Response of Carbon Energy Storage to Land Use/Cover Changes in Shanxi Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Resources and Pre-Processing
2.3. Methods
2.3.1. Carbon Storage Supply Accounting
2.3.2. Univariate Spatial Autocorrelation Analysis
2.3.3. Pearson Correlation Analysis
2.3.4. Random Forest Model
3. Results
3.1. Land Use Change
3.2. Spatial and Temporal Distribution of Carbon Storage
3.3. Analysis of Time Change in Carbon Storage in Different Land Use Types
3.4. Effects of LUCC on Carbon Storage during 2000–2020
3.5. Spatial Autocorrelation Analysis
4. Discussion
4.1. Impact Analysis of Land Use and Carbon Storage Estimation
4.2. The Impact of Other Factors on Carbon Storage
4.3. Regional Countermeasures and Suggestions
5. Conclusions
- (1)
- SXP is mainly dominated by farmland, with a decrease of 3448.60 km2 in the past 20 years. Grassland areas rank third in the province, with a decrease of 1588.31 km2 in the past 20 years, and forest areas rank second in the province, with an increase of 762.94 km2 in the past 20 years. The area of building land increased the most, which was 4205.73 km2. The change in other land types is not obvious.
- (2)
- The total carbon storage in SXP in 2000, 2010, and 2020 is 513.51 × 104 t C, 513.46 × 104 t C, and 509.29 × 104 t C, respectively. There is a significant spatial autocorrelation trend in carbon storage in SXP, which weakens during 2000–2010 and strengthens during 2010–2020.
- (3)
- Due to the influence of carbon conversion among different land use types, carbon storage in SXP has been lost 4.21 × 104 t C in the past 20 years. This is mainly reflected in the decrease in cultivated land, grassland, and water area, and the significant increase in construction land. From the perspective of the spatial distribution of carbon storage, carbon storage is affected by land use type. High carbon storage is mainly located in mountainous areas with high forest coverage, and low carbon storage areas are widely distributed in building land in urban metropolitan areas. The increase in land use types with a low carbon density and the decrease in land use types with a high carbon density led to the decrease in carbon storage in SXP.
- (4)
- In addition to the impact of land use change, our results showed that social factors were more likely to influence carbon storage than natural factors, and the influence of social factors was often negative.
- (5)
- There is a close relationship between land use type and carbon storage, and forest land and grassland have a huge potential for carbon storage supply. The government can increase the area proportion of forest land and grassland in the region according to local conditions and can strengthen the construction of green infrastructure by means of such measures as returning farmland to forest. In addition, urbanization is also an important factor that weakens the carbon storage supply capacity. The carbon storage supply capacity of construction land is weak, and the increase in construction land will inevitably lead to the decline in carbon storage supply. Therefore, the government needs to demarcate the urban development boundary scientifically in territorial space planning, to achieve urban development in a disciplined way.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Russo, A.; Escobedo, F.J.; Timilsina, N.; Schmitt, A.O.; Varela, S.; Zerbe, S. Assessing urban tree carbon storage and sequestration in Bolzano, Italy. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 54–70. [Google Scholar] [CrossRef]
- Fang, J.; Yu, G.; Liu, L.; Hu, S.; Chapin, F.S., III. Climate change, human impacts, and carbon sequestration in China. Proc. Natl. Acad. Sci. USA 2018, 115, 4015–4020. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Xu, W.; Zhou, G.; Bai, Y.; Li, J.; Tang, X.; Chen, D.; Liu, Q.; Ma, W.; Xiong, G.; et al. Correction for Tang et al., Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proc. Natl. Acad. Sci. 2018, 115, E6095–E6096. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Zhu, J.; Wang, S.; Yue, C.; Shen, H. Global warming, human-induced carbon emissions, and their uncertainties. Sci. China Earth Sci. 2011, 54, 1458–1468. [Google Scholar] [CrossRef]
- Peck, S.C.; Teisberg, T.J. Optimal carbon emissions trajectories when damages depend on the rate or level of global warming. Clim. Chang. 1994, 28, 289–314. [Google Scholar] [CrossRef]
- Li, X. A review of the international researches on land use/land cover change. Acta Geogr. Sin. Chin. 1996, 51, 553–558. [Google Scholar] [CrossRef]
- Houghton, R.A.; Hackler, J.L.; Lawrence, K.T. The U.S. Carbon Budget: Contributions from Land-Use Change. Science 1999, 285, 574–578. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q.; Cheng, D.; Xu, C.; Chang, Y.; Lin, Y.; Li, B. Landscape ecological risk projection based on the PLUS model under the localized shared socioeconomic pathways in the Fujian Delta region. Ecol. Indic. 2022, 136, 108642–108655. [Google Scholar] [CrossRef]
- Hwang, J.; Choi, Y.; Sung, H.C.; Yoo, Y.-J.; Lim, N.O.; Kim, Y.; Shin, Y.; Jeong, D.; Sun, Z.; Jeon, S.W. Evaluation of the function of suppressing changes in land use and carbon storage in green belts. Resour. Conserv. Recycl. 2022, 187, 106600–106609. [Google Scholar] [CrossRef]
- Zhu, X.; Pan, J.; Wu, X. Impact of agricultural irrigation and resettlement practices on carbon storage in arid inland river basins: A case study of the Shule river basin. Heliyon 2024, 10, e25305. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Woodcock, C.E. A regional forest ecosystem carbon budget model: Impacts of forest age structure and landuse history. Ecol. Model. 2003, 164, 33–47. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, X.; Chuai, X.; Yang, H.; Lai, L.; Tan, J. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective. Sci. Rep. 2015, 5, 10233–10245. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Yang, R.; Dong, Y.-X.; Liu, Y.-X.; Qiu, L.-R. The influence of rapid urbanization and land use changes on terrestrial carbon sources/sinks in Guangzhou, China. Ecol. Indic. 2016, 70, 304–316. [Google Scholar] [CrossRef]
- Liu, J.; Yan, Q.; Zhang, M. Ecosystem carbon storage considering combined environmental and land-use changes in the future and pathways to carbon neutrality in developed regions. Sci. Total. Environ. 2023, 903, 166204. [Google Scholar] [CrossRef] [PubMed]
- Gregorich, E.G.; Rochette, P.; McGuire, S.; Liang, B.C.; Lessard, R. Soluble Organic Carbon and Carbon Dioxide Fluxes in Maize Fields Receiving Spring-Applied Manure. J. Environ. Qual. 1998, 27, 209–214. [Google Scholar] [CrossRef]
- Zhao, C.; Sander, H.A. Quantifying and Mapping the Supply of and Demand for Carbon Storage and Sequestration Service from Urban Trees. PLoS ONE 2015, 10, e0136392. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ye, C.; Li, J.; Chapman, M.A. Quantifying the Carbon Storage in Urban Trees Using Multispectral ALS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3358–3365. [Google Scholar] [CrossRef]
- Saeed, H.; Youssef, S.; Abdulkhaleq, A.; Younis, A.; Asaad, M. Quantifying carbon sequestration by two urban trees in duhok province. J. Univ. Duhok 2016, 19, 302–310. [Google Scholar]
- Bagstad, K.J.; Villa, F.; Batker, D.; Harrison-Cox, J.; Voigt, B.; Johnson, G.W. From theoretical to actual ecosystem services: Mapping beneficiaries and spatial flows in ecosystem service assessments. Ecol. Soc. 2014, 19, 64–79. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, J.; Xu, Z.; Wang, X.; Meersmans, J. Ecosystem services supply and demand response to urbanization: A case study of the Pearl River Delta, China. Ecosyst. Serv. 2021, 49, 101274–101289. [Google Scholar] [CrossRef]
- Brown, S.; Lugo, A.E. The Storage and Production of Organic Matter in Tropical Forests and Their Role in the Global Carbon Cycle. Biotropica 1982, 14, 161. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, S.; Sohl, T.; Young, C.; Werner, J. Land use and carbon dynamics in the southeastern United States from 1992 to 2050. Environ. Res. Lett. 2013, 8, 044022. [Google Scholar] [CrossRef]
- Sohl, T.L.; Sleeter, B.M.; Zhu, Z.; Sayler, K.L.; Bennett, S.; Bouchard, M.; Reker, R.; Hawbaker, T.; Wein, A.; Liu, S.; et al. A land-use and land-cover modeling strategy to support a national assessment of carbon stocks and fluxes. Appl. Geogr. 2012, 34, 111–124. [Google Scholar] [CrossRef]
- Song, C.-H. Application of InVEST Water Yield Model for Assessing Forest Water Provisioning Ecosystem Service. J. Korean Assoc. Geogr. Inf. Stud. 2015, 18, 120–134. [Google Scholar] [CrossRef]
- Bai, Y.; Zheng, H.; Zhuang, C.; Ouyang, Z. Ecosystem services valuation and its regulation in Baiyangdian baisn: Based on InVEST model. Acta Ecol. Sin. 2013, 33, 711–717. [Google Scholar] [CrossRef]
- Butsic, V.; Shapero, M.; Moanga, D.; Larson, S. Using InVEST to assess ecosystem services on conserved properties in Sonoma County, CA. Calif. Agric. 2017, 71, 81–89. [Google Scholar] [CrossRef]
- Caro, C.; Marques, J.C.; Cunha, P.P.; Teixeira, Z. Ecosystem services as a resilience descriptor in habitat risk assessment using the InVEST model. Ecol. Indic. 2020, 115, 106426. [Google Scholar] [CrossRef]
- Wu, L.; Luo, Y.; Pang, S.; Wang, G.; Ma, X. Factor analysis of hydrologic services in water-controlled grassland ecosystems by InVEST model and geodetector. Environ. Sci. Pollut. Res. 2024, 31, 20409–20433. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, G.; Mou, N.; Xie, Y.; Xu, Z.; Li, Y. Assessment of Carbon Storage and Its Influencing Factors in Qinghai-Tibet Plateau. Sustainability 2018, 10, 1864. [Google Scholar] [CrossRef]
- Nel, L.; Boeni, A.F.; Prohászka, V.J.; Szilágyi, A.; Kovács, E.T.; Pásztor, L.; Centeri, C. InVEST Soil Carbon Stock Modelling of Agricultural Landscapes as an Ecosystem Service Indicator. Sustainability 2022, 14, 9808. [Google Scholar] [CrossRef]
- Kohestani, N.; Rastgar, S.; Heydari, G.; Jouibary, S.S.; Amirnejad, H. Spatiotemporal modeling of the value of carbon sequestration under changing land use/land cover using InVEST model: A case study of Nour-rud Watershed, Northern Iran. Environ. Dev. Sustain. 2023, 26, 14477–14505. [Google Scholar] [CrossRef]
- Huang, W.; Guo, L.; Zhang, T.; Chen, T.; Chen, L.; Li, L.; Zhang, X. The Impact of Territorial Spatial Transformation on Carbon Storage: A Case Study of Suqian, East China. Land 2024, 13, 348. [Google Scholar] [CrossRef]
- He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Model. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Jiang, W.; Deng, Y.; Tang, Z.; Lei, X.; Chen, Z. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecol. Model. 2017, 345, 30–40. [Google Scholar] [CrossRef]
- Lyu, R.; Mi, L.; Zhang, J.; Xu, M.; Li, J. Modeling the effects of urban expansion on regional carbon storage by coupling SLEUTH-3r model and InVEST model. Ecol. Res. 2019, 34, 380–393. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Gou, T.; Mo, J.; Wang, Z.; Gao, M. Spatial-temporal changes of urban areas and terrestrial carbon storage in the Three Gorges Reservoir in China. Ecol. Indic. 2018, 95, 343–352. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, J.; Cui, Y.; Zhu, L. Ecosystem carbon storage under different scenarios of land use change in Qihe catchment, China. J. Geogr. Sci. 2020, 30, 1507–1522. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, Y.; Huang, P.; Zhao, X.; Feng, W.; Li, Q.; Xue, D.; Dou, J.; Shi, W.; Wei, W.; et al. Impacts of ecological restoration projects on the ecosystem carbon storage of inland river basin in arid area, China. Ecol. Indic. 2020, 118, 106803. [Google Scholar] [CrossRef]
- Li, C.; Zhao, J.; Thinh, N.X.; Xi, Y. Assessment of the Effects of Urban Expansion on Terrestrial Carbon Storage: A Case Study in Xuzhou City, China. Sustainability 2018, 10, 647. [Google Scholar] [CrossRef]
- Tang, L.; Ke, X.; Zhou, T.; Zheng, W.; Wang, L. Impacts of cropland expansion on carbon storage: A case study in Hubei, China. J. Environ. Manag. 2020, 265, 110515. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Zhan, J.; Li, Z.; Zhang, F.; Qi, W. Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China. J. Clean. Prod. 2019, 215, 382–389. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.-J.; Zhu, D.; Zhang, J. Spatiotemporal changes in ecosystem services in the conservation priorities of the southern hill and mountain belt, China. Ecol. Indic. 2020, 122, 107225. [Google Scholar] [CrossRef]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178–109191. [Google Scholar] [CrossRef]
- Calle, L.; Canadell, J.G.; Patra, P.; Ciais, P.; Ichii, K.; Tian, H.; Kondo, M.; Piao, S.; Arneth, A.; Harper, A.B.; et al. Regional carbon fluxes from land use and land cover change in Asia, 1980–2009. Environ. Res. Lett. 2016, 11, 074011–074023. [Google Scholar] [CrossRef]
- Lobser, S.E.; Cohen, W.B. MODIS tasselled cap: Land cover characteristics expressed through transformed MODIS data. Int. J. Remote Sens. 2007, 28, 5079–5101. [Google Scholar] [CrossRef]
- Shaoqiang, W.; Chenghu, Z.; Kerang, L.; Songli, Z.; Fanghong, H. Analysis on Spatial Distribution Characteristics of Soil Organic Carbon Reservoir in China. Acta Geographica Sinica. 2000, 55, 533–544. [Google Scholar] [CrossRef]
- Kerang, L.; Shaoqiang, W.; Mingkui, C. Vegetation and soil carbon storage in China. Sci. China Ser. D 2003, 31, 72–80. [Google Scholar] [CrossRef]
- Kalantari, Z.; Ferreira, C.S.S.; Page, J.; Goldenberg, R.; Olsson, J.; Destouni, G. Meeting sustainable development challenges in growing cities: Coupled social-ecological systems modeling of land use and water changes. J. Environ. Manag. 2019, 245, 471–480. [Google Scholar] [CrossRef]
- Zheng, H.; Zheng, H. Assessment and prediction of carbon storage based on land use/land cover dynamics in the coastal area of Shandong Province. Ecol. Indic. 2023, 153, 110474–110486. [Google Scholar] [CrossRef]
- Luo, Y.; Lü, Y.; Fu, B.; Zhang, Q.; Li, T.; Hu, W.; Comber, A. Half century change of interactions among ecosystem services driven by ecological restoration: Quantification and policy implications at a watershed scale in the Chinese Loess Plateau. Sci. Total. Environ. 2019, 651, 2546–2557. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Kang, F.; Han, H.; Cheng, X.; Li, Z. Exploring drivers of ecosystem services variation from a geospatial perspective: Insights from China’s Shanxi Province. Ecol. Indic. 2021, 131, 108188–108200. [Google Scholar] [CrossRef]
- Xiang, S.; Xiang, S.; Wang, Y.; Wang, Y.; Deng, H.; Deng, H.; Yang, C.; Yang, C.; Wang, Z.; Wang, Z.; et al. Response and multi-scenario prediction of carbon storage to land use/cover change in the main urban area of Chongqing, China. Ecol. Indic. 2022, 142, 109205–109218. [Google Scholar] [CrossRef]
- Li, L.; Song, Y.; Wei, X.; Dong, J. Exploring the impacts of urban growth on carbon storage under integrated spatial regulation: A case study of Wuhan, China. Ecol. Indic. 2020, 111, 106064. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecol. Indic. 2021, 127, 107770–107780. [Google Scholar] [CrossRef]
- Houghton, R.A.; Hackler, J.L. Emissions of carbon from forestry and land-use change in tropical Asia. Glob. Chang. Biol. 1999, 5, 481–492. [Google Scholar] [CrossRef]
- Chang, X.; Xing, Y.; Wang, J.; Yang, H.; Gong, W. Effects of land use and cover change (LUCC) on terrestrial carbon stocks in China between 2000 and 2018. Resour. Conserv. Recycl. 2022, 182, 106333–106356. [Google Scholar] [CrossRef]
- Feng, H.; Wang, S.; Zou, B.; Yang, Z.; Wang, S.; Wang, W. Contribution of land use and cover change (LUCC) to the global terrestrial carbon uptake. Sci. Total. Environ. 2023, 901, 165932. [Google Scholar] [CrossRef]
- Niu, J.; Xin, B.; Xin, B.; Zhang, Y.; Wang, M. Research on the coordinated development of provincial urbanization and carbon emission efficiency of construction industry in China. Carbon Balance Manag. 2024, 19, 1–26. [Google Scholar] [CrossRef]
- Li, Y.; Gao, K. The impact of green urbanization on carbon emissions: The case of new urbanization in China. Front. Environ. Sci. 2022, 10, 1070652–1070665. [Google Scholar] [CrossRef]
Data | Units | Spatial Resolution | Sources |
---|---|---|---|
Land utilization | — | 1 km ×1 km 30 m × 30 m | (https://www.resdc.cn/Default.aspx (accessed on 16 January 2024)) GlobeLand30: (http://www.globallandcover.com/ (accessed on 16 January 2024)) |
Population density | Person/km2 | 1 km × 1 km | WorldPop (https://www.worldpop.org/ (accessed on 16 January 2024)) |
Elevation | m | 90 m × 90 m | https://www.gscloud.cn/ (accessed on 17 January 2024) |
Mean annual temperatures | Centigrade | 1 km × 1 km | https://www.resdc.cn/Default.aspx (accessed on 17 January 2024) |
GDP density | RMB | 1 km × 1 km | https://www.resdc.cn/Default.aspx (accessed on 17 January 2024) |
Average rainfall | mm | 1 km × 1 km | ScienceDataBank (https://www.scidb.cn/en/cstr/31253.11.sciencedb.01607 (accessed on 17 January 2024)) |
LULC 1 | Above-Ground Biomass | Underground Biomass | Soil | Dead Organic Matter |
---|---|---|---|---|
Farmland | 5.7 | 80.7 | 108.4 | 9.82 |
Forest | 142.4 | 115.9 | 129.2 | 14.11 |
Grassland | 3.4 | 2.7114 | 99.9 | 7.28 |
Water | 0.3 | 0 | 0 | 0 |
Building land | 0 | 0 | 78 | 0 |
Unused land | 1.3 | 0 | 0 | 0 |
LULC 1 | Above-Ground Biomass | Underground Biomass | Soil | Dead Organic Matter |
---|---|---|---|---|
Farmland | 6.77 | 92.42 | 119.46 | 9.82 |
Forest | 169.09 | 132.73 | 261.06 | 14.11 |
Grassland | 41.92 | 99.06 | 110.09 | 7.28 |
Water | 0.36 | 0.00 | 0.00 | 0.00 |
Building land | 0.00 | 0.00 | 85.96 | 0.00 |
Unused land | 1.54 | 0.00 | 0.00 | 0.00 |
LUCC 1 | Building Land 2000 | Farmland 2000 | Forest 2000 | Grassland 2000 | Unused Land 2000 | Water 2000 |
---|---|---|---|---|---|---|
Building land 2010 | 3468.52 | 488.82 | 46.17 | 83.71 | 3.03 | 8.56 |
Farmland 2010 | 42.68 | 60,699.10 | 26.55 | 87.97 | 0.12 | 62.64 |
Forest 2010 | 5.92 | 296.65 | 43,908.10 | 72.74 | 0.03 | 0.00 |
Grassland 2010 | 2.68 | 412.90 | 43.64 | 45,191.90 | 0.00 | 3.85 |
Unused land 2010 | 0.03 | 0.97 | 0.00 | 0.00 | 132.32 | 1.00 |
Water 2010 | 2.34 | 86.49 | 5.93 | 19.81 | 0.00 | 1302.26 |
LUCC 1 | Building Land 2010 | Farmland 2010 | Forest 2010 | Grassland 2010 | Unused Land 2010 | Water 2010 |
---|---|---|---|---|---|---|
Building land 2020 | 1963.37 | 4066.26 | 508.11 | 1041.52 | 10.79 | 137.71 |
Farmland 2020 | 1680.25 | 39,593.90 | 4903.24 | 11,751.20 | 55.55 | 530.05 |
Forest 2020 | 146.63 | 5039.51 | 32,194.80 | 7252.45 | 12.80 | 84.30 |
Grassland 2020 | 280.69 | 11,728.20 | 6503.91 | 25,307.30 | 16.50 | 183.43 |
Unused land 2020 | 2.38 | 19.81 | 7.77 | 18.92 | 27.77 | 11.01 |
Water 2020 | 25.37 | 449.69 | 102.92 | 236.96 | 10.63 | 460.80 |
LUCC 1 | Building Land 2000 | Farmland 2000 | Forest 2000 | Grassland 2000 | Unused Land 2000 | Water 2000 |
---|---|---|---|---|---|---|
Building land 2020 | 1625.25 | 4370.39 | 514.78 | 1070.54 | 13.28 | 133.12 |
Farmland 2020 | 1513.62 | 39,850.00 | 4845.28 | 11,706.20 | 54.58 | 542.94 |
Forest 2020 | 117.30 | 5226.36 | 32,054.00 | 7236.89 | 12.80 | 83.28 |
Grassland 2020 | 240.61 | 12,012.00 | 6444.58 | 25,136.80 | 16.53 | 168.99 |
Unused land 2020 | 2.38 | 20.20 | 8.08 | 18.60 | 27.39 | 11.01 |
Water 2020 | 22.48 | 482.27 | 100.97 | 240.63 | 10.67 | 430.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Liu, X.; Xie, R.; Lin, Y.; Fang, J.; Yuan, J. Response of Carbon Energy Storage to Land Use/Cover Changes in Shanxi Province, China. Energies 2024, 17, 3284. https://doi.org/10.3390/en17133284
Tang H, Liu X, Xie R, Lin Y, Fang J, Yuan J. Response of Carbon Energy Storage to Land Use/Cover Changes in Shanxi Province, China. Energies. 2024; 17(13):3284. https://doi.org/10.3390/en17133284
Chicago/Turabian StyleTang, Huan, Xiao Liu, Ruijie Xie, Yuqin Lin, Jiawei Fang, and Jing Yuan. 2024. "Response of Carbon Energy Storage to Land Use/Cover Changes in Shanxi Province, China" Energies 17, no. 13: 3284. https://doi.org/10.3390/en17133284
APA StyleTang, H., Liu, X., Xie, R., Lin, Y., Fang, J., & Yuan, J. (2024). Response of Carbon Energy Storage to Land Use/Cover Changes in Shanxi Province, China. Energies, 17(13), 3284. https://doi.org/10.3390/en17133284