Revisiting the Application of Ultrasonic Technology for Enhanced Oil Recovery: Mechanisms and Recent Advancements
Abstract
:1. Introduction
2. Ultrasonic Mechanisms
2.1. Cavitation
2.2. Coalescence
2.3. Bjerknes Force
3. Application of Ultrasonic in Enhanced Oil Recovery
3.1. Plug Removal
3.2. Oil Viscosity Reduction
3.3. Crude Oil Demulsification
Crude Oil Details | Irradiation Mode | Frequency | Acoustic Intensity | Oil Viscosity | Water Content | Effect | Reference |
---|---|---|---|---|---|---|---|
Gachsaran crude oil | Continuous, single frequency | 20 kHz | 0.25 W/cm3 | 19.1 mm2/s (25 °C) | 10–25 vol.% | Standing waves | [72] |
Lu-Ning crude oil | Pulsed, single frequency | 10–80 kHz | 0.86 W/L | 1440 mPa s (20 °C) | 65 vol.% | Standing waves | [73] |
Iranian crude oil | Continuous, single frequency | 28 kHz | 65–43 W/L | 16.82 mm2/s (20 °C) | 7 vol.% | Standing waves | [74] |
SAGD heavy oil | Continuous, single frequency | 10–30 kHz | 0.5 W/cm2 | - | 30–90 vol.% | Mechanical vibrations | [75] |
Brazilian heavy crude oil | Continuous, single frequency | 35 kHz | 19.2 ± 2.0 W/dm3 | 133.4 mm2/s (45 °C) | 12–50 vol.% | Mechanical vibrations | [76] |
Lu-Ning crude oil | Continuous, single frequency | 10 kHz | 0.38 W/cm2 | 1390 mPa s (20 °C) | 0.29 vol.% | Standing wave | [77] |
4. Outlook
- (1)
- Currently, various optimization studies on the mechanism of ultrasonic oil production have only achieved significant progress in laboratory settings and have yet to be widely applied in actual field production. Due to the inability of laboratory experiments to fully reflect real formation environments, it is imperative that practical applications are strengthened in future research.
- (2)
- The study of ultrasonic oil production theory has been continuously conducted. However, to date, no definitive conclusions have been reached regarding the mechanism of ultrasonic oil production due to its multidisciplinary nature and the complexity of the oil layer structure.
- (3)
- At present, ultrasonic oil recovery technology primarily finds application in low-permeability and heavy oil reservoirs. In the future, this technology holds potential for being extended to the exploitation of shale gas and coalbed methane, representing a promising direction for development.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Q.C.; Liu, J.; Wang, S.M.; Guo, Y.; Han, X.Y.; Li, Q.; Cheng, Y.F.; Dong, Z.; Li, X.Z.; Zhang, X.D. Numerical insights into factors affecting collapse behavior of horizontal wellbore in clayey silt hydrate-bearing sediments and the accompanying control strategy. Ocean. Eng. 2024, 297, 117029. [Google Scholar] [CrossRef]
- Höök, M.; Kurland, S.D.; Johansson, S.; Tang, X. Decline and depletion rates of oil production: A comprehensive investigation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20120448. [Google Scholar] [CrossRef] [PubMed]
- Kjärstad, J.; Johnsson, F. Resources and future supply of oil. Energ. Policy 2009, 37, 441–464. [Google Scholar] [CrossRef]
- Ayirala, S.; Yousef, A. A state-of-the-art review to develop injection-water-chemistry requirement guidelines for ior/eor projects. SPE Prod. Oper. 2015, 30, 26–42. [Google Scholar] [CrossRef]
- Pangu, G.D.; Feke, D.L. Kinetics of ultrasonically induced coalescence within oil/water emulsions: Modeling and experimental studies. Chem. Eng. Sci. 2009, 64, 1445–1454. [Google Scholar] [CrossRef]
- Godec, M.; Kuuskraa, V.; Van Leeuwen, T.; Melzer, L.S.; Wildgust, N. CO2 storage in depleted oil fields: The worldwide potential for carbon dioxide enhanced oil recovery. Energy Procedia 2011, 4, 2162–2169. [Google Scholar] [CrossRef]
- Lim, J.S.; Wong, S.F.; Law, M.C.; Samyudia, Y.; Dol, S.S. A review on the effects of emulsions on flow behaviours and common factors affecting the stability of emulsions. J. Appl. Sci. 2015, 15, 167–172. [Google Scholar] [CrossRef]
- Mullakaev, M.S.; Abramov, V.O.; Abramova, A.V. Development of ultrasonic equipment and technology for well stimulation and enhanced oil recovery. J. Petrol. Sci. Eng. 2015, 125, 201–208. [Google Scholar] [CrossRef]
- Gbadamosi, A.O.; Junin, R.; Manan, M.A.; Agi, A.; Oseh, J.O.; Usman, J. Synergistic application of aluminium oxide nanoparticles and oilfield polyacrylamide for enhanced oil recovery. J. Petrol. Sci. Eng. 2019, 182, 106345. [Google Scholar] [CrossRef]
- Augustine, A.; Radzuan, J.; Afeez, G. Mechanism governing nanoparticle flow behaviour in porous media: Insight for enhanced oil recovery applications. Int. Nano Lett. 2018, 8, 49–77. [Google Scholar]
- Gbadamosi, A.O.; Junin, R.; Manan, M.A.; Agi, A.; Yusuff, A.S. An overview of chemical enhanced oil recovery: Recent advances and prospects. Int. Nano Lett. 2019, 9, 171–202. [Google Scholar] [CrossRef]
- Gbadamosi, A.O.; Junin, R.; Manan, M.A.; Agi, A.; Oseh, J.O.; Usman, J. Effect of aluminium oxide nanoparticles on oilfield polyacrylamide: Rheology, interfacial tension, wettability and oil displacement studies. J. Mol. Liq. 2019, 296, 111863. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.L.; Wang, F.L.; Wu, J.P.; Tahir, M.U.; Li, Q.C.; Yuan, L.; Liu, Z.H. Effect of thickener and reservoir parameters on the filtration property of CO2 fracturing fluid. Energ. Source Part A 2020, 42, 1705–1715. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Y.; Suman, B. Research status and development trend of ultrasonic oil production technique in china. Ultrason. Sonochem. 2015, 26, 1–8. [Google Scholar] [CrossRef]
- Adeyemi, I.; Meribout, M.; Khezzar, L. Recent developments, challenges, and prospects of ultrasound-assisted oil technologies. Ultrason. Sonochem. 2022, 82, 105902. [Google Scholar] [CrossRef]
- Arabzadeh, H.; Amani, M. Application of a novel ultrasonic technology to improve oil recovery with an environmental viewpoint. J. Pet. Environ. Biotechnol. 2017, 8, 1000323. [Google Scholar] [CrossRef]
- Rozina, E.Y. A Cavitational regime of a sonocapillary effect. Int. J. Fluid Mech. Res. 2006, 33, 473–487. [Google Scholar] [CrossRef]
- Baimukhametov, G.F.; Kayumov, A.A.; Dengaev, A.V.; Maksimenko, A.F.; Marakov, D.A.; Shishulin, V.A.; Drozdov, I.M.; Samuylova, L.V.; Getalov, A.A.; Aliev, F.A.; et al. Unveiling the potential of cavitation erosion-induced heavy crude oil upgrading. Fluids 2023, 8, 274. [Google Scholar] [CrossRef]
- Abdurahman, M.H.; Abdullah, A.Z. Mechanism and reaction kinetic of hybrid ozonation-ultrasonication treatment for intensified degradation of emerging organic contaminants in water: A critical review. Chem. Eng. Process. Process Intensif. 2020, 154, 108047. [Google Scholar] [CrossRef]
- Agi, A.; Junin, R.; Syamsul, M.F.; Chong, A.S.; Gbadamosi, A. Intermittent and short duration ultrasound in a simulated porous medium. Petroleum 2019, 5, 42–51. [Google Scholar] [CrossRef]
- Kim, B.; Won, J.; Duran, J.A.; Park, L.C.; Park, S.S. Investigation of sonochemical treatment of heavy hydrocarbon by ultrasound-assisted cavitation. Ultrason. Sonochem. 2020, 68, 105216. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Zhang, Z.; Liu, X.; Liu, L.; Peng, J. Studies on viscosity reduction and structural change of crude oil treated with acoustic cavitation. Fuel 2020, 263, 116638. [Google Scholar] [CrossRef]
- Agi, A.; Junin, R.; Abdullah, M.O.; Jaafar, M.Z.; Arsad, A.; Sulaiman, W.R.W.; Norddin, M.N.A.M.; Abdurrahman, M.; Abbas, A.; Gbadamosi, A.; et al. Application of polymeric nanofluid in enhancing oil recovery at reservoir condition. J. Petrol. Sci. Eng. 2020, 194, 107476. [Google Scholar] [CrossRef]
- Kok, J.B.W. Collision dynamics of bubble pairs moving through a perfect liquid. Appl. Sci. Res. 1993, 50, 169–188. [Google Scholar] [CrossRef]
- Postema, M.; Marmottant, P.; Lancée, C.T.; Hilgenfeldt, S.; de Jong, N. Ultrasound-induced microbubble coalescence. Ultrasound Med. Biol. 2004, 30, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Agi, A.; Junin, R.; Jaafar, M.Z.; Sidek, M.A.; Yakasai, F.; Gbadamosi, A.; Oseh, J. Laboratory evaluation to field application of ultrasound: A state-of-the-art review on the effect of ultrasonication on enhanced oil recovery mechanisms. J. Ind. Eng. Chem. 2022, 110, 100–119. [Google Scholar] [CrossRef]
- Naderi, K.; Babadagli, T. Influence of intensity and frequency of ultrasonic waves on capillary interaction and oil recovery from different rock types. Ultrason. Sonochem. 2010, 17, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Lauterborn, W.; Bolle, H. Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 1975, 72, 391–399. [Google Scholar] [CrossRef]
- Tamaddoni, H.A.; Roberts, W.W.; Hall, T.L. Enhanced shockwave lithotripsy with active cavitation mitigation. J. Acoust. Soc. Am. 2019, 146, 3275–3282. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S. The secondary bjerknes force between two gas bubbles under dual-frequency acoustic excitation. Ultrason. Sonochem. 2016, 29, 129–145. [Google Scholar] [CrossRef]
- Yoshida, K.; Fujikawa, T.; Watanabe, Y. Experimental investigation on reversal of secondary bjerknes force between two bubbles in ultrasonic standing wave. J. Acoust. Soc. Am. 2011, 130, 135–144. [Google Scholar] [CrossRef]
- Mei, H.Y.; Zhang, M.L.; Sun, L.T.; Sun, L.; Guo, P. Effect of pressure on the oil and gas system of paraffine position temperature. J. Southwest Pet. Inst. 2001, 23, 9–11. [Google Scholar]
- Yang, F.; Li, Z. Effect of wax deposition on the porosity and permeability of reservoir. Nat. Gas Geosci. 2006, 17, 848–850. [Google Scholar]
- Xu, H.; Pu, C.; Zhao, S.; Li, Y.; Shen, H. Experimental study and application of high power ultrasonic treatment for removal of near wellbore paraffin precipitation damage. J. Southwest Pet. Univ. 2011, 33, 146–151. [Google Scholar]
- Zhou, L.; Wang, Z. A comparison study on the removal of paraffin wax deposition plug by ultrasound treatment, chemical demulsifier and combination of ultrasound and chemical demulsifier. Petrol. Sci. Technol. 2020, 38, 690–697. [Google Scholar] [CrossRef]
- Roberts, P.M.; Adinathan, V.; Sharma, M.M. Ultrasonic removal of organic deposits and polymer-induced formation damage. SPE Drill. Completion 2000, 15, 19–24. [Google Scholar]
- Xu, H.; Pu, C.; Li, Y. Experimental study on high power ultrasonic treatment for removal of near wellbore polymer plugging. Pet. Geol. Recovery Effic. 2011, 18, 93–96. [Google Scholar]
- Shi, X.; Xu, H.; Yang, L. Removal of formation damage induced by drilling and completion fluids with combination of ultrasonic and chemical technology. J. Nat. Gas Sci. Eng. 2017, 37, 471–478. [Google Scholar] [CrossRef]
- Xu, X.; Bao, T. Research on the removal of near-well blockage caused by asphaltene deposition using sonochemical method. Ultrason. Sonochem. 2020, 64, 104918. [Google Scholar] [CrossRef]
- Dehshibi, R.R.; Mohebbi, A.; Riazi, M.; Niakousari, M. Experimental investigation on the effect of ultrasonic waves on reducing asphaltene deposition and improving oil recovery under temperature control. Ultrason. Sonochem. 2018, 45, 204–212. [Google Scholar] [CrossRef]
- Salehzadeh, M.; Akherati, A.; Ameli, F.; Dabir, B. Experimental study of ultrasonic radiation on growth kinetic of asphaltene aggregation and deposition. Can. J. Chem. Eng. 2016, 94, 2202–2209. [Google Scholar] [CrossRef]
- Uetani, T.; Matsuoka, T.; Honda, H. Removal of Plugged Asphaltene in a Reservoir by Earthquakes. In SPE International Symposium and Exhibition on Formation Damage Control; SPE: Singapore, 2014. [Google Scholar]
- Champion, B.; Bas, F.; Nitters, G. The application of high-power sound waves for Wellbore cleaning. SPE Prod. Facil. 2004, 19, 113–121. [Google Scholar] [CrossRef]
- Taheri-Shakib, J.; Naderi, H.; Salimidelshad, Y.; Kazemzadeh, E.; Shekarifard, A. Application of ultrasonic as a novel technology for removal of inorganic scales (kcl) in hydrocarbon reservoirs: An experimental approach. Ultrason. Sonochem. 2018, 40, 249–259. [Google Scholar] [CrossRef]
- Taheri-Shakib, J.; Naderi, H.; Salimidelshad, Y.; Teymouri, A.; Shekarifard, A. Using ultrasonic as a new approach for elimination of inorganic scales (nacl): An experimental study. J. Pet. Explor. Prod. Technol. 2018, 8, 553–564. [Google Scholar] [CrossRef]
- Zhang, X.; Zang, C.; Ma, H.; Wang, Z. Study on removing calcium carbonate plug from near wellbore by high-power ultrasonic treatment. Ultrason. Sonochem. 2020, 62, 104515. [Google Scholar] [CrossRef]
- Ghanavati, M.; Shojaei, M.J.; Ahmad, R.S.A. Effects of asphaltene content and temperature on viscosity of iranian heavy crude oil: Experimental and modeling study. Energ. Fuel. 2013, 27, 7217–7232. [Google Scholar] [CrossRef]
- Greaves, M.; Xia, T. Downhole upgrading of wolf lake oil using thai/capri processes-tracer tests. Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem. 2004, 49, 69–72. [Google Scholar]
- Hart, A.; Shah, A.; Leeke, G.; Greaves, M.; Wood, J. Optimization of the capri process for heavy oil upgrading: Effect of hydrogen and guard bed. Ind. Eng. Chem. Res. 2013, 52, 15394–15406. [Google Scholar] [CrossRef]
- Langevin, D.; Poteau, S.; Hénaut, I.; Argillier, J.F. Crude oil emulsion properties and their application to heavy oil transportation. Oil Gas Sci. Technol. 2004, 59, 511–521. [Google Scholar] [CrossRef]
- Al-Roomi, Y.; George, R.; Elgibaly, A.; Elkamel, A. Use of a novel surfactant for improving the transportability/transportation of heavy/viscous crude oils. J. Petrol. Sci. Eng. 2004, 42, 235–243. [Google Scholar] [CrossRef]
- Sokolov, A.V.; Simkin, E.M. Study of Influence of Acoustic Treatment on Theological Properties of Some Oils; All-Union Research Institute of Nuclear Geophysics and Geochemistry: Moscow, Russia, 1981. [Google Scholar]
- Abramov, V.O.; Abramova, A.V.; Bayazitov, V.M.; Mullakaev, M.S.; Marnosov, A.V.; Ildiyakov, A.V. Acoustic and sonochemical methods for altering the viscosity of oil during recovery and pipeline transportation. Ultrason. Sonochem. 2017, 35, 389–396. [Google Scholar] [CrossRef]
- Bjorndalen, N.; Islam, M.R. The effect of microwave and ultrasonic irradiation on crude oil during production with a horizontal well. J. Petrol. Sci. Eng. 2004, 43, 139–150. [Google Scholar] [CrossRef]
- Chakma, A.; Islam, M.R.; Berruti, F. Asphaltene-Viscosity relationship of processed and unprocessed bitumen. In Asphaltene Particles in Fossil Fuel Exploration, Recovery, Refining, and Production Processes; Plenum: New York, NY, USA, 1994; pp. 1–12. [Google Scholar]
- Gao, J.; Li, C.; Xu, D.; Wu, P.; Lin, W.; Wang, X. The mechanism of ultrasonic irradiation effect on viscosity variations of heavy crude oil. Ultrason. Sonochem. 2021, 81, 105842. [Google Scholar] [CrossRef]
- Gunal, O.G.; Islam, M.R. Alteration of asphaltic crude oil rheology with electromagnetic and ultrasonic irradiation. J. Petrol. Sci. Eng. 2000, 26, 263–272. [Google Scholar] [CrossRef]
- Shedid, S.A. An ultrasonic irradiation technique for treatment of asphaltene deposition. J. Petrol. Sci. Eng. 2004, 42, 57–70. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Ramazani, A.; Najafi, I.; Davachi, S.M. Effect of ultrasonic irradiation on rheological properties of asphaltenic crude oils. Petrol. Sci. 2012, 9, 82–88. [Google Scholar] [CrossRef]
- Chen, J.; Sun, Y.; Zhang, Q.; Zhao, L.; Zhou, Q. Impact of ultrasonic treatment on variations of vacuum residual viscosity. Pet. Refin. Eng. 2015, 2, 28–31. [Google Scholar]
- Doust, A.M.; Rahimi, M.; Feyzi, M. Effects of solvent addition and ultrasound waves on viscosity reduction of residue fuel oil. Chem. Eng. Process. Process Intensif. 2015, 95, 353–361. [Google Scholar] [CrossRef]
- Taheri-Shakib, J.; Shekarifard, A.; Naderi, H. Analysis of the asphaltene properties of heavy crude oil under ultrasonic and microwave irradiation. J. Anal. Appl. Pyrol. 2018, 129, 171–180. [Google Scholar] [CrossRef]
- Gao, J.; Shen, X.; Mo, X.; Wu, P.; Li, C.; Lin, W.; Wang, X. Study on the real-time variation laws and mechanism of oil sample viscosity during ultrasonic irradiation. Ultrason. Sonochem. 2023, 98, 106460. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, C.; Suo, Q.; Zhang, L.; Wang, S. Experimental study on viscosity reduction for residual oil by ultrasonic. Ultrason. Sonochem. 2018, 41, 661–669. [Google Scholar] [CrossRef]
- Shi, C.; Yang, W.; Chen, J.; Sun, X.; Chen, W.; An, H.; Duo, Y.; Pei, M. Application and mechanism of ultrasonic static mixer in heavy oil viscosity reduction. Ultrason. Sonochem. 2017, 37, 648–653. [Google Scholar] [CrossRef]
- Qiang, H. Experimental studies on viscosity reduction of heavy crude oil by ultrasonic irradiation. Acoust. Phys. 2020, 66, 495–500. [Google Scholar] [CrossRef]
- Gao, J.; Xu, D.; Wang, X.; Zhu, C. Orthogonal experiments of the heavy oil viscosity reduction by using ultrasonic wave. Petrochem. Technol. 2021, 50, 313–318. (In Chinese) [Google Scholar]
- Hamidi, H.; Mohammadian, E.; Junin, R.; Rafati, R.; Azdarpour, A.; Junid, M.; Savory, R.M. The effect of ultrasonic waves on oil viscosity. Petrol. Sci. Technol. 2014, 32, 2387–2395. [Google Scholar] [CrossRef]
- Ju, P.; Liu, B.; Yang, S. Research on ultrasonic viscosity reduction characteristics of crude oil processing equipment on offshore platforms. Energy Chem. Ind. 2023, 44, 43–46. [Google Scholar]
- Pashin, D.; Bayazitov, V.; Abramov, V.; Gerasin, A.; Abramova, A. Ultrasonic technology for enhanced oil recovery. Engineering 2014, 6, 177–184. [Google Scholar]
- Luo, X.M.; Gong, H.Y.; He, Z.L.; Zhang, P.; He, L.M. Recent advances in applications of power ultrasound for petroleum industry. Ultrason. Sonochem. 2021, 70, 105337. [Google Scholar] [CrossRef]
- Ali, K.; Ali, S.; Payam, P.; Mohammad, R.R.; Mohammad, M.N. Experimental and theoretical study of crude oil pretreatment using low-frequency ultrasonic waves. Ultrason. Sonochem. 2018, 48, 383–395. [Google Scholar]
- Xie, W.; Li, R.; Lu, X. Pulsed ultrasound assisted dehydration of waste oil. Ultrason. Sonochem. 2015, 26, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Check, G.R. Two-stage ultrasonic irradiation for dehydration and desalting of crude oil: A novel method. Chem. Eng. Process. Process Intensif. 2014, 81, 72–78. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, S.; Zhou, L. Research on the static experiment of super heavy crude oil demulsification and dehydration using ultrasonic wave and audible sound wave at high temperatures. Ultrason. Sonochem. 2018, 40, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Antes, F.G.; Diehl, L.O.; Pereira, J.S.F.; Guimar Es, R.C.L.; Guarnieri, R.A.; Ferreira, B.M.S.; Dressler, V.L.; Flores, E.M.M. Feasibility of low frequency ultrasound for water removal from crude oil emulsions. Ultrason. Sonochem. 2015, 25, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; Lu, X.; Han, P.; Peng, F.; Wang, Y.; Shen, X. Application of ultrasound on crude oil pretreatment. Chem. Eng. Process. Process Intensif. 2008, 47, 2346–2350. [Google Scholar] [CrossRef]
- Luo, X.; Gong, H.; Cao, J.; Yin, H.; Yan, Y.; He, L. Enhanced separation of water-in-oil emulsions using ultrasonic standing waves. Chem. Eng. Sci. 2019, 203, 285–292. [Google Scholar] [CrossRef]
- Li, M.K.; Fogler, H.S. Acoustic emulsification. Part 1. The instability of the oil-water interface to form the initial droplets. J. Fluid Mech. 1978, 88, 499–511. [Google Scholar] [CrossRef]
- Li, M.K.; Fogler, H.S. Acoustic emulsification. Part 2. Breakup of the large primary oil droplets in a water medium. J. Fluid Mech. 1978, 88, 513–528. [Google Scholar] [CrossRef]
- Antes, F.G.; Diehl, L.O.; Pereira, J.S.F.; Guimarães, R.C.L.; Flores, E.M.M. Effect of ultrasonic frequency on separation of water from heavy crude oil emulsion using ultrasonic baths. Ultrason. Sonochem. 2017, 35, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Mullakaev, M.S.; Abramov, V.O.; Abramova, A.V. Ultrasonic automated oil well complex and technology for enhancing marginal well productivity and heavy oil recovery. J. Petrol. Sci. Eng. 2017, 159, 1–7. [Google Scholar] [CrossRef]
- Abramov, V.O.; Abramova, A.V.; Bayazitov, V.M.; Altunina, L.K.; Gerasin, A.S.; Pashin, D.M.; Mason, T.J. Sonochemical approaches to enhanced oil recovery. Ultrason. Sonochem. 2015, 25, 76–81. [Google Scholar] [CrossRef]
- Sivakumar, M.; Tang, S.Y.; Tan, K.W. Cavitation technology-a greener processing technique for the generation of pharmaceutical nanoemulsions. Ultrason. Sonochem. 2014, 21, 2069–2083. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Gao, C.; Zhang, H.; Song, N.; Cao, Q. Revisiting the Application of Ultrasonic Technology for Enhanced Oil Recovery: Mechanisms and Recent Advancements. Energies 2024, 17, 3517. https://doi.org/10.3390/en17143517
Zhang H, Gao C, Zhang H, Song N, Cao Q. Revisiting the Application of Ultrasonic Technology for Enhanced Oil Recovery: Mechanisms and Recent Advancements. Energies. 2024; 17(14):3517. https://doi.org/10.3390/en17143517
Chicago/Turabian StyleZhang, Huan, Chunyang Gao, Hongli Zhang, Naijian Song, and Qiang Cao. 2024. "Revisiting the Application of Ultrasonic Technology for Enhanced Oil Recovery: Mechanisms and Recent Advancements" Energies 17, no. 14: 3517. https://doi.org/10.3390/en17143517
APA StyleZhang, H., Gao, C., Zhang, H., Song, N., & Cao, Q. (2024). Revisiting the Application of Ultrasonic Technology for Enhanced Oil Recovery: Mechanisms and Recent Advancements. Energies, 17(14), 3517. https://doi.org/10.3390/en17143517