Recent Developments in Hydrocyclone Technology for Oil-in-Water Separation from Produced Water
Abstract
:1. Introduction to Produced Water
2. Oil-in-Water Separation Technologies
3. Effects of Geometrical Parameters on Hydrocyclone Performance
3.1. Inlet of the Hydrocyclone
3.2. Cylindrical and Conical Sections of the Hydrocyclone
3.3. Outlets of the Hydrocyclone
4. Effects of Operating Parameters on Hydrocyclone Performance
4.1. Inlet Flow Rate
4.2. Oil Concentration and Particle Size
5. Conclusions
- Single-inlet hydrocyclones are characterised by an unsteady and wavering flow, whereas dual-inlet hydrocyclones exhibit a uniform and stable fluid flow structure. In terms of separation efficiency, dual-inlet hydrocyclones outperform single-inlet hydrocyclones.
- The underlying principle of the hydrocyclone inlet design that involves the utilisation of internal features is that it allows the feed mixture to be distributed into distinct layers based on their respective densities. Consequently, this design enhancement leads to a notable improvement in separation efficiency compared to that of conventional hydrocyclones.
- The length of the conical section, the diameter of the underflow pipe, and the diameter of the overflow pipe exhibit a direct proportionality to the separation efficiency. However, it should be noted that a larger diameter of the overflow pipe results in a reduction in the effectiveness of the separation process.
- The efficiency of the separation is indirectly proportional to the cone angle, cylindrical diameter, and length of the vortex finder.
- The separation efficiency is directly influenced by the inlet flow rate, inlet velocity, and oil droplet size, as these parameters exhibit a direct proportionality. Conversely, an increase in the volumetric oil fraction leads to a reduction in the separation efficiency.
Author Contributions
Funding
Conflicts of Interest
References
- Pichtel, J. Oil and Gas Production Wastewater: Soil Contamination and Pollution Prevention. Appl. Environ. Soil Sci. 2016, 2016, 2707989. [Google Scholar] [CrossRef]
- Igunnu, E.T.; Chen, G.Z. Produced Water Treatment Technologies. Int. J. Low-Carbon Technol. 2014, 9, 157–177. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Kaabi, M.A.; Ashfaq, M.Y.; Da’na, D.A. Produced Water Characteristics, Treatment and Reuse: A Review. J. Water Process Eng. 2019, 28, 222–239. [Google Scholar] [CrossRef]
- Costa, T.C.; Hendges, L.T.; Temochko, B.; Mazur, L.P.; Marinho, B.A.; Weschenfelder, S.E.; Florido, P.L.; da Silva, A.; Ulson de Souza, A.A.; Guelli Ulson de Souza, S.M.A. Evaluation of the Technical and Environmental Feasibility of Adsorption Process to Remove Water Soluble Organics from Produced Water: A Review. J. Pet. Sci. Eng. 2022, 208, 109360. [Google Scholar] [CrossRef]
- Clark, C.E.; Veil, J.A. Produced Water Volumes and Management Practices in the United States; Argonne National Lab.: Argonne, IL, USA.
- Judd, S.; Qiblawey, H.; Al-Marri, M.; Clarkin, C.; Watson, S.; Ahmed, A.; Bach, S. The Size and Performance of Offshore Produced Water Oil-Removal Technologies for Reinjection. Sep. Purif. Technol. 2014, 134, 241–246. [Google Scholar] [CrossRef]
- Asim, T.; Hawez, H.K. Effects of CO2 Geosequestration on Opalinus Clay. Energies 2024, 17, 2431. [Google Scholar] [CrossRef]
- Padaki, M.; Surya Murali, R.; Abdullah, M.S.; Misdan, N.; Moslehyani, A.; Kassim, M.A.; Hilal, N.; Ismail, A.F. Membrane Technology Enhancement in Oil-Water Separation. A Review. Desalination 2015, 357, 197–207. [Google Scholar] [CrossRef]
- Dudek, M.; Vik, E.A.; Aanesen, S.V.; Øye, G. Colloid Chemistry and Experimental Techniques for Understanding Fundamental Behaviour of Produced Water in Oil and Gas Production. Adv. Colloid Interface Sci. 2020, 276, 102105. [Google Scholar] [CrossRef] [PubMed]
- Ghafoori, S.; Omar, M.; Koutahzadeh, N.; Zendehboudi, S.; Malhas, R.N.; Mohamed, M.; Al-Zubaidi, S.; Redha, K.; Baraki, F.; Mehrvar, M. New Advancements, Challenges, and Future Needs on Treatment of Oilfield Produced Water: A State-of-the-Art Review. Sep. Purif. Technol. 2022, 289, 120652. [Google Scholar] [CrossRef]
- Onyems Igwe, C.; AL Saadi, A. Optimal Options for Treatment of Produced Water in Offshore Petroleum Platforms. J. Pollut. Eff. Control 2013, 1, 1–5. [Google Scholar] [CrossRef]
- Singh, D.; Charlton, M.; Asim, T.; Mishra, R.; Townsend, A.; Blunt, L. Quantification of Additive Manufacturing Induced Variations in the Global and Local Performance Characteristics of a Complex Multi-Stage Control Valve Trim. J. Pet. Sci. Eng. 2020, 190, 107053. [Google Scholar] [CrossRef]
- Bayati, F.; Shayegan, J.; Noorjahan, A. Treatment of Oilfield Produced Water by Dissolved Air Precipitation/Solvent Sublation. J. Pet. Sci. Eng. 2011, 80, 26–31. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, Y.; Woo, Y.C.; Hwang, I. Water Management and Produced Water Treatment in Oil Sand Plant: A Review. Desalination 2023, 567, 116991. [Google Scholar] [CrossRef]
- Mahbouba, Z.N.; Abdulkhalik, M.K.; Mussa, J.H. Characteristics and Management of Produced Water in Al-Ahdab Oil Field. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1094, 012090. [Google Scholar] [CrossRef]
- Miranda, M.A.; Ghosh, A.; Mahmodi, G.; Xie, S.; Shaw, M.; Kim, S.; Krzmarzick, M.J.; Lampert, D.J.; Aichele, C.P. Treatment and Recovery of High-Value Elements from Produced Water. Water 2022, 14, 880. [Google Scholar] [CrossRef]
- Duraisamy, R.T.; Heydari, A.; Henni, A. State of the Art Treatment of Produced Water. In Water Treatment; InTech: Vienna, Austria, 2013; pp. 6–7. ISBN 0071418725. [Google Scholar]
- Fakhru’l-Razi, A.; Pendashteh, A.; Abdullah, L.C.; Biak, D.R.A.; Madaeni, S.S.; Abidin, Z.Z. Review of Technologies for Oil and Gas Produced Water Treatment. J. Hazard. Mater. 2009, 170, 530–551. [Google Scholar] [CrossRef] [PubMed]
- Brinn, M.; Wylde, S. Compact Oxygen Removal for Waterflood Projects. In Proceedings of the Offshore Technology Conference, OTC, Houston, TX, USA, 6 May 2013. [Google Scholar]
- Bi, F.; Ma, S.; Gao, B.; Liu, B.; Huang, Y.; Qiao, R.; Zhang, X. Boosting Toluene Deep Oxidation by Tuning Metal-Support Interaction in MOF-Derived Pd@ZrO2 Catalysts: The Role of Interfacial Interaction between Pd and ZrO2. Fuel 2024, 357, 129833. [Google Scholar] [CrossRef]
- Pan, E.C.; Sun, H.; Xu, Q.; Zhang, Q.; Liu, L.F.; Chen, X.D.; Xu, Y. Polycyclic Aromatic Hydrocarbons Concentrations in Drinking Water in Villages along the Huai River in China and Their Association with High Cancer Incidence in Local Population. Biomed. Res. Int. 2015, 2015, 762832. [Google Scholar] [CrossRef] [PubMed]
- Judd, S.J.; Khraisheh, M.; Al-Jaml, K.L.; Jarman, D.M.; Jahfer, T. Influence of Composite Particle Formation on the Performance and Economics of Grit Removal. Water Res. 2017, 108, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, Y.; Hu, S.; Gliege, M.E.; Liu, Y.; Liu, R.; Scudiero, L.; Hu, Y.; Ha, S. Electrochemical Reduction of Carbon Dioxide to Formic Acid in Ionic Liquid [Emim][N(CN)2]/Water System. Electrochim. Acta 2017, 247, 281–287. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, H.; Li, Y.; Xu, H.; Pan, Z.; Dai, P.; Wang, H.; Yang, Q. A Review of Treatment Technologies for Produced Water in Offshore Oil and Gas Fields. Sci. Total Environ. 2021, 775, 145485. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Sharma, M.; Dureja, P.; Sarma, P.M.; Lal, B. Bioelectrochemical Approaches for Removal of Sulfate, Hydrocarbon and Salinity from Produced Water. Chemosphere 2017, 166, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Jha, N.K.; Pal, N.; Keshavarz, A.; Hoteit, H.; Sarmadivaleh, M. Recent Advances in Carbon Dioxide Geological Storage, Experimental Procedures, Influencing Parameters, and Future Outlook. Earth-Sci. Rev. 2022, 225, 103895. [Google Scholar] [CrossRef]
- Dandekar, A.Y. Petroleum Reservoir Rock and Fluid Properties, 2nd ed.; CRC Press: New York, NY, USA, 2013; ISBN 9781439876459. [Google Scholar]
- Vichaphund, S.; Wimuktiwan, P.; Soongprasit, C.; Sricharoenchaikul, V.; Atong, D. Aromatic and Aliphatic Production of Catalytic Pyrolysis of Lignin Using ZSM-5/Al-SBA-15 Catalyst Derived from High-Calcium Fly Ash. Energy Rep. 2021, 7, 232–247. [Google Scholar] [CrossRef]
- Raesi, R.; Maddahian, R. Numerical Investigation of Air-Injected Deoiling Hydrocyclones Using Population Balance Model. Chem. Eng. Sci. 2022, 248, 117103. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, G.; Asim, T.; Mishra, R. Combustion Characterization of Hybrid Methane-Hydrogen Gas in Domestic Swirl Stoves. Fuel 2023, 333, 126413. [Google Scholar] [CrossRef]
- Show, P.L.; Thangalazhy-Gopakumar, S.; Foo, D.C.Y. Sustainable Technologies for Waste Reduction and Pollutants Removals. Clean Technol. Environ. Policy 2021, 23, 1–2. [Google Scholar] [CrossRef]
- Dolan, F.C.; Cath, T.Y.; Hogue, T.S. Assessing the Feasibility of Using Produced Water for Irrigation in Colorado. Sci. Total Environ. 2018, 640–641, 619–628. [Google Scholar] [CrossRef]
- Alsarayreh, M.; Almomani, F.; Khraisheh, M.; Nasser, M.S.; Soliman, Y. Biological-Based Produced Water Treatment Using Microalgae: Challenges and Efficiency. Sustainability 2022, 14, 499. [Google Scholar] [CrossRef]
- Kyriakidis, Y.N.; Silva, D.O.; Barrozo, M.A.S.; Vieira, L.G.M. Effect of Variables Related to the Separation Performance of a Hydrocyclone with Unprecedented Geometric Relationships. Powder Technol. 2018, 338, 645–653. [Google Scholar] [CrossRef]
- Hawez, H.K.; Asim, T. Impact of Regional Pressure Dissipation on Carbon Capture and Storage Projects: A Comprehensive Review. Energies 2024, 17, 1889. [Google Scholar] [CrossRef]
- Al-Kayiem, H.H.; Hamza, J.E.; Lemmu, T.A. Experimental investigation of the separation performance Liquid–Liquid Hydrocyclone Separator through Optimization of the Swirler Vane Angle. J. Pet. Explor. Prod. Technol. 2020, 10, 2957–2967. [Google Scholar] [CrossRef]
- Gerrie, C.; Islam, S.Z.; Gerrie, S.; Turner, N.; Asim, T. 3D CFD Modelling of Performance of a Vertical Axis Turbine. Energies 2023, 16, 1144. [Google Scholar] [CrossRef]
- da Silva Almeida, F.B.P.; Esquerre, K.P.S.O.R.; Soletti, J.I.; De Farias Silva, C.E. Coalescence Process to Treat Produced Water: An Updated Overview and Environmental Outlook. Environ. Sci. Pollut. Res. 2019, 26, 28668–28688. [Google Scholar] [CrossRef] [PubMed]
- Multon, L.M.; Viraraghavan, T. Removal of Oil from Produced Water by Coalescence/Filtration in a Granular Bed. Environ. Technol. 2006, 27, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Kang, Y.; Cui, S. Oil and Water Separation Using a Glass Microfiber Coalescing Bed. J. Dispers. Sci. Technol. 2014, 35, 103–110. [Google Scholar] [CrossRef]
- Shammas, N.K.; Pouet, M.-F.; Grasmick, A. Flotation Technology; Wang, L.K., Shammas, N.K., Selke, W.A., Aulenbach, D.B., Eds.; Humana Press: Totowa, NJ, USA, 2010; Volume 12, ISBN 978-1-58829-494-4. [Google Scholar]
- Al-Dulaimi, S.L.; Al-Yaqoobi, A.M. Separation of Oil/Water Emulsions by Microbubble Air Flotation. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1076, 012030. [Google Scholar] [CrossRef]
- Saththasivam, J.; Loganathan, K.; Sarp, S. An Overview of Oil-Water Separation Using Gas Flotation Systems. Chemosphere 2016, 144, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Iritani, E.; Katagiri, N.; Sengoku, T.; Yoo, K.M.; Kawasaki, K.; Matsuda, A. Flux Decline Behaviors in Dead-End Microfiltration of Activated Sludge and Its Supernatant. J. Memb. Sci. 2007, 300, 36–44. [Google Scholar] [CrossRef]
- Charlton, M.; Mishra, R.; Asim, T. The Effect of Manufacturing Method Induced Roughness on Severe Service Control Valve Performance. In Proceedings of the 6th International and 43rd National Conference on Fluid Mechanics and Fluid Power, Allahabad, India, 15–17 December 2016. [Google Scholar]
- Alzahrani, S.; Mohammad, A.W. Challenges and Trends in Membrane Technology Implementation for Produced Water Treatment: A Review. J. Water Process Eng. 2014, 4, 107–133. [Google Scholar] [CrossRef]
- Ghodrat, M.; Qi, Z.; Kuang, S.B.; Ji, L.; Yu, A.B. Computational Investigation of the Effect of Particle Density on the Multiphase Flows and Performance of Hydrocyclone. Miner. Eng. 2016, 90, 55–69. [Google Scholar] [CrossRef]
- Bai, Z.; Wang, H.; Tu, S.T. Oil-Water Separation Using Hydrocyclones Enhanced by Air Bubbles. Chem. Eng. Res. Des. 2011, 89, 55–59. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, Z.; Qiao, C.; Yang, W.; Huang, Y.; McKay, P.; Yang, D.; Liu, Q.; Zeng, H. Techniques for Treating Slop Oil in Oil and Gas Industry: A Short Review. Fuel 2020, 279, 118482. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, L.; Sun, Y.; Gao, S.; Jiang, M.; Jiang, M.; Rosso, D. Separation Performance of Hydrocyclones with Medium Rearrangement Internals. J. Environ. Chem. Eng. 2021, 9, 105642. [Google Scholar] [CrossRef]
- Liu, B.; Chen, B.; Ling, J.; Matchinski, E.J.; Dong, G.; Ye, X.; Wu, F.; Shen, W.; Liu, L.; Lee, K.; et al. Development of Advanced Oil/Water Separation Technologies to Enhance the Effectiveness of Mechanical Oil Recovery Operations at Sea: Potential and Challenges. J. Hazard. Mater. 2022, 437, 129340. [Google Scholar] [CrossRef] [PubMed]
- Kharoua, N.; Khezzar, L.; Nemouchi, Z. Hydrocyclones for De-Oiling Applications-a Review. Pet. Sci. Technol. 2010, 28, 738–755. [Google Scholar] [CrossRef]
- Tian, J.; Ni, L.; Song, T.; Olson, J.; Zhao, J. An Overview of Operating Parameters and Conditions in Hydrocyclones for Enhanced Separations. Sep. Purif. Technol. 2018, 206, 268–285. [Google Scholar] [CrossRef]
- Vallabhan, M.; Holden, C.; Skogestad, S. A First-Principles Approach for Control-Oriented Modeling of De-Oiling Hydrocyclones. Ind. Eng. Chem. Res. 2020, 59, 18937–18950. [Google Scholar] [CrossRef]
- Liu, X.; Asim, T.; Zhu, G.; Mishra, R. Theoretical and Experimental Investigations on the Combustion Characteristics of Three Components Mixed Municipal Solid Waste. Fuel 2020, 267, 117183. [Google Scholar] [CrossRef]
- Taimoor, A. Computational Fluid Dynamics Based Diagnostics and Optimal Design of Hydraulic Capsule Pipelines. Doctoral Thesis, University of Huddersfield, Huddersfield, UK, 2013. [Google Scholar]
- Wang, J.; Bai, Z.; Yang, Q.; Fan, Y.; Wang, H. Investigation of the Simultaneous Volumetric 3-Component Flow Field inside a Hydrocyclone. Sep. Purif. Technol. 2016, 163, 120–127. [Google Scholar] [CrossRef]
- Liu, M.; Chen, J.; Cai, X.; Han, Y.; Xiong, S. Oil–Water Pre-Separation with a Novel Axial Hydrocyclone. Chin. J. Chem. Eng. 2018, 26, 60–66. [Google Scholar] [CrossRef]
- Mao, R.; Li, Y.; Liu, Y.; Zhu, H.; Wang, N.; Yang, Q.; Lu, H. Separation Characters of an Axial-Flow Hydrocyclone with Oil Collecting Pipe. Sep. Purif. Technol. 2023, 305, 122139. [Google Scholar] [CrossRef]
- Noroozi, S.; Hashemabadi, S.H. CFD Simulation of Inlet Design Effect on Deoiling Hydrocyclone Separation Efficiency. Chem. Eng. Technol. 2009, 32, 1885–1893. [Google Scholar] [CrossRef]
- Tang, B.; Xu, Y.; Song, X.; Sun, Z.; Yu, J. Effect of Inlet Configuration on Hydrocyclone Performance. Trans. Nonferrous Met. Soc. China 2017, 27, 1645–1655. [Google Scholar] [CrossRef]
- Al-Kayiem, H.H.; Osei, H.; Hashim, F.M.; Hamza, J.E. Flow Structures and Their Impact on Single and Dual Inlets Hydrocyclone Performance for Oil–Water Separation. J. Pet. Explor. Prod. Technol. 2019, 9, 2943–2952. [Google Scholar] [CrossRef]
- Zhang, C.; Cui, B.; Wei, D.; Zhao, Q.; Luo, N.; Feng, Y. Predicting the Optimum Range of Feed Flow Rate in a Hydrocyclone Using the Method Combined Flow Pattern and Equation Model. Powder Technol. 2017, 319, 279–288. [Google Scholar] [CrossRef]
- Li, F.; Liu, P.; Yang, X.; Zhang, Y.; Zhao, Y. Effects of Inlet Concentration on the Hydrocyclone Separation Performance with Different Inlet Velocity. Powder Technol. 2020, 375, 337–351. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Z.; Yan, X.; Zhang, H.; Wang, L. Hydrocyclone Separation Enhancement of Fine Particles Based on Interface Control. Miner. Eng. 2024, 209, 108628. [Google Scholar] [CrossRef]
- Liu, P.; Fu, W.; Jiang, L.; Zhang, Y.; Li, X.; Yang, X.; Chen, B. Effect of Back Pressure on the Separation Performance of a Hydrocyclone. Powder Technol. 2022, 409, 117823. [Google Scholar] [CrossRef]
- Concha, F. Flow Pattern in Hydrocyclones. KONA Powder Part. J. 2007, 25, 97–132. [Google Scholar] [CrossRef]
- Patra, G.; Velpuri, B.; Chakraborty, S.; Meikap, B.C. Performance Evaluation of a Hydrocyclone with a Spiral Rib for Separation of Particles. Adv. Powder Technol. 2017, 28, 3222–3232. [Google Scholar] [CrossRef]
- Zhao, Q.; Hou, D.; Cui, B.; Wei, D.; Song, T.; Feng, Y. Development of an Integrated Multichannel Inlet for Improved Particle Classification in Hydrocyclones. Adv. Powder Technol. 2021, 32, 4546–4561. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, L.; Yang, X.; Wang, Y.; Xu, B.; Liang, B. Innovative Design and Study of an Oil-Water Coupling Separation Magnetic Hydrocyclone. Sep. Purif. Technol. 2019, 213, 389–400. [Google Scholar] [CrossRef]
- Craig, M.; Asim, T. Numerical Investigations on the Propagation of Fire in a Railway Carriage. Energies 2020, 13, 4999. [Google Scholar] [CrossRef]
- Li, F.; Liu, P.; Yang, X.; Zhang, Y. Numerical Simulation on the Effects of Different Inlet Pipe Structures on the Flow Field and Seperation Performance in a Hydrocyclone. Powder Technol. 2020, 373, 254–266. [Google Scholar] [CrossRef]
- Rocha, C.A.O.; Ullmann, G.; Silva, D.O.; Vieira, L.G.M. Effect of Changes in the Feed Duct on Hydrocyclone Performance. Powder Technol. 2020, 374, 283–289. [Google Scholar] [CrossRef]
- Freegah, B.; Asim, T.; Albarzenji, D.; Pradhan, S.; Mishra, R. Effect of the Shape of Connecting Pipes on the Performance Output of a Closed-Loop Hot Water Solar Thermo-Syphon. In Proceedings of the 3rd International Workshop and Congress on eMaintenance, Lulea, Sweden, 17–18 June 2014; pp. 45–59. [Google Scholar]
- Liu, X.; Zhu, G.; Asim, T.; Zhang, Y.; Mishra, R. The Innovative Design of Air Caps for Improving the Thermal Efficiency of CFB Boilers. Energy 2021, 221, 119844. [Google Scholar] [CrossRef]
- Nasiri, M.; Jafari, I. Produced Water from Oil-Gas Plants: A Short Review on Challenges and Opportunities. Period. Polytech. Chem. Eng. 2017, 61, 73–81. [Google Scholar] [CrossRef]
- Khodadadi, S.; Maddahian, R.; Ramezani Mouziraji, H.A. Eulerian-Lagrangian Investigation of de-Oiling Hydrocyclones: The Effects of Droplet Interaction and Size Distribution. Chem. Eng. Sci. 2023, 277, 118855. [Google Scholar] [CrossRef]
- Kollár, L.E.; Mishra, R.; Asim, T. Particle Size Effects on Optimal Sizing and Lifetime of Pipelines Transporting Multi-Sized Solid-Liquid Mixtures. Procedia CIRP 2013, 11, 317–322. [Google Scholar] [CrossRef]
- Young, G.A.B.; Wakley, W.D.; Taggart, D.L.; Andrews, S.L.; Worrell, J.R. Oil-Water Separation Using Hydrocyclones: An Experimental Search for Optimum Dimensions. J. Pet. Sci. Eng. 1994, 11, 37–50. [Google Scholar] [CrossRef]
- Hawez, H.; Sanaee, R.; Faisal, N.H. Multiphase Flow Modelling in Fractured Reservoirs Using a Novel Computational Fluid Dynamics Approach. In Proceedings of the 55th U.S. Rock Mechanics/Geomechanics Symposium, Virtual, 20–23 June 2021. [Google Scholar]
- Kou, J.; Chen, Y.; Wu, J. Numerical Study and Optimization of Liquid-Liquid Flow in Cyclone Pipe. Chem. Eng. Process. Process Intensif. 2020, 147, 107725. [Google Scholar] [CrossRef]
- Zeng, X.; Xu, Y.; Zhao, L.; Fan, G.; Yan, C. Numerical Investigation on Axial Liquid-Liquid Separators with Different Swirl Chambers. Chem. Eng. Process. Process Intensif. 2021, 161, 108324. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, L.; Zhao, W.; Hou, M.; Zhu, F.; Fan, G.; Yan, C. Experimental Study on a Compact Axial Separator with Conical Tube for Liquid-Liquid Separation. Sep. Purif. Technol. 2021, 257, 117904. [Google Scholar] [CrossRef]
- Zhao, L.; Zeng, X.; Zhao, W.; Zhu, F.; Hou, M.; Fan, G. Structural Optimization for an Axial Oil-water Separator with Multi-stage Separation. Heat Mass Transf. Und Stoffuebertragung 2021, 57, 1949–1963. [Google Scholar] [CrossRef]
- Je, Y.W.; Kim, Y.J.; Kim, Y.J. The Prediction of Separation Performance of an In-Line Axial Oil–Water Separator Using Machine Learning and CFD. Processes 2022, 10, 375. [Google Scholar] [CrossRef]
- Asim, T.; Mishra, R.; Ubbi, K.; Zala, K. Computational Fluid Dynamics Based Optimal Design of Vertical Axis Marine Current Turbines. Procedia CIRP 2013, 11, 323–327. [Google Scholar] [CrossRef]
- Zheng, Y.; Min, F.; Wang, C. Multiphase Flow Characteristics in the Classification Process of a Novel Wide Neck Thickener: Experiment and Simulation. ACS Omega 2022, 7, 38660–38673. [Google Scholar] [CrossRef] [PubMed]
- Asim, T.; Mishra, R.; Kaysthagir, S.N.; Aboufares, G. Performance Comparison of a Vertical Axis Wind Turbine Using Commercial and Open Source Computational Fluid Dynamics Based Codes. In Springer Proceedings in Physics; Springer: Berlin/Heidelberg, Germany, 2016; Volume 185, pp. 589–594. ISBN 9783319306001. [Google Scholar]
- Chen, W.; Wan, W.; Zhao, Y.; He, H.; Wu, Q.; Zhou, Y.; Xie, S. Mechanical Damage Evolution and Mechanism of Sandstone with Prefabricated Parallel Double Fissures under High-Humidity Condition. Bull. Eng. Geol. Environ. 2022, 81, 245. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, X.; Chen, F.; Zhang, H.; Xiao, X. Numerical Simulation on Crack–Inclusion Interaction for Rib-to-Deck Welded Joints in Orthotropic Steel Deck. Metals 2023, 13, 1402. [Google Scholar] [CrossRef]
- Chen, W.; Wan, W.; He, H.; Liao, D.; Liu, J. Temperature Field Distribution and Numerical Simulation of Improved Freezing Scheme for Shafts in Loose and Soft Stratum; Springer: Vienna, Austria, 2024; Volume 57, ISBN 0123456789. [Google Scholar]
- de Araújo, C.A.O.; Scheid, C.M.; Loureiro, J.B.R.; Klein, T.S.; Medronho, R.A. Hydrocylone for Oil-Water Separations with High Oil Content: Comparison between CFD Simulations and Experimental Data. J. Pet. Sci. Eng. 2020, 187, 106788. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, L.; Fan, G.; Yan, C. Experimental Study on the Design of Light Phase Outlets for a Novel Axial Oil-Water Separator. Chem. Eng. Res. Des. 2021, 165, 308–319. [Google Scholar] [CrossRef]
- Abdi, P.; Lidster, D.; Talimi, V.; Thodi, P.; Masek, V.; Abdi, M.A. Hydrocyclone Performance for Mechanical Oil Spill Recovery Systems in Offshore Harsh Environment. J. Ocean Technol. 2021, 16, 96–118. [Google Scholar]
- Freegah, B.; Asim, T.; Mishra, R. Computational Fluid Dynamics Based Analysis of a Closed Thermo-Siphon Hot Water Solar System. In Proceedings of the 26th International Congress of Condition Monitoring and Diagnostic Engineering Management, Helsinki, Finland, 11–13 June 2013. [Google Scholar]
- Hamza, J.E.; Al-Kayiem, H.H.; Lemma, T.A. Experimental Investigation of the Separation Performance of Oil/Water Mixture by Compact Conical Axial Hydrocyclone. Therm. Sci. Eng. Prog. 2020, 17, 100358. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, L.; Fan, G.; Zhang, R.; Yan, C. Experimental Investigation on a New Axial Separator for Oil-Water with Small Density Difference. Ind. Eng. Chem. Res. 2021, 60, 9560–9569. [Google Scholar] [CrossRef]
- Angelim, K.; Lima, A.; Souza, J.; Neto, S.; Oliveira, V.; Moreira, G. Applying CFD in the Analysis of Heavy Oil/Water Separation Process via Hydrocyclone. Int. J. Multiphys. 2017, 11, 151–168. [Google Scholar] [CrossRef]
- Li, S.; Li, R.; Nicolleau, F.C.G.A.; Wang, Z.; Yan, Y.; Xu, Y.; Chen, X. Study on Oil–Water Two-Phase Flow Characteristics of the Hydrocyclone under Periodic Excitation. Chem. Eng. Res. Des. 2020, 159, 215–224. [Google Scholar] [CrossRef]
- Zhao, S.; Sun, J.; Wang, S.; Sun, Z. Modeling and Numerical Simulation of the Inlet Velocity on Oil–Water Two-Phase Vapor Separation Efficiency by the Hydrocyclone. Energies 2022, 15, 4900. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.; Duan, Y.; Yang, X.; Yang, J.; Tang, X. Influence of Feed Rate on the Performance of Hydrocyclone Flow Field. Separations 2022, 9, 349. [Google Scholar] [CrossRef]
- Amori, D.K.E.; Al-Ammar, Z.H. Numerical Study of Oil-Water Separation in Inline Axial Hydrocyclone. J. Pet. Res. Stud. 2022, 12, 154–172. [Google Scholar] [CrossRef]
- Gorobets, A.V.; Tarabara, V.V. Separation Performance of Desanding and Deoiling Hydrocyclones Treating Three-Phase Feeds: Effect of Oil-Particle Aggregates. Sep. Purif. Technol. 2020, 237, 116466. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, L.; Fan, G.; Yan, C. Numerical and Experimental Study on a New Axial Separator for Liquid-Liquid Separation. J. Taiwan Inst. Chem. Eng. 2021, 123, 104–114. [Google Scholar] [CrossRef]
- Yang, M.; Jiang, R.; Wu, X.; Hu, Z.; Yue, Y.; Chen, Y. Numerical Analysis of Flow Field and Separation Characteristics in an Oilfield Sewage Separation Device. Adv. Powder Technol. 2021, 32, 771–778. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, L.; Wang, Y.; Zhang, S.; Song, M.; Huang, X.; Lu, Z. Research on the Enhancement of the Separation Efficiency for Discrete Phases Based on Mini Hydrocyclone. J. Mar. Sci. Eng. 2022, 10, 1606. [Google Scholar] [CrossRef]
- Xing, L.; Jiang, M.; Zhao, L.; Gao, J.; Liu, L. Design and Analysis of De-Oiling Coalescence Hydrocyclone. Sep. Sci. Technol. 2022, 57, 749–767. [Google Scholar] [CrossRef]
- Mohammadi, M.; Sarafi, A.; Kamyabi, A.; Soltani Goharrizi, A.; Abolpour, B. Simulation of Separation of Salt Solution from Crude Oil in a Hydrocyclone. J. Eng. 2022, 2022, 9558553. [Google Scholar] [CrossRef]
- Al-Kayiem, H.H.; Hamza, J.E.; Al-Azawiey, S.S. Droplet Shear in Oil/Water Emulsion Produced By Centrifugal Pump and Gear Pump. Int. J. Energy Prod. Manag. 2022, 7, 193–206. [Google Scholar] [CrossRef]
- Asim, T. Capacity Testing of X-Stream Valves for Single-Component Single-Phase Flows; Weir Valves and Controls: Elland, UK, 2013. [Google Scholar]
- Liu, M.; Kong, C.; Zhang, Y.; Chen, J.; Peng, S. Effect of Gas on Separation Performance of an Axial Hydrocyclone for Preliminary Water Separation. Powder Technol. 2023, 425, 118581. [Google Scholar] [CrossRef]
- Chen, W.; Liu, J.; Liu, W.; Peng, W.; Zhao, Y.; Wu, Q.; Wang, Y.; Wan, W.; Li, S.; Peng, H.; et al. Lateral Deformation and Acoustic Emission Characteristics of Dam Bedrock under Various River Flow Scouring Rates. J. Mater. Res. Technol. 2023, 26, 3245–3271. [Google Scholar] [CrossRef]
- Chen, W.; Liu, J.; Peng, W.; Zhao, Y.; Luo, S.; Wan, W.; Wu, Q.; Wang, Y.; Li, S.; Tang, X.; et al. Aging Deterioration of Mechanical Properties on Coal-Rock Combinations Considering Hydro-Chemical Corrosion. Energy 2023, 282, 128770. [Google Scholar] [CrossRef]
- Luo, Y.; Liao, P.; Pan, R.; Zou, J.; Zhou, X. Effect of Bar Diameter on Bond Performance of Helically Ribbed GFRP Bar to UHPC. J. Build. Eng. 2024, 91, 109577. [Google Scholar] [CrossRef]
Category | Main Components |
---|---|
Dissolved and dispersed oils | Benzene, toluene, ethylbenzene, xylenes (BTEX), naphthalene, phenanthrene, dibenzothiophene (NPD), polyaromatic hydrocarbons (PAHs) and phenols [13,14]. |
Dissolved formation minerals | Anions, cations, radioactive materials, and heavy metals [15,16]. |
Production chemical compounds | Inhibitors, biocides, asphaltene dispersants, paraffin inhibitors, defoamers, emulsion breakers, clarifiers, coagulants, and flocculants [17,18]. |
Production solids | Clays, waxes, bacteria, carbonates, sand, silt, corrosion, scale products, and formation solids [2,17]. |
Dissolved gases | Carbon dioxide, hydrogen sulphide, and oxygen [19]. |
Constituent | Typical Concentration (mg/L) |
---|---|
Total dissolved solids (TDS) | 1000–400,000 |
Total suspended solids (TSS) | 1.2–1000 |
Chemical oxygen demand (COD) | 1220–2600 |
Total organic carbon (TOC) | 0–1500 |
Total oil and grease | 2–560 |
Total organics acids | 0.1–11,000 |
Salinity | 5000–300,000,000 |
Aliphatic hydrocarbons | 17–30 |
C0-C5-phenols | 0.4–23 |
Benzene | 0.032–14.97 |
Sodium | 0–150,000 |
Chlorine | 0–250,000 |
Calcium | 0–74,000 |
Potassium | 24–4300 |
Magnesium | 8–6000 |
Iron | 0.1–100 |
Aluminium | 310–410 |
Toluene | 0.058–5.86 |
Ethylbenzene | 0.086–0.57 |
Naphthalene | 0.194–0.841 |
Boron | 5–95 |
Chromium | 0.02–1.1 |
Lithium | 3–50 |
Manganese | 0.004–175 |
Zinc | 0.01–35 |
Lead | 0.008–0.88 |
Ketones | 1–2 |
Polycyclic aromatic hydrocarbons | 0.04–3 |
Total BTEX | 0.73–24.1 |
Treatment Technology | Oil Removal Efficiency | Advantages | Shortcomings |
---|---|---|---|
Coalescence [38,39,40] | Removes 95% on inlet oil content 25 ppm—15%, droplet removal > 20 µm. | - Can be conjugated with a flotation system for higher separation efficiency. - Effective on demulsification. | - Slow oil removal process. - Could be susceptible to solid loading and clogging. - Chance of fouling by oil sludge. - Low capacity. - Requires pre-treatment. - Constant change of coalescer filters. |
Flotation [41,42,43] | - Removes oil droplets > 20 μm with a mean effluent concentration of 10–40 mg/L. - Removes 90% of oil components, 50–70% dispersed oil when combined with a centrifuge. | - High oil removal efficiency. - Small footage print. - Appropriate for removal of light and smaller particles that are difficult to settle down. - More suitable for the removal of suspended solid and heavy crude. | - High costs of operations. - Requires pre-treatment. - Difficult to remove dissolved oil. - Sophisticated procedure. |
Centrifuges [44,45] | Removes droplets > 10 µm to 5 ppm TPH. | Simple operation Low initial and operating costs. | - Extremely temperature and PH sensitive. - Highest energy consumption. |
Gravity settling (API Tanks, Skim tanks) [22,46] | - Removes oil droplets > 150 µm > 20 µm under exceptional circumstances. - Removes to 10 ppm TPH for light oils. | - Appropriate for free oil. - Suitable as a pre-treatment step in oil removal. - Simple equipment with low operating and maintenance costs. | - Slow separation rate. - Large footage print. - Not appropriate for removal of dissolved oil and heavy water separation. |
Hydrocyclone [25,47,48] | - Removes 98% solids and >10 µm droplets down to 5–10 ppm TPH. - Capable of handling influent concentration (up to 2000 mg L−1). | - Compact and simple design with no moving parts. - Applicable to offshore facilities. - No need for pre-treatment. - High efficiency for TDS and small oil droplet removal. High throughput with very low retention time. | - Possibility of fouling and clogging. - Not suitable for heavy oil and stable emulsion (small-size droplets). - High maintenance cost. |
Parameter | Influence on the Hydrocyclone Performance |
---|---|
Inlet Size | Larger Inlets: Higher throughput, increased volumetric flow rate, and possible turbulence-related decrease in separation efficiency [64]. |
Smaller Inlets: Lower throughput, enhanced separation efficiency due to more regulated flow, and lower flow rates [65]. | |
Inlet Type | Tangential Inlets: By generating a steady vortex and increasing centrifugal force, these inlets improve separation efficiency [66]. |
Axial Inlets: These may result in a reduction in separation efficiency due to their inefficiency in producing significant centrifugal forces [67]. | |
Inlet Shape | Circular Inlets: Offer symmetrical flow, making flow patterns easier to study and analyse [68]. |
Rectangular/Slot Inlets: These may produce complicated turbulence patterns but can also produce a more consistent flow distribution [69]. | |
Number of Inlets | Single Inlet: This may limit throughput, but has a simpler flow pattern that is easier to forecast and control [68]. |
Multiple Inlets: A careful design is needed to balance and synchronise flow because increased throughput capacity might result in more complicated and potentially turbulent flow patterns [70]. |
Geometrical Parameter | Influence on the Hydrocyclone Performance |
---|---|
Inlet |
|
Cylindrical section | |
Conical section | |
Outlets |
Operating Parameter | Influence on the Hydrocyclone Performance |
---|---|
Inlet flow rate |
|
Inlet velocity | |
Oil concentration | |
Oil particle size |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekechukwu, O.M.; Asim, T.; Hawez, H.K. Recent Developments in Hydrocyclone Technology for Oil-in-Water Separation from Produced Water. Energies 2024, 17, 3181. https://doi.org/10.3390/en17133181
Ekechukwu OM, Asim T, Hawez HK. Recent Developments in Hydrocyclone Technology for Oil-in-Water Separation from Produced Water. Energies. 2024; 17(13):3181. https://doi.org/10.3390/en17133181
Chicago/Turabian StyleEkechukwu, Okwunna Maryjane, Taimoor Asim, and Haval Kukha Hawez. 2024. "Recent Developments in Hydrocyclone Technology for Oil-in-Water Separation from Produced Water" Energies 17, no. 13: 3181. https://doi.org/10.3390/en17133181
APA StyleEkechukwu, O. M., Asim, T., & Hawez, H. K. (2024). Recent Developments in Hydrocyclone Technology for Oil-in-Water Separation from Produced Water. Energies, 17(13), 3181. https://doi.org/10.3390/en17133181