Energy Utilization Prediction Techniques for Heterogeneous Mobile Robots: A Review
Abstract
:1. Introduction
2. Robotic Manipulators
- Upward movement;
- Downward movement;
- Horizontal movement.
- Drive system;
- Control system;
- Auxiliary system.
- Mechanical power of the robot;
- Workpiece mechanical power;
- Robotic polishing power;
- Electric loss power;
- Friction loss power.
- Mechanical power of abrasive belts;
- Mechanical power of belt wheels;
- Electric loss power of belt sanders’ motors;
- Friction loss power in the mechanical transmission of belt sanders.
- Power consumed in motors;
- Inverters;
- DC bus;
- Rectifier;
- Cabinet PC;
- Control panel;
- Cooling system.
- Idling;
- Loading;
- Handling;
- Polishing;
- Unloading.
- Standby power;
- Power of brakes;
- Power of working servo system.
3. Ground Mobile Robots
3.1. Differential Drive
- Motion power;
- Sensing power;
- Computer power.
- Motion power;
- -
- Mass;
- -
- Linear velocity;
- -
- Linear acceleration;
- -
- Moment of inertia;
- -
- Angular velocity;
- -
- Angular acceleration;
- -
- Friction parameter;
- -
- Wheel radius;
- -
- The energy needed to overcome static friction;
- Computer and sensor power.
- Wheel radius;
- Rotation speed of the motor;
- Armature resistance;
- Back EMF constant;
- Torque constant;
- Inertia of the motor;
- Inertia of load;
- Load torque;
- Friction torque;
- Viscous damping.
- Dimension of the working area;
- Number of obstacles;
- Target X coordinate;
- Target Y coordinate.
- Only the AMR traveling to the point of interest (POI) and being unloaded manually by a human;
- The AMR and UR3 traveling to POI but the manipulator is switched off;
- The AMR and UR3 traveling to POI and the manipulator performs an unloading process.
3.2. Skid-Steer Drive
3.3. Others
- Angular velocity of the motor;
- Back-EMF constant;
- Torque constant;
- Internal torque;
- Load friction torque;
- Internal damping force;
- Motor moment of inertia;
- Load moment of inertia;
- Wheel radius;
- Linear acceleration.
4. Unmanned Aerial Vehicles
- Drone-based construction inspection;
- Investigation and treatments in agriculture;
- Transport and delivery applications;
- Security supervision;
- Entertainment and filming;
- Others (communication links, serving cloud services to saving energy on mobile devices by taking computation tasks, monitoring disasters).
- Type of drone (fixed wing vs. rotorcraft);
- Altitude (propellers have to rotate faster at higher altitudes because of lower air density);
- Type of flight (hovering vs. forward flight);
- Climbing speed;
- Payload;
- Weather conditions (such as wind, especially for small and micro drones).
- Load torque of the propeller;
- Velocity constant of the rotor motor;
- Current needed to force the rotor to start spinning;
- Angular velocity of the motor;
- Resistance of the rotor motor winding.
- The linear model is more computationally efficient;
- The linear model can be infeasible for some routes calculated based on a nonlinear model;
- There is a 9-percentage-point gap in energy prediction between models.
- Parasitic power (dot product of body drag force and velocity);
- Induced power (caused by a lift of the rotors);
- Profile power (caused by a drag of the rotors);
- Power required to climb (dot product of velocity vector and the gravitational force).
- Hovering cause a constant power consumption.
- Horizontal movement is characterized by very small power fluctuations. It is almost constant.
- Vertical movement is characterized by high power fluctuations.
- A payload change causes a proportional change in consumed power.
- Flying against the wind is characterized by a smaller consumption due to increased thrust translational lift, which makes hovering easier but it is limited by wind speed. A higher wind speed causes a power consumption increase.
5. Other Types of Robot
6. Discussion
- Accuracy,
- Complexity,
- Universality,
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AMR | Autonomous Mobile Robot |
ANN | Artificial Neural Network |
COT | Cost Of Transportation |
UAV | Unmanned Aerial Vehicle |
UGV | Unmanned Ground Vehicle |
ICR | Instantaneous Centers of Rotation |
References
- Luan, F.; Yang, X.; Chen, Y.; Regis, P.J. Industrial robots and air environment: A moderated mediation model of population density and energy consumption. Sustain. Prod. Consum. 2022, 30, 870–888. [Google Scholar] [CrossRef]
- Babski-Reeves, K.; Eksioglu, B.; Hampton, D. A 7-DOF Robotic Arm Energy Prediction Model for Smart Manufacturing. In Proceedings of the IIE Annual Conference, New Orleans, LA, USA, 21–23 May 2023; Institute of Industrial and Systems Engineers (IISE): Norcross, GA, USA, 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Yao, M.; Zhou, X.; Shao, Z.; Wang, L. A general energy modeling network for serial industrial robots integrating physical mechanism priors. Robot. Comput.-Integr. Manuf. 2024, 89, 102761. [Google Scholar] [CrossRef]
- Lin, H.I.; Mandal, R.; Wibowo, F.S. BN-LSTM-based energy consumption modeling approach for an industrial robot manipulator. Robot. Comput.-Integr. Manuf. 2024, 85, 102629. [Google Scholar] [CrossRef]
- Miranda, S.; Vázquez, C.R. Analysis and Prediction of Energy Consumption in a Collaborative Robot. IFAC-PapersOnLine 2023, 56, 3710–3715. [Google Scholar] [CrossRef]
- Yao, M.; Zhao, Q.; Shao, Z.; Zhao, Y. Research on power modeling of the industrial robot based on ResNet. In Proceedings of the 2022 7th International Conference on Automation, Control and Robotics Engineering (CACRE), Xi’an, China, 14–16 July 2022; pp. 87–92. [Google Scholar] [CrossRef]
- Jiang, P.; Wang, Z.; Li, X.; Wang, X.V.; Yang, B.; Zheng, J. Energy consumption prediction and optimization of industrial robots based on LSTM. J. Manuf. Syst. 2023, 70, 137–148. [Google Scholar] [CrossRef]
- Cao, H.; Zhou, J.; Jiang, P.; Hon, K.K.B.; Yi, H.; Dong, C. An integrated processing energy modeling and optimization of automated robotic polishing system. Robot. Comput.-Integr. Manuf. 2020, 65, 101973. [Google Scholar] [CrossRef]
- Zhou, J.; Yi, H.; Cao, H.; Jiang, P.; Zhang, C.; Ge, W. Structural decomposition-based energy consumption modeling of robot laser processing systems and energy-efficient analysis. Robot. Comput.-Integr. Manuf. 2022, 76, 102327. [Google Scholar] [CrossRef]
- Mikołajczyk, T.; Mikołajewski, D.; Kłodowski, A.; Łukaszewicz, A.; Mikołajewska, E.; Paczkowski, T.; Macko, M.; Skornia, M. Energy Sources of Mobile Robot Power Systems: A Systematic Review and Comparison of Efficiency. Appl. Sci. 2023, 13, 7547. [Google Scholar] [CrossRef]
- Sakagami, Y.; Watanabe, R.; Aoyama, C.; Matsunaga, S.; Higaki, N.; Fujimura, K. The intelligent ASIMO: System overview and integration. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September–4 October 2002; Volume 3, pp. 2478–2483. [Google Scholar] [CrossRef]
- Kajita, S.; Espiau, B. Springer Handbook of Robotics; Legged Robots: Berlin/Heidelberg, Germany, 2008; pp. 361–389. [Google Scholar] [CrossRef]
- Gabrielli, G.; von Karman, T. What Price Speed? Specific Power Required for Propulsion of Vehicles. Mech. Eng. 1950, 72, 775–781. [Google Scholar]
- Barili, A.; Ceresa, M.; Parisi, C. Energy-saving motion control for an autonomous mobile robot. In Proceedings of the 1995 IEEE International Symposium on Industrial Electronics, Athens, Greece, 10–14 July 1995; Volume 2, pp. 674–676. [Google Scholar] [CrossRef]
- Mei, Y.; Lu, Y.H.; Hu, Y.; Lee, C. A case study of mobile robot’s energy consumption and conservation techniques. In Proceedings of the 12th International Conference on Advanced Robotics ( ICAR ’05, Proceedings), Seattle, WA, USA, 18–20 July 2005; pp. 492–497. [Google Scholar] [CrossRef]
- Mei, Y.; Lu, Y.H.; Hu, Y.; Lee, C. Deployment of mobile robots with energy and timing constraints. IEEE Trans. Robot. 2006, 22, 507–522. [Google Scholar] [CrossRef]
- Rapalski, A.; Dudzik, S. Energy Consumption Analysis of the Selected Navigation Algorithms for Wheeled Mobile Robots. Energies 2023, 16, 1532. [Google Scholar] [CrossRef]
- Szeląg, P.; Dudzik, S.; Podsiedlik, A. Investigation on the Mobile Wheeled Robot in Terms of Energy Consumption, Travelling Time and Path Matching Accuracy. Energies 2023, 16, 1210. [Google Scholar] [CrossRef]
- Mei, Y.; Lu, Y.H.; Lee, C.; Hu, Y. Energy-efficient mobile robot exploration. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA 2006), Orlando, FL, USA, 15–19 May 2006; pp. 505–511. [Google Scholar] [CrossRef]
- Liu, S.; Sun, D. Modeling and experimental study for minimization of energy consumption of a mobile robot. In Proceedings of the 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Kaohsiung, Taiwan, 11–14 July 2012; pp. 708–713. [Google Scholar] [CrossRef]
- Wang, G.; Irwin, M.J.; Berman, P.; Fu, H.; La Porta, T. Optimizing sensor movement planning for energy efficiency. In Proceedings of the 2005 International Symposium on Low Power Electronics and Design, New York, NY, USA, 8–10 August 2005; ISLPED ’05. pp. 215–220. [Google Scholar] [CrossRef]
- Caballero, L.; Perafan, Á.; Rinaldy, M.; Percybrooks, W. Predicting the Energy Consumption of a Robot in an Exploration Task Using Optimized Neural Networks. Electronics 2021, 10, 920. [Google Scholar] [CrossRef]
- Aliev, K.; Traini, E.; Asranov, M.; Awouda, A.; Chiabert, P. Prediction and estimation model of energy demand of the AMR with cobot for the designed path in automated logistics systems. Procedia CIRP 2021, 99, 116–121. [Google Scholar] [CrossRef]
- Morales, J.; Martinez, J.L.; Mandow, A.; Garcia-Cerezo, A.J.; Pedraza, S. Power Consumption Modeling of Skid-Steer Tracked Mobile Robots on Rigid Terrain. IEEE Trans. Robot. 2009, 25, 1098–1108. [Google Scholar] [CrossRef]
- Morales, J.; Martínez, J.L.; Mandow, A.; Pequeño-Boter, A.; García-Cerezo, A. Simplified power consumption modeling and identification for wheeled skid-steer robotic vehicles on hard horizontal ground. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 4769–4774. [Google Scholar] [CrossRef]
- Pentzer, J.; Brennan, S.; Reichard, K. On-line estimation of vehicle motion and power model parameters for skid-steer robot energy use prediction. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014; pp. 2786–2791. [Google Scholar] [CrossRef]
- Pentzer, J.; Reichard, K.; Brennan, S. Energy-based path planning for skid-steer vehicles operating in areas with mixed surface types. In Proceedings of the 2016 American Control Conference (ACC), Portland, OR, USA, 4–6 June 2014; pp. 2110–2115. [Google Scholar] [CrossRef]
- Pentzer, J.; Brennan, S.; Reichard, K. On-line estimation of power model parameters for skid-steer robots with applications in mission energy use prediction. J. Field Robot. 2022, 39, 763–782. [Google Scholar] [CrossRef]
- Góra, K.; Kujawinski, M.; Wroński, D.; Granosik, G. Comparison of Energy Prediction Algorithms for Differential and Skid-Steer Drive Mobile Robots on Different Ground Surfaces. Energies 2021, 14, 6722. [Google Scholar] [CrossRef]
- Loukatos, D.; Arapostathis, V.; Karavas, C.S.; Arvanitis, K.G.; Papadakis, G. Power Consumption Analysis of a Prototype Lightweight Autonomous Electric Cargo Robot in Agricultural Field Operation Scenarios. Energies 2024, 17, 1244. [Google Scholar] [CrossRef]
- Mei, Y.; Lu, Y.H.; Hu, Y.; Lee, C. Energy-efficient motion planning for mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation 2004 (Proceedings. ICRA ’04), New Orleans, LA, USA, 26 April–1 May 2004; Volume 5, pp. 4344–4349. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, L.; Kim, J. Energy Modeling and Power Measurement for Mobile Robots. Energies 2019, 12, 27. [Google Scholar] [CrossRef]
- Hou, L.; Zhou, F.; Kim, K.; Zhang, L. Practical Model for Energy Consumption Analysis of Omnidirectional Mobile Robot. Sensors 2021, 21, 1800. [Google Scholar] [CrossRef]
- Tokekar, P.; Karnad, N.; Isler, V. Energy-optimal velocity profiles for car-like robots. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1457–1462. [Google Scholar] [CrossRef]
- Otto, A.; Agatz, N.; Campbell, J.; Golden, B.; Pesch, E. Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey. Networks 2018, 72, 411–458. [Google Scholar] [CrossRef]
- Liu, Y. An optimization-driven dynamic vehicle routing algorithm for on-demand meal delivery using drones. Comput. Oper. Res. 2019, 111, 1–20. [Google Scholar] [CrossRef]
- Chauhan, D.; Unnikrishnan, A.; Figliozzi, M. Maximum coverage capacitated facility location problem with range constrained drones. Transp. Res. Part C Emerg. Technol. 2019, 99, 1–18. [Google Scholar] [CrossRef]
- Poikonen, S.; Golden, B. Multi-visit drone routing problem. Comput. Oper. Res. 2020, 113, 104802. [Google Scholar] [CrossRef]
- Shavarani, S.M.; Nejad, M.G.; Rismanchian, F.; Izbirak, G. Application of hierarchical facility location problem for optimization of a drone delivery system: A case study of Amazon prime air in the city of San Francisco. Int. J. Adv. Manuf. Technol. 2018, 95, 3141–3153. [Google Scholar] [CrossRef]
- Moore, A.M. Innovative scenarios for modeling intra-city freight delivery. Transp. Res. Interdiscip. Perspect. 2019, 3, 100024. [Google Scholar] [CrossRef]
- Dorling, K.; Heinrichs, J.; Messier, G.G.; Magierowski, S. Vehicle Routing Problems for Drone Delivery. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 70–85. [Google Scholar] [CrossRef]
- Chiang, W.C.; Li, Y.; Shang, J.; Urban, T.L. Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization. Appl. Energy 2019, 242, 1164–1175. [Google Scholar] [CrossRef]
- Figliozzi, M.A. Lifecycle modeling and assessment of unmanned aerial vehicles (Drones) CO2e emissions. Transp. Res. Part D Transp. Environ. 2017, 57, 251–261. [Google Scholar] [CrossRef]
- Ferrandez, S.; Harbison, T.; Weber, T.; Sturges, R.; Rich, R. Optimization of a truck-drone in tandem delivery network using k-means and genetic algorithm. J. Ind. Eng. Manag. 2016, 9, 374. [Google Scholar] [CrossRef]
- Zorbas, D.; Razafindralambo, T.; Luigi, D.P.P.; Guerriero, F. Energy Efficient Mobile Target Tracking Using Flying Drones. Procedia Comput. Sci. 2013, 19, 80–87. [Google Scholar] [CrossRef]
- Di Puglia Pugliese, L.; Guerriero, F.; Zorbas, D.; Razafindralambo, T. Modelling the mobile target covering problem using flying drones. Optim. Lett. 2016, 10, 1021–1052. [Google Scholar] [CrossRef]
- Kirschstein, T. Comparison of energy demands of drone-based and ground-based parcel delivery services. Transp. Res. Part D Transp. Environ. 2020, 78, 102209. [Google Scholar] [CrossRef]
- Stolaroff, J.K.; Samaras, C.; O’Neill, E.R.; Lubers, A.; Mitchell, A.S.; Ceperley, D. Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery. Nat. Commun. 2018, 9, 409. [Google Scholar] [CrossRef]
- D’Andrea, R. Guest Editorial Can Drones Deliver? IEEE Trans. Autom. Sci. Eng. 2014, 11, 647–648. [Google Scholar] [CrossRef]
- Choi, Y.; Schonfeld, P. Optimization of Multi-package Drone Deliveries Considering Battery Capacity. In Proceedings of the 96th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 8–12 January 2017. [Google Scholar]
- Kingry, N.; Towers, L.; Liu, Y.C.; Zu, Y.; Wang, Y.; Staheli, B.; Katagiri, Y.; Cook, S.; Dai, R. Design, Modeling and Control of a Solar-Powered Quadcopter. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 1251–1258. [Google Scholar] [CrossRef]
- Li, B.; Na, Z.; Lin, B. UAV Trajectory Planning from a Comprehensive Energy Efficiency Perspective in Harsh Environments. IEEE Netw. 2022, 36, 62–68. [Google Scholar] [CrossRef]
- Li, D.; Wang, X.; Sun, T. Energy-optimal coverage path planning on topographic map for environment survey with unmanned aerial vehicles. Electron. Lett. 2016, 52, 699–701. [Google Scholar] [CrossRef]
- Abeywickrama, H.V.; Jayawickrama, B.A.; He, Y.; Dutkiewicz, E. Comprehensive Energy Consumption Model for Unmanned Aerial Vehicles, Based on Empirical Studies of Battery Performance. IEEE Access 2018, 6, 58383–58394. [Google Scholar] [CrossRef]
- Prasetia, A.S.; Wai, R.J.; Wen, Y.L.; Wang, Y.K. Mission-Based Energy Consumption Prediction of Multirotor UAV. IEEE Access 2019, 7, 33055–33063. [Google Scholar] [CrossRef]
- Chiaraviglio, L.; D’Andreagiovanni, F.; Liu, W.; Gutierrez, J.A.; Blefari-Melazzi, N.; Choo, K.K.R.; Alouini, M.S. Multi-Area Throughput and Energy Optimization of UAV-Aided Cellular Networks Powered by Solar Panels and Grid. IEEE Trans. Mob. Comput. 2021, 20, 2427–2444. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, D.; Ng, D.W.K.; Dai, L.; Schober, R. Optimal 3D-Trajectory Design and Resource Allocation for Solar-Powered UAV Communication Systems. IEEE Trans. Commun. 2019, 67, 4281–4298. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, X.; Jia, W.; Lei, J.; Wang, D.; Feng, T.; Zeng, Y.; Song, J. Multiobjective Energy Consumption Optimization of a Flying–Walking Power Transmission Line Inspection Robot during Flight Missions Using Improved NSGA-II. Appl. Sci. 2024, 14, 1637. [Google Scholar] [CrossRef]
- Góra, K.; Smyczyński, P.; Kujawiński, M.; Granosik, G. Machine Learning in Creating Energy Consumption Model for UAV. Energies 2022, 15, 6810. [Google Scholar] [CrossRef]
- Muñoz, J.; López, B.; Moreno, L. Gaussian Processes for Energy Consumption Estimation of Unmanned Aerial Vehicles. In Proceedings of the 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Tenerife, Canary Islands, Spain, 19–21 July 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Cheng, C.; Adulyasak, Y.; Rousseau, L.M. Drone routing with energy function: Formulation and exact algorithm. Transp. Res. Part B Methodol. 2020, 139, 364–387. [Google Scholar] [CrossRef]
- Zhang, J.; Campbell, J.F.; II, D.C.S.; Hupman, A.C. Energy consumption models for delivery drones: A comparison and assessment. Transp. Res. Part D Transp. Environ. 2021, 90, 102668. [Google Scholar] [CrossRef]
- Langelaan, J.W.; Schmitz, S.; Palacios, J.; Lorenz, R.D. Energetics of rotary-wing exploration of Titan. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017; pp. 1–11. [Google Scholar] [CrossRef]
- Yacef, F.; Rizoug, N.; Degaa, L.; Bouhali, O.; Hamerlain, M. Energy efficiency path planning for a quadrotor aerial vehicle. In Transactions of the Institute of Measurement and Control; SAGE Publications Ltd STM: New York, NY, USA, 2021; Volume 1, pp. 1133–1138. [Google Scholar] [CrossRef]
- Tseng, C.M.; Chau, C.K.; Elbassioni, K.; Khonji, M. Flight Tour Planning with Recharging Optimization for Battery-Operated Autonomous Drones. arXiv 2017, arXiv:abs/1703.10049. [Google Scholar]
- Zeng, Y.; Xu, J.; Zhang, R. Energy Minimization for Wireless Communication with Rotary-Wing UAV. IEEE Trans. Wirel. Commun. 2019, 18, 2329–2345. [Google Scholar] [CrossRef]
- Yan, H.; Chen, Y.; Yang, S.H. New Energy Consumption Model for Rotary-Wing UAV Propulsion. IEEE Wirel. Commun. Lett. 2021, 10, 2009–2012. [Google Scholar] [CrossRef]
- Katoh, R.; Ichiyama, O.; Yamamoto, T.; Ohkawa, F. A real-time path planning of space manipulator saving consumed energy. In Proceedings of the IECON’94—20th Annual Conference of IEEE Industrial Electronics, Bologna, Italy, 5–9 September 1994; Volume 2, pp. 1064–1067. [Google Scholar] [CrossRef]
- Silva, F.; Tenreiro Machado, J. Energy analysis during biped walking. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), Detroit, MI, USA, 10–15 May 1999; Volume 1, pp. 59–64. [Google Scholar] [CrossRef]
- Yamasaki, F.; Hosoda, K.; Asada, M. An energy consumption based control for humanoid walking. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September–4 October 2002; Volume 3, pp. 2473–2477. [Google Scholar] [CrossRef]
- Gregorio, P.; Ahmadi, M.; Buehler, M. Design, control, and energetics of an electrically actuated legged robot. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 1997, 27, 626–634. [Google Scholar] [CrossRef]
- Zhao, N.; Luo, Y.; Shen, Y. Design, modeling and validation of a deformable capsule-like crawling robot based on scissor elements. Mech. Mach. Theory 2023, 181, 105173. [Google Scholar] [CrossRef]
- Brodoline, I.; Sauvageot, E.; Viollet, S.; Serres, J.R. Shaping the energy curves of a servomotor-based hexapod robot. Sci. Rep. 2024, 14, 11675. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Ji, H.; Chang, Q. Energy Consumption Minimization of Quadruped Robot Based on Reinforcement Learning of DDPG Algorithm. Actuators 2024, 13, 18. [Google Scholar] [CrossRef]
- Lopez, M.; Haghshenas-Jaryani, M. A Study of Energy-Efficient and Optimal Locomotion in a Pneumatic Artificial Muscle-Driven Snake Robot. Robotics 2023, 12, 89. [Google Scholar] [CrossRef]
UAV Mode | Dependency |
---|---|
Idle | Constant value |
Armed | Constant value higher than for Idle |
Taking-off | Velocity |
Hovering | Altitude |
Flying horizontally | Constant value |
Flying vertically upward | Distance |
Flying vertically downward | Distance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Góra, K.; Granosik, G.; Cybulski, B. Energy Utilization Prediction Techniques for Heterogeneous Mobile Robots: A Review. Energies 2024, 17, 3256. https://doi.org/10.3390/en17133256
Góra K, Granosik G, Cybulski B. Energy Utilization Prediction Techniques for Heterogeneous Mobile Robots: A Review. Energies. 2024; 17(13):3256. https://doi.org/10.3390/en17133256
Chicago/Turabian StyleGóra, Krystian, Grzegorz Granosik, and Bartłomiej Cybulski. 2024. "Energy Utilization Prediction Techniques for Heterogeneous Mobile Robots: A Review" Energies 17, no. 13: 3256. https://doi.org/10.3390/en17133256
APA StyleGóra, K., Granosik, G., & Cybulski, B. (2024). Energy Utilization Prediction Techniques for Heterogeneous Mobile Robots: A Review. Energies, 17(13), 3256. https://doi.org/10.3390/en17133256