.; Ali, I.; Naqvi, M.; Chen, W.-H.; Ceylan, S.; Rashid, H.; Ahmad, J.; Taqvi, S.A.; et al. Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method. Renew. Sustain. Energy Rev. 2009, 131, 854–860. [Google Scholar] [CrossRef]
- Liu, H.; Xu, G.; Li, G. Pyrolysis characteristic and kinetic analysis of sewage sludge using model-free and master plots methods. Process. Saf. Environ. Prot. 2021, 149, 48–55. [Google Scholar] [CrossRef]
- Gao, N.; Li, J.; Qi, B.; Li, A.; Duan, Y.; Wang, Z. Thermal analysis and products distribution of dried sewage sludge pyrolysis. J. Anal. Appl. Pyrolysis 2014, 105, 43–48. [Google Scholar] [CrossRef]
- Nowicki, L.; Ledakowicz, S. Comprehensive characterization of thermal decomposition of sewage sludge by TG–MS. J. Anal. Appl. Pyrolysis 2014, 110, 220–228. [Google Scholar] [CrossRef]
- Syed-Hassan, S.S.A.; Wang, Y.; Hu, S.; Su, S.; Xiang, J. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renew. Sustain. Energy Rev. 2017, 80, 888–913. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, R.; Man, Y.; Ren, J. Recent developments of hydrogen production from sewage sludge by biological and thermochemical process. Int. J. Hydrogen Energy 2019, 44, 19676–19697. [Google Scholar] [CrossRef]
- Mosko, J.; Pohorely, M.; Skoblia, S.; Beno, Z.; Jeremias, S. Detailed analysis of sewage sludge pyrolysis gas: Effect of pyrolysis temperature. Energies 2020, 13, 4087. [Google Scholar] [CrossRef]
- Gao, N.; Kamran, K.; Quan, C.; Williams, P.T. Thermochemical conversion of sewage sludge: A critical review. Prog. Energy Combust. Sci. 2020, 79, 100843. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Iwuchukwu, F.U.; Eyankware, O.E.; Iwuozor, K.O.; Olotu, K.; Bright, O.C.; Igwegbe, C.A. Flash pyrolysis of biomass: A review of recent advances. Clean Technol. Environ. Policy 2022, 2, 2349–2363. [Google Scholar] [CrossRef]
- Gao, N.; Quan, C.; Liu, B.; Li, Z.; Wu, C.; Li, A. Continuous pyrolysis of sewage sludge in a screw-feeding reactor: Products characterization and ecological risk assessment of heavy metals. Energy Fuels 2017, 31, 5063–5072. [Google Scholar] [CrossRef]
- Xin, C.; Zhao, J.; Ruan, R.; Addy, M.M.; Liu, S.; Mu, D. Economical feasibility of bio-oil production from sewage sludge through pyrolysis. Thermal Sci. 2018, 22, 459–467. [Google Scholar] [CrossRef]
- Kim, Y.; Parker, W. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil. Bioresour. Technol. 2008, 99, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Haghighat, M.; Majidian, N.; Hallajisani, A.; Samipourgiri, M. Production of bio-oil from sewage sludge: A review on the thermal and catalytic conversion by pyrolysis. Sustain. Energy Technol. Assess. 2020, 42, 100870. [Google Scholar] [CrossRef]
- Tomasek, S.; Bárkányi, Á.; Egedy, A.; Miskolczi, N. Model-based determination of optimal operating parameters for different solid waste gasification. Chem. Eng. J. Adv. 2024, 17, 100586. [Google Scholar] [CrossRef]
- Umana, B.; Shoaib, A.; Zhang, N.; Smith, R. Integrating hydroprocessors in refinery hydrogen network optimisation. Appl Energy 2014, 133, 169–182. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.; Chen, M.; Ma, L.; Yand, B.; Chen, J.; Lv, Z.; Liang, Q.; Yang, P. Evaluation of migration of heavy metals and performance of product during co-pyrolysis process of municipal sewage sludge and walnut shell. Environ. Sci. Pollut. Res. 2017, 24, 22082–22090. [Google Scholar] [CrossRef]
- Amin, R.A.; Huang, Y.; He, Y.; Zhang, R.; Liu, G.; Chen, C. Biochar applications and modern techniques for characterization. Clean Technol. Environ. Policy 2016, 18, 1457–1473. [Google Scholar] [CrossRef]
- Yue, Y.; Cui, L.; Lin, Q.; Li, G.; Zhao, X. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth. Chemosphere 2017, 173, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Garg, A. Primary sewage sludge-derived activated carbon: Characterisation and application in wastewater treatment. Clean Technol. Environ. Policy 2015, 17, 1619–1631. [Google Scholar] [CrossRef]
- Sizmur, T.; Fresno, T.; Akgül, G.; Frost, H.; Moreno-Jiménez, E. Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 2017, 246, 34–47. [Google Scholar] [CrossRef]
- Mohamed, B.A.; Ruan, R.; Bilal, M.; Periyasamy, S.; Awasthi, M.K.; Rajamohan, N.; Leng, L. Sewage sludge co-pyrolysis with agricultural/forest residues: A comparative life-cycle assessment. Renew. Sustain. Energy Rev. 2024, 192, 114168. [Google Scholar] [CrossRef]
- Lin, B.; Huang, Q.; Chi, Y. Co-pyrolysis of oily sludge and rice husk for improving pyrolysis oil quality. Fuel Process. Technol. 2018, 177, 275–282. [Google Scholar] [CrossRef]
- Wang, X.; Deng, S.; Tan, H.; Adeosun, A.; Vujanović, M.; Yang, F.; Duić, N. Synergetic effect of sewage sludge and biomass co-pyrolysis: A combined study in a thermogravimetric analyser and a fixed bed reactor. Energy Convers. Manag. 2016, 118, 399–405. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, C.; Xu, J.; Yang, X. Beneficial synergetic effect on gas production during co-pyrolysis of sewage sludge and biomass in a vacuum reactor. Bioresour. Technol. 2015, 183, 255–258. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, Y.; Yang, L.; Zhu, Y. High quality syngas produced from the co-pyrolysis of wet sewage sludge with sawdust. Int. J. Hydrogen Energy 2018, 43, 5463–5472. [Google Scholar] [CrossRef]
- Singh, S.V.; Ming, Z.; Fennel, P.S.; Shah, N.; Anthony, E.J. Progress in biofuel production from gasification. Prog. Energy Combust. Sci. 2017, 61, 189–248. [Google Scholar] [CrossRef]
- Dong, Q.; Zhang, S.; Wu, B.; Pi, M.; Xiong, Y.; Zhang, H. Co-pyrolysis of sewage sludge and rice straw: Thermal behavior and char characteristic evaluation. Energy Fuels 2019, 34, 607–615. [Google Scholar] [CrossRef]
- Ling, C.C.Y.; Li, S.F.Y. Synergistic interactions between sewage sludge, polypropylene, and high-density polyethylene during co-pyrolysis: An investigation based on iso-conversional model-free methods and master plot analysis. J. Hazard. Mater. 2023, 455, 131600. [Google Scholar] [CrossRef]
- Zaker, A.; Chen, Z.; Zaheer-Uddin, M.; Guo, J. Co-pyrolysis of sewage sludge and low-density polyethylene—A thermogravimetric study of thermo-kinetics and thermodynamic parameters. J. Environ. Chem. Eng. 2021, 9, 104554. [Google Scholar] [CrossRef]
- Azizi, K.; Haghighi, A.M.; Moraveji, M.K.; Olazar, M.; Lopez, G. Co-pyrolysis of binary and ternary mixtures of microalgae, wood and waste tires through TGA. Renew. Energy 2019, 142, 264–271. [Google Scholar] [CrossRef]
- Batuer, A.; Long, J.; Du, H.; Chen, D. Multi-products oriented co-pyrolysis of papers, plastics, and textiles in MSW and the synergistic effects. J. Anal. Appl. Pyrolysis 2022, 163, 105478. [Google Scholar] [CrossRef]
- Tomasek, S.; Miskolczi, N. Investigation of pyrolysis behavior of sewage sludge by thermogravimetric analysis coupled with Fourier Transform Infrared Spectrometry using different heating rates. Energies 2022, 15, 5116. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T. Effect of the heating rate on the thermochemical behavior and biofuel properties of sewage sludge pyrolysis. Energy Fuels 2016, 30, 1564–1570. [Google Scholar] [CrossRef]
- Tomaszewska, K.; Kaluzna-Czapliñska, J.; Józwiak, K. Thermal and thermo-catalytic degradation of polyolefins as a simple and efficient method of landfill clearing. Pol. J. Chem. Technol. 2010, 12, 50–57. [Google Scholar] [CrossRef]
- Adnan, A.; Shah, J.; Rasul, J.M. Thermo-catalytic pyrolysis of polystyrene in the presence of zinc bulk catalysts. J. Taiwan Inst. Chem. Eng. 2014, 45, 2494–2500. [Google Scholar] [CrossRef]
- Bermudez, J.M.; Fidalgo, B. Production of bio-syngas and bio-hydrogen via gasification. In Handbook of Biofuels Production, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Chen, G.-B.; Huang, K.-C. A study of copyrolysis characteristics of sewage sludge and waste polypropylene. Int. J. Energy Res. 2023, 2023, 1406397. [Google Scholar] [CrossRef]
- Almeida, D.; de Fátima Marques, M. Thermal and catalytic pyrolysis of plastic waste. Polimeros 2016, 26, 44–51. [Google Scholar] [CrossRef]
- Özsin, G.; Pütün, A.E. An investigation on pyrolysis of textile wastes: Kinetics, thermodynamics, in-situ monitoring of evolved gasses and analysis of the char reaidue. J. Environ. Chem. Eng. 2022, 10, 107748. [Google Scholar] [CrossRef]
- Lim, J.Y.; McGregor, J.; Sederman, A.J.; Dennis, J.S. The role of the Boudouard and water-gas shift reactions in the methanation of CO or CO2 over Ni/γ-Al2O3 catalyst. Chem. Eng. Sci. 2016, 152, 754–766. [Google Scholar] [CrossRef]
- Muhiiwa, R.F.; Sempuga, B.; Hildebrandt, D.; Van Der Walt, J. Study the effects of temperature on syngas composition from pyrolysis of wood pellets using a nitrogen plasma torch reactor. J. Anal. Appl. Pyrolysis 2018, 130, 159–168. [Google Scholar] [CrossRef]
- Lahijani, P.; Zainal, Z.A.; Mohammadi, M.; Mohamed, A.R. Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review. Renew. Sustain. Energy Rev. 2015, 41, 615–632. [Google Scholar] [CrossRef]
- Gunasee, S.D.; Danon, B.; Görgens, J.F.; Mohee, R. Co-pyrolysis of LDPE and cellulose: Synergies during devolatilization and condensation. J. Anal. Appl. Pyrolysis 2017, 126, 307–314. [Google Scholar] [CrossRef]
- Kim, S.S.; Agblevor, F.A.; Lim, J. Fast pyrolysis of chicken litter and turkey litter in a fluidized bed reactor. J. Ind. Eng. Chem. 2009, 15, 247–252. [Google Scholar] [CrossRef]
Amount, % | SS | SMW | Plastic |
---|---|---|---|
C | 31.2 | 39.1 | 38.8 |
H | 4.0 | 6.3 | 5.8 |
N | 4.4 | 1.2 | 1.7 |
S | 1.4 | 0.4 | 0.0 |
O + other elements | 59.0 | 53.0 | 53.7 |
Raw Materials | H2/CO Ratios 500 °C/900 °C | LHV, MJ/Nm3 500 °C/900 °C |
---|---|---|
100%SS | 0.1/0.4 | 20.8/17.6 |
100%SMW | 0.2/0.9 | 15.5/16.8 |
100%Plastic | 0.2/0.6 | 31.0/20.3 |
25%SS + 75%SMW | 1.0/0.9 | 22.7/18.1 |
50%SS + 50%SMW | 0.5/0.7 | 17.8/17.3 |
75%SS + 25%SMW | 2.1/0.9 | 20.2/19.0 |
25%SS + 75%Plastic | 0.7/0.7 | 35.0/23.6 |
50%SS + 50%Plastic | 0.2/0.6 | 24.3/20.0 |
75%SS + 25%Plastic | 1.1/0.8 | 29.3/22.1 |
25% SMW + 75%Plastic | 0.7/0.8 | 31.3/26.6 |
50%SMW + 50%Plastic | 0.2/0.9 | 28.4/28.0 |
75%SMW + 25%Plastic | 1.1/0.7 | 26.4/21.6 |
25%SS + 25%SMW + 50%Plastic | 0.5/0.8 | 32.1/23.0 |
25%SS + 50%SMW + 25%Plastic | 0.8/0.9 | 28.5/20.8 |
50%SS + 25%SMW + 25%Plastic | 0.4/0.9 | 24.0/20.3 |
Raw Materials | 500 °C | 900 °C | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | H | N | S | C/N | H/C | C | H | N | S | C/N | H/C | |
100%SS | 21.4 | 1.3 | 2.4 | 0.4 | 8.8 | 0.06 | 12.4 | 0.4 | 0.6 | 0.4 | 21.7 | 0.03 |
100%SMW | 37.8 | 1.7 | 1.7 | 0.0 | 21.8 | 0.04 | 28.6 | 2.9 | 1.6 | 0.0 | 18.3 | 0.10 |
100%Plastic | 25.3 | 1.2 | 1.5 | 0.0 | 17.1 | 0.05 | 27.7 | 3.1 | 2.2 | 0.2 | 12.8 | 0.11 |
25%SS + 75%SMW | 37.0 | 4.0 | 2.0 | 0.0 | 19.0 | 0.11 | 23.3 | 0.4 | 0.7 | 1.3 | 32.8 | 0.02 |
50%SS + 50%SMW | 34.3 | 2.8 | 1.9 | 0.4 | 18.5 | 0.08 | 20.3 | 0.5 | 0.7 | 1.2 | 27.8 | 0.02 |
75%SS + 25%SMW | 37.9 | 2.2 | 2.5 | 0.42 | 15.3 | 0.06 | 22.3 | 0.6 | 1.0 | 0.7 | 22.5 | 0.03 |
25%SS + 75%Plastic | 24.2 | 1.4 | 1.5 | 0.0 | 16.2 | 0.06 | 14.6 | 0.6 | 0.8 | 0.7 | 18.7 | 0.04 |
50%SS + 50%Plastic | 20.3 | 1.1 | 1.2 | 0.0 | 17.1 | 0.05 | 8.8 | 0.3 | 0.5 | 0.8 | 17.0 | 0.03 |
75%SS + 25%Plastic | 23.6 | 1.6 | 1.9 | 0.3 | 12.2 | 0.07 | 14.7 | 0.4 | 0.8 | 0.5 | 19.1 | 0.03 |
25%SMW + 75%Plastic | 33.7 | 1.1 | 1.2 | 0.0 | 28.3 | 0.03 | 21.8 | 0.4 | 0.7 | 2.4 | 31.6 | 0.02 |
50%SMW + 50%Plastic | 29.3 | 1.6 | 1.4 | 0.0 | 21.2 | 0.05 | 19.6 | 0.5 | 0.6 | 2.3 | 31.1 | 0.02 |
75%SMW + 25%Plastic | 25.2 | 1.3 | 1.2 | 0.0 | 21.3 | 0.0 | 26.5 | 0.6 | 0.5 | 1.4 | 49.0 | 0.02 |
25%SS + 25%SMW + 50%Plastic | 23.7 | 2.2 | 1.1 | 0.55 | 22.0 | 0.09 | 14.8 | 0.4 | 0.5 | 0.8 | 30.2 | 0.02 |
25%SS + 50%SMW + 25%Plastic | 38.6 | 3.5 | 1.6 | 1.80 | 24.1 | 0.09 | 24.2 | 0.6 | 0.7 | 2.1 | 33.1 | 0.02 |
50%SS + 25%SMW + 25%Plastic | 24.5 | 2.2 | 1.1 | 0.88 | 23.2 | 0.09 | 15.3 | 0.4 | 0.5 | 1.1 | 31.9 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomasek, S.; Miskolczi, N. Co-Pyrolysis of Sewage Sludge, Two-Component Special Municipal Waste and Plastic Waste. Energies 2024, 17, 3696. https://doi.org/10.3390/en17153696
Tomasek S, Miskolczi N. Co-Pyrolysis of Sewage Sludge, Two-Component Special Municipal Waste and Plastic Waste. Energies. 2024; 17(15):3696. https://doi.org/10.3390/en17153696
Chicago/Turabian StyleTomasek, Szabina, and Norbert Miskolczi. 2024. "Co-Pyrolysis of Sewage Sludge, Two-Component Special Municipal Waste and Plastic Waste" Energies 17, no. 15: 3696. https://doi.org/10.3390/en17153696
APA StyleTomasek, S., & Miskolczi, N. (2024). Co-Pyrolysis of Sewage Sludge, Two-Component Special Municipal Waste and Plastic Waste. Energies, 17(15), 3696. https://doi.org/10.3390/en17153696