A Water–Energy–Carbon–Economy Framework to Assess Resources and Environment Sustainability: A Case Study of the Yangtze River Economic Belt, China
Abstract
:1. Introduction
2. Research Framework
3. Materials and Methods
3.1. Study Area
3.2. Indicator System Construction and Data Sources
Subsystem | First-Level Indicator | Second-Level Indicator | Reference | Number | Weight (Direction) |
---|---|---|---|---|---|
Water resource subsystem | Water resources security | Total water resources per capita (m3/person) | [30] | X1 | 0.155 (+) |
Total water consumption per capita (m3/person) | X2 | 0.072 (−) | |||
Development and utilization rate of water resources (%) | [34] | X3 | 0.016 (−) | ||
Water production modulus (104 m3/km2) | [35] | X4 | 0.122 (+) | ||
Water use structure | Proportion of agricultural water use (%) | X5 | 0.186 (−) | ||
Proportion of industrial water use (%) | X6 | 0.065 (−) | |||
Proportion of domestic water use (%) | X7 | 0.081 (−) | |||
Proportion of ecological water use (%) | X8 | 0.189 (+) | |||
Water use efficiency | Water consumption per CNY 10,000 of GDP (m3/CNY 104) | [30] | X9 | 0.045 (−) | |
Urban wastewater treatment rate (%) | X10 | 0.042 (−) | |||
Water consumption per CNY 10,000 of value-added use by industry (m3/CNY 104) | [34] | X11 | 0.027 (+) | ||
Energy subsystem | Energy security | Energy self-sufficiency rate (%) | [36] | X12 | 0.254 (+) |
Primary energy production per capita (ton of standard coal (TSC)/person) | X13 | 0.077 (−) | |||
Energy consumption per capita (TSC/person) | [30] | X14 | 0.055 (+) | ||
Elasticity consumption per capita (104 kW·h/person) | X15 | 0.063 (−) | |||
Energy utilization efficiency | Share of oil consumption (%) | [37] | X16 | 0.076 (−) | |
Share of coal consumption (%) | X17 | 0.055 (−) | |||
Share of natural gas consumption (%) | X18 | 0.253 (+) | |||
Elasticity ratio of energy consumption | [33] | X19 | 0.071 (−) | ||
Energy consumption per CNY 10,000 of GDP (TSC/CNY 104) | X20 | 0.046 (−) | |||
Energy utilization efficiency | Elasticity ratio of electricity consumption | [38] | X21 | 0.022 (−) | |
Electricity consumption per CNY 10,000 of GDP (kW·h/CNY 104) | / | X22 | 0.026 (−) | ||
Carbon subsystem | Carbon emission | Total carbon emissions (106 t) | [13] | X23 | 0.050 (−) |
Carbon emissions per CNY 10,000 of GDP (t/CNY 104) | X24 | 0.095 (−) | |||
Carbon emissions per capita (t/person) | X25 | 0.145 (−) | |||
Carbon sink | Greening coverage rate of urban built-up area (%) | [26] | X26 | 0.070 (+) | |
Forest stock per unit area (m3/km2) | / | X27 | 0.346 (+) | ||
Percentage of forest cover (%) | [39] | X28 | 0.294 (+) |
3.3. Methodology
3.3.1. Tapio Model
3.3.2. Entropy Weight Method
- (1)
- Calculate the proportions of the i-th sample in the j-th indicator:
- (2)
- Calculate the information entropy of each indicator. The formula for information entropy is
- (3)
- Calculate the weights of the indicator j. The weight assigned to each indicator is calculated by dividing the indicator by the aggregate value of the system indicators:
- (4)
- Calculate the comprehensive evaluation values for each subsystem. The comprehensive value of the subsystems is determined by the product of the standardized indicator values and their respective weights:
3.3.3. CCDM
3.3.4. Spatial Auto-Correlation Model
4. Results
4.1. Decoupling between WEC Elements and Economic Growth
4.2. Analysis of the Comprehensive Evaluation Index in the WEC System
4.3. The Spatiotemporal Characteristic of the WEC System’s CCD
4.4. Spatial Correlation Analysis of the WEC System’s CCD
5. Discussion
5.1. Decoupling Analysis between WEC Elements and Economic Growth
5.2. The Drivers of the WEC Subsystem Composite Indices
5.3. Driving Mechanism of CCD and Additional Benefits under WEC Synergy
5.4. Comparison with Existing Studies
5.5. Characteristics and Applicability of the Framework in This Paper
6. Conclusions, Policy Recommendations, and Research Limitations
6.1. Conclusions
6.2. Policy Recommendations
- (1)
- In regions with abundant water resources, it is essential to develop water-saving and wastewater treatment technologies throughout the energy life cycle. This strategy will promote efficiency in water resource utilization. Due to the large proportion of agricultural water use in total water consumption, reducing agricultural water use or improving its efficiency in water-scarce regions will contribute to reducing pollution and carbon emissions. In addition, wastewater treatment technologies in the energy life cycle process should also be developed to improve the resilience of the water resource system.
- (2)
- In regions with abundant energy resources, it is crucial to prioritize the promotion of energy efficiency and the development of energy conversion technologies throughout the entire life cycle of water utilization. For regions with limited energy, it is crucial to reduce the proportion of coal and oil use, increase the proportion of natural gas use, and enhance the efficiency of sustainable energy use, such as solar, hydrogen, wind, etc., and the progression of energy conversion technologies throughout the life cycle of water use.
- (3)
- For forest resource-rich and undeveloped areas, local governments should prioritize economic development and introduce advanced carbon reduction technologies to reduce carbon emissions. Local governments should prioritize the development of carbon reduction technologies for forest resource-rich and developed areas. It is necessary to increase carbon sinks through afforestation for regions with scarce forest resources and simultaneously balance economic development and environmental protection.
6.3. Research Limitations
- (1)
- Data accessibility issues, such as the absence of evaluative metrics for agricultural water use efficiency, constrain the selection of indicators. This limitation hampers the ability of the WEC subsystem to incorporate a broader range of factors. Addressing this gap in indicators will significantly enhance the evaluation of the WEC system.
- (2)
- Given that various normalization techniques can influence the computation of index weights, employing different normalization methods on raw data may result in discrepancies in the CCD.
- (3)
- Though the driving mechanism that can also aid in proposing effective management strategies for the WEC system’s CCD based on the identified driving mechanisms has been identified, the factors influencing it have not yet been quantified. Further exploration could quantify the specific contribution rate of each factor to the CCD.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Q.; Li, L. The effects of population aging, life expectancy, unemployment rate, population density, per capita GDP, urbanization on per capita carbon emissions. Sustain. Prod. Consum. 2021, 28, 760–774. [Google Scholar] [CrossRef]
- Ren, Q.; He, C.; Huang, Q.; Shi, P.; Zhang, D.; Güneralp, B. Impacts of urban expansion on natural habitats in global drylands. Nat. Sustain. 2022, 5, 869–878. [Google Scholar] [CrossRef]
- Tian, P.; Lu, H.; Reinout, H.; Li, D.; Zhang, K.; Yang, Y. Water-energy-carbon nexus in China’s intra and inter-regional trade. Sci. Total Environ. 2022, 806, 150666. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Chen, X.; Liu, J.; Zhang, Y.; Chau, S.; Bhattarai, N.; Wang, Y.; Li, Y.; Connor, T.; Li, Y. Impacts of irrigated agriculture on food-energy-water-CO2 nexus across metacoupled systems. Nat. Commun. 2020, 11, 5837. [Google Scholar] [CrossRef] [PubMed]
- Urban, J.J. Emerging Scientific and Engineering Opportunities within the Water-Energy Nexus. Joule 2017, 1, 665–688. [Google Scholar] [CrossRef]
- Brown, P.T.; Hanley, H.; Mahesh, A.; Reed, C.; Strenfel, S.J.; Davis, S.J.; Kochanski, A.K.; Clements, C.B. Climate warming increases extreme daily wildfire growth risk in California. Nature 2023, 621, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Wang, Y.; Li, S.; Deng, H.; Wanders, N.; Bosmans, J.; Huang, L.; Hong, C.; Byers, E.; Gingerich, D.; et al. Global assessment of the carbon–water tradeoff of dry cooling for thermal power generation. Nat. Water 2023, 1, 682–693. [Google Scholar] [CrossRef]
- Zhang, C.; Zhong, L.; Wang, J. Decoupling between water use and thermoelectric power generation growth in China. Nat. Energy 2018, 3, 792–799. [Google Scholar] [CrossRef]
- Zeng, Y.; Maxwell, S.; Runting, R.K.; Venter, O.; Watson, J.E.M.; Carrasco, L.R. Environmental destruction not avoided with the Sustainable Development Goals. Nat. Sustain. 2020, 3, 795–798. [Google Scholar] [CrossRef]
- Song, S.; Chen, X.; Liu, T.; Zan, C.; Hu, Z.; Huang, S.; De Maeyer, P.; Wang, M.; Sun, Y. Indicator-based assessments of the coupling coordination degree and correlations of water-energy-food-ecology nexus in Uzbekistan. J. Environ. Manag. 2023, 345, 118674. [Google Scholar] [CrossRef]
- Liang, M.S.; Huang, G.H.; Chen, J.P.; Li, Y.P. Energy-water-carbon nexus system planning: A case study of Yangtze River Delta urban agglomeration, China. Appl. Energy 2022, 308, 118144. [Google Scholar] [CrossRef]
- Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s Recent Emission Pattern Shifts. Earth’s Future 2021, 9, e2021EF002241. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Dong, Y.; Song, M.; Shahbaz, M.; Xie, Q. Coupling coordination between carbon emissions and the eco-environment in China. J. Clean. Prod. 2020, 276, 123848. [Google Scholar] [CrossRef]
- Shuai, C.; Chen, X.; Wu, Y.; Zhang, Y.; Tan, Y. A three-step strategy for decoupling economic growth from carbon emission: Empirical evidences from 133 countries. Sci. Total Environ. 2019, 646, 524–543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, W.; Cai, Y.; Khan, S.U.; Zhao, M. Decoupling analysis of water use and economic development in arid region of China—Based on quantity and quality of water use. Sci. Total Environ. 2021, 761, 143275. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Yang, Q.; Li, J.S.; Chen, G.Q. Decoupling analysis on energy consumption, embodied GHG emissions and economic growth—The case study of Macao. Renew. Sustain. Energy Rev. 2017, 67, 662–672. [Google Scholar] [CrossRef]
- Gong, Q.; Guo, G.; Li, S.; Liang, X. Decoupling of urban economic growth and water consumption in Chongqing and Chengdu from the “production-living-ecological” perspective. Sustain. Cities Soc. 2021, 75, 103395. [Google Scholar] [CrossRef]
- Tang, Z. An integrated approach to evaluating the coupling coordination between tourism and the environment. Tour. Manag. 2015, 46, 11–19. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef]
- Li, W.; Yi, P. Assessment of city sustainability—Coupling coordinated development among economy, society and environment. J. Clean. Prod. 2020, 256, 120453. [Google Scholar] [CrossRef]
- Zhang, B.; Yin, J.; Jiang, H.; Qiu, Y. Spatial-temporal pattern evolution and influencing factors of coupled coordination between carbon emission and economic development along the Pearl River Basin in China. Environ. Sci. Pollut. Res. Int. 2023, 30, 6875–6890. [Google Scholar] [CrossRef] [PubMed]
- Chhipi-Shrestha, G.; Hewage, K.; Sadiq, R. Water–Energy–Carbon Nexus Modeling for Urban Water Systems: System Dynamics Approach. J. Water Resour. Plan. Manag. 2017, 143, 04017016. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Z.; Zeng, X.; Wang, Y.; Li, K.; Deng, S. Water-energy-carbon nexus: A life cycle assessment of post-combustion carbon capture technology from power plant level. J. Clean. Prod. 2021, 312, 127727. [Google Scholar] [CrossRef]
- Wang, X.-C.; Klemeš, J.J.; Wang, Y.; Dong, X.; Wei, H.; Xu, Z.; Varbanov, P.S. Water-Energy-Carbon Emissions nexus analysis of China: An environmental input-output model-based approach. Appl. Energy 2020, 261, 114431. [Google Scholar] [CrossRef]
- Sun, K.; Han, J.; Wu, Q.; Xie, W.; He, W.; Yang, Z.; Wang, Y.; Liu, J.; Shi, E. The coupling coordination and spatiotemporal evolution of industrial water-energy-CO2 in the Yellow River Basin. Sci. Total Environ. 2024, 912, 169012. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Pu, L.; Huang, L.; Shi, T. Research on the Coupling Evaluation and Driving Factors of Water–Energy–Carbon in the Yellow River Basin. Water 2023, 15, 2377. [Google Scholar] [CrossRef]
- Gebara, C.H.; Thammaraksa, C.; Hauschild, M.; Laurent, A. Selecting indicators for measuring progress towards sustainable development goals at the global, national and corporate levels. Sustain. Prod. Consum. 2024, 44, 151–165. [Google Scholar] [CrossRef]
- Fu, B.; Wu, X.; Wang, S.; Zhao, W. Scientific principles for accelerating the Sustainable Development Goals. Geogr. Sustain. 2024, 5, 157–159. [Google Scholar] [CrossRef]
- Mperejekumana, P.; Shen, L.; Zhong, S.; Muhirwa, F.; Gaballah, M.S.; Nsigayehe, J.M.V. Integrating climate change adaptation into water-energy-food-environment nexus for sustainable development in East African Community. J. Clean. Prod. 2024, 434, 140026. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Shu, K. The coupling and coordination assessment of food-water-energy systems in China based on sustainable development goals. Sustain. Prod. Consum. 2023, 35, 338–348. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 170201. [Google Scholar] [CrossRef]
- Shan, Y.; Huang, Q.; Guan, D.; Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 2020, 7, 54. [Google Scholar] [CrossRef]
- Liu, J.; Tian, Y.; Huang, K.; Yi, T. Spatial-temporal differentiation of the coupling coordinated development of regional energy-economy-ecology system: A case study of the Yangtze River Economic Belt. Ecol. Indic. 2021, 124, 107394. [Google Scholar] [CrossRef]
- Wang, S.; Yang, J.; Wang, A.; Liu, T.; Du, S.; Liang, S. Coordinated analysis and evaluation of water–energy–food coupling: A case study of the Yellow River basin in Shandong Province, China. Ecol. Indic. 2023, 148, 110138. [Google Scholar] [CrossRef]
- Wang, Y.; Song, J.; Zhang, X.; Sun, H.; Bai, H. Coupling coordination evaluation of water-energy-food and poverty in the Yellow River Basin, China. J. Hydrol. 2022, 614, 128461. [Google Scholar] [CrossRef]
- Qi, Y.; Farnoosh, A.; Lin, L.; Liu, H. Coupling coordination analysis of China’s provincial water-energy-food nexus. Environ. Sci. Pollut. Res. Int. 2022, 29, 23303–23313. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Zhong, K.; Liao, Y.; Xiong, R.; Wang, F.; Pang, M. Coupling coordination degree of environment, energy, and economic growth in resource-based provinces of China. Resour. Policy 2023, 81, 103308. [Google Scholar] [CrossRef]
- Jing, P.; Hu, T.; Sheng, J.; Mahmoud, A.; Liu, Y.; Yang, D.; Guo, L.; Li, M.; Wu, Y. Coupling coordination and spatiotemporal dynamic evolution of the water-energy-food-land (WEFL) nexus in the Yangtze River Economic Belt, China. Environ. Sci. Pollut. Res. Int. 2023, 30, 34978–34995. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, J.; Xie, L.; Yao, J.; Li, K.; Zhang, N.; Ji, X.; Wang, M.; Mo, F.; Zhai, H. Coupling coordination of the water-energy-carbon system in three provinces of Northeastern China. Front. Environ. Sci. 2023, 11, 1261339. [Google Scholar] [CrossRef]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef]
- Du, X.; Shen, L.; Wong, S.W.; Meng, C.; Yang, Z. Night-time light data based decoupling relationship analysis between economic growth and carbon emission in 289 Chinese cities. Sustain. Cities Soc. 2021, 73, 103119. [Google Scholar] [CrossRef]
- Ge, Y.; Hu, S.; Song, Y.; Zheng, H.; Liu, Y.; Ye, X.; Ma, T.; Liu, M.; Zhou, C. Sustainable poverty reduction models for the coordinated development of the social economy and environment in China. Sci. Bull. 2023, 68, 2236–2246. [Google Scholar] [CrossRef]
- Han, D.; Yu, D.; Qiu, J. Assessing coupling interactions in a safe and just operating space for regional sustainability. Nat. Commun. 2023, 14, 1369. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, S.; Wang, W.; Li, Y.; Li, N. Coupling coordination between new urbanisation and carbon emissions in China. Sci. Total Environ. 2022, 850, 158076. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Huang, X.; Guo, R.; Wang, J.; Peng, K.; Zhang, W.; Zhu, Y.; Yang, W.; Wang, L.; Cai, C.; et al. Water–energy–carbon synergies and trade-offs: A daily nexus analysis for wastewater treatment plants. Resour. Conserv. Recycl. 2023, 188, 106712. [Google Scholar] [CrossRef]
- Zib, L.; Byrne, D.M.; Marston, L.T.; Chini, C.M. Operational carbon footprint of the U.S. water and wastewater sector’s energy consumption. J. Clean. Prod. 2021, 321, 128815. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, M.; Yang, R.; Li, X.; Zhang, L.; Li, M. Decoupling water environment pressures from economic growth in the Yangtze River Economic Belt, China. Ecol. Indic. 2021, 122, 107314. [Google Scholar] [CrossRef]
- Yao, L.; Li, X.; Li, Q.; Wang, J. Temporal and Spatial Changes in Coupling and Coordinating Degree of New Urbanization and Ecological-Environmental Stress in China. Sustainability 2019, 11, 1171. [Google Scholar] [CrossRef]
- Webster, M.; Donohoo, P.; Palmintier, B. Water–CO2 trade-offs in electricity generation planning. Nat. Clim. Chang. 2013, 3, 1029–1032. [Google Scholar] [CrossRef]
- Hu, B.; Wang, D.; Zhou, J.; Meng, W.; Li, C.; Sun, Z.; Guo, X.; Wang, Z. Greenhouse gases emission from the sewage draining rivers. Sci. Total Environ. 2018, 612, 1454–1462. [Google Scholar] [CrossRef]
- Marsooli, R.; Lin, N.; Emanuel, K.; Feng, K. Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nat. Commun. 2019, 10, 3785. [Google Scholar] [CrossRef] [PubMed]
- Wetherald, R.T.; Manabe, S. Simulation of hydrologic changes associated with global warming. J. Geophys. Res. Atmos. 2002, 107, ACL 7-1–ACL 7-15. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Ouyang, M.; Lin, N. Tropical cyclone-blackout-heatwave compound hazard resilience in a changing climate. Nat. Commun. 2022, 13, 4421. [Google Scholar] [CrossRef] [PubMed]
Years | GI | z-Score | p-Value |
---|---|---|---|
2010 | 0.226 | 1.682 | 0.093 |
2011 | 0.208 | 1.572 | 0.116 |
2012 | 0.175 | 1.422 | 0.155 |
2013 | 0.347 | 2.336 | 0.020 |
2014 | 0.279 | 2.061 | 0.039 |
2015 | 0.314 | 2.201 | 0.028 |
2016 | 0.317 | 2.220 | 0.026 |
2017 | 0.345 | 2.356 | 0.018 |
2018 | 0.336 | 2.334 | 0.020 |
2019 | 0.262 | 1.948 | 0.051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Zhang, Q.; You, H. A Water–Energy–Carbon–Economy Framework to Assess Resources and Environment Sustainability: A Case Study of the Yangtze River Economic Belt, China. Energies 2024, 17, 3143. https://doi.org/10.3390/en17133143
Zhu H, Zhang Q, You H. A Water–Energy–Carbon–Economy Framework to Assess Resources and Environment Sustainability: A Case Study of the Yangtze River Economic Belt, China. Energies. 2024; 17(13):3143. https://doi.org/10.3390/en17133143
Chicago/Turabian StyleZhu, Hua, Qing Zhang, and Hailin You. 2024. "A Water–Energy–Carbon–Economy Framework to Assess Resources and Environment Sustainability: A Case Study of the Yangtze River Economic Belt, China" Energies 17, no. 13: 3143. https://doi.org/10.3390/en17133143
APA StyleZhu, H., Zhang, Q., & You, H. (2024). A Water–Energy–Carbon–Economy Framework to Assess Resources and Environment Sustainability: A Case Study of the Yangtze River Economic Belt, China. Energies, 17(13), 3143. https://doi.org/10.3390/en17133143