3. Results
In this section, we present the findings of the bibliometric analysis on the use of simulation and modeling in the field of renewable energy. The analysis aims to uncover global research trends, key contributions, and emerging areas of interest within this interdisciplinary domain. By employing a systematic and rigorous data-selection process, we have curated a comprehensive dataset, serving as the foundation for the exploration.
Table 3 presents some general information about the data extracted. The period analyzed is 1979–2023, which offers a long-term perspective on the evolution of research in the field studied. Additionally, the number of sources, being 859, indicates a wide diversity of publishing platforms that contribute to the specialized literature. In total, based on all extraction criteria, we will analyze 5503 documents, representing the total volume of works analyzed from the specialized literature. The annual growth rate of 16.78% shows a sustained increase in interest and researchers in this field, once again underlining the importance of the study we are conducting. The average age of the documents, 4.98 years, indicates that the specialized literature is relatively recent and relevant. Moreover, an average of 22.4 citations per document suggests that the documents we have extracted are influential and frequently cited in other works. We also observe an extensive number of citations and interconnections in the specialized literature, with a total of 163,591 references.
Also,
Table 3 shows the number of Keywords Plus (4967), indicating that these additional keywords help improve searches and enhance the visibility of documents. Additionally, 15,302 author-defined keywords have been identified, reflecting the main focus and specificity of the research. From the authors perspective, there are a large number of contributors in the field we are analyzing, with 16,031 authors. The small number of only 228 authors of single-authored documents indicates that most of the work involves collaborations, highlighting the complexity and importance of the research in the studied field.
Regarding author collaboration, we observe that 249 single-authored documents were extracted, representing a relatively small fraction of the total number of documents, which again emphasizes the trend towards teamwork. Additionally, the collaborative nature of research in this field is supported by the average of 3.98 co-authors per document. The significant rate of international co-authorships, 33.29%, demonstrates a substantial degree of international collaboration, contributing to the global exchange of ideas and the expansion of knowledge in the field.
Figure 4 presents the annual scientific production in the field of simulation and modeling for renewable energy, reflecting a significant increase in the number of published articles over the decades. Starting with a very low number of articles in the 1970s and 1980s, scientific production has experienced rapid expansion in recent decades. Initially, scientific production was very low, with only a few articles published (one article in 1979, two in 1986, and one in each 1987 and 1988). This period marks the beginnings of research in this field.
During the 1990–1999 period, the number of articles published annually remained relatively low but began to gradually increase, reaching a maximum of eight articles in 1998. This reflects a growing interest in simulation and modeling in the context of renewable energy.
The decade of 2000–2009 shows a steady and significant increase in the number of articles. From 5 articles in 2000, the number grew to 31 in 2009, with a significant peak in 2003 (14 articles). This indicates the consolidation of the field and a growing academic and practical interest.
We also observe that scientific production exploded in the 2010–2019 period, increasing from 44 articles in 2010 to 509 in 2019. Each year of this period showed significant growth, with an accelerated pace starting in 2011. This period highlights the maturation of the field and the recognition of its importance in the transition to sustainable energy sources.
In the last three years, the number of articles has continued to grow, reaching 921 in 2023. The year 2022 was particularly prolific, with 900 articles. This suggests a continued and intensified interest, possibly due to technological advancements and increased concerns about climate change and sustainability.
Figure 5 shows the average citations per year. This provides a perspective on the impact and influence of research published in the field of simulation and modeling for renewable energy over time. This analysis is based on the average number of citations received by articles each year, considering the time since they were published. We observe that the early stages of this research field are marked by a small number of published articles with variable impacts. In 1979, a single article recorded a high average of citations per year (1.13), and in 1988, an article had an average of 0.92 citations per year. During this period, fluctuations are significant, reflecting sporadic interest and slow development in the field. Starting from 2000, we see an increase in the number of articles and a relatively steady rise in average citations per year. The years 2001 and 2004 stand out with high average citations per year (2.28 and 4.74, respectively), indicating highly impactful works. The decade of 2010–2019 can be considered a period of maturation for this field, showing a consistent increase in both the number of published articles and the average citations per year. The year 2010 is notable, with an average of 4.53 citations per year, while 2019 reaches a peak of 5.02 citations per year, suggesting strong academic interest and recognition of the field’s importance. In the recent period of 2020–2023, we observe a slight decline in the average citations per year, even though the number of published articles continues to grow. The year 2023 shows an average of only 1.48 citations per year, which can be explained by the fact that these articles are very recent and have not yet had sufficient time to accumulate citations.
The three-field plot in
Figure 6 provides a complex perspective on the interconnections between keywords, Keywords Plus, and the countries involved in this field of research. It helps to highlight international trends and collaborations as well as identify key areas of interest. Each column of colors is associated with the three fields: on the left, author keywords; in the center, countries; and on the right, Keywords Plus. The intensity of the color associated with each field varies according to the degree of connectivity. The stronger the color, the stronger or more frequent the association it indicates. We observe that “renewable energy sources” is a central keyword, having connections with all the countries presented in the graph, such as China, India, Iran, the USA, Spain, and Italy. This indicates that this term is frequently associated with other themes and international contributions. Additionally, the dominant Keyword Plus is “optimization”. This suggests that optimization plays a crucial role in research related to renewable energy, being a common theme in published articles. Other extended keywords include “renewable energy”, “uncertainty”, “load modeling”, “microgrid”, “energy management”, “costs”, “voltage control”, “power system stability”, “simulation”, and “energy policy”. These reflect the diverse aspects of renewable energy research, ranging from energy management and voltage control to uncertainty and load modeling.
In the bibliometric analysis of simulation and modeling as catalysts for renewable energy, identifying the most relevant sources is essential to understanding where the most influential and prolific research works are published. Thus, in
Figure 7, we observe the top 15 most relevant sources. This graph highlights the journals that have had the highest scientific production and thus contribute significantly to the available knowledge in the field. We observe that the journal Energies, with an impressive number of 476 articles, stands out as a primary source for research in renewable energy. It covers a wide range of topics, including energy technologies, energy policies, and environmental impacts. The journal Energy publishes essential works on all aspects of energy, from generation and utilization to environmental impact. The number of 249 articles indicates that it is an important source for research on modeling and simulation in the context of renewable energy. With 243 articles, the journal Applied Energy ranks third. It focuses on energy applications and technological innovations, being crucial for studies exploring the use of renewable energy and the optimization of energy systems. The presence of the IEEE Access journal, with 235 articles, positions it in fourth place, with the journal offering access to a wide variety of research in engineering and technology, including studies on the simulation and modeling of energy systems.
These sources represent the core of research in simulation and modeling for renewable energy, covering a wide range of topics from technology and engineering to policies and sustainability. They provide a solid foundation for understanding current trends and future developments in this dynamic field.
Figure 8 presents the zones classified according to Bradford’s Law. Bradford’s Law is used in bibliometrics to identify a set of core sources in a research field [
32,
33,
34]. According to this law, sources are divided into three zones, each containing approximately the same number of relevant articles but with an unequal distribution of the numbers of sources. In the context of our bibliometric analysis of simulation and modeling as catalysts for renewable energy, interpreting the core sources according to Bradford’s Law helps us identify the most influential journals in this field. This approach helps identify journals that, although they may have fewer articles, have a disproportionate influence due to their relevance and impact in the field. In Zone 1, considered core sources, the following journals stand out:
Energies, Energy, Applied Energy, IEEE Access, Renewable Energy, Energy Policy, Sustainability, Energy Conversion and Management, and International Journal of Electrical Power & Energy Systems. These journals are the most prolific and influential in publishing research on renewable energy simulation and modeling. They cover a wide range of topics, from energy technologies, policies, and environmental impact to specific applications and technological innovations in energy systems.
Figure 7 and
Figure 8 offer complementary perspectives: one focuses on the quantity of published articles, and the other on the relevance and influence of journals, according to a theoretical distribution established by Bradford’s Law. Both figures are necessary to gain a comprehensive understanding of the academic landscape in renewable energy research.
The analysis of source production over time in
Figure 9 reflects the significant evolution and growth in the number of articles published in leading journals in the fields of renewable energy and modeling and simulation. The graph highlights five major sources:
Energies,
Energy,
Applied Energy,
IEEE Access, and
Renewable Energy, and how their contributions have increased over the decades. The journal
Energies did not publish relevant articles in this field until 2010. Since then, the number of articles has grown exponentially, reaching 476 articles in 2023. This indicates a massive increase in interest and research in this field, establishing
Energies as one of the primary sources. The journal
Energy began publishing relevant articles earlier, in 2002, but initially experienced slower growth. However, from the early 2010s, the number of articles increased significantly, reaching 249 articles in 2023. This reflects a constant growth in interest in energy topics. Similar to
Energy,
Applied Energy began publishing relevant articles in 1997. Since then, the journal has had steady and substantial growth in production, reaching 243 articles in 2023. This demonstrates the increased importance of research on energy applications and technological innovations. The journal
IEEE Access started publishing relevant articles in 2017 and has seen rapid growth, reaching 235 articles in 2023. This suggests a significant increase in interest in engineering and technology in the context of renewable energy. The journal
Renewable Energy began publishing relevant articles in 1998 and has shown constant growth over the years. In 2023, the number of articles reached 142, indicating a consolidation of research in the field of renewable energy sources. The graph highlights an impressive increase in academic production in the top journals in the fields of renewable energy and modeling and simulation. All five major sources have experienced significant growth in the last decade, reflecting increased attention and strategic importance of these fields in contemporary research. This growth can be attributed to global concerns about sustainability, climate change, and the transition to cleaner and more efficient energy sources.
The analysis of the top 15 most globally cited documents in
Table 4 provides a comprehensive overview of the most influential research within the field of renewable energy simulation and modeling. These documents have been selected based on their total citations, total citations per year (TCY), and normalized total citations (NTC), offering a clear picture of their impact and significance.
The most cited paper, authored by Mao et al. in 2016 and published in the IEEE Journal on Selected Areas in Communications, boasts 1141 total citations, with an impressive TCY of 126.78 and an NTC of 28.26. This indicates its substantial influence and ongoing relevance in the academic community. Following closely, Liu et al.’s 2015 paper in IEEE Transactions on Power Electronics has 705 total citations, a TCY of 78.33, and an NTC of 17.46, reflecting its significant impact on power electronics research. Sensfuß et al.’s 2008 publication in Energy Policy has accumulated 544 total citations, maintaining a steady TCY of 32.00 and an NTC of 8.21, which shows its enduring relevance in energy policy discussions. Reznik et al.’s 2014 paper in IEEE Transactions on Industry Applications, has 457 total citations, a TCY of 41.55, and an NTC of 9.51, which highlights its importance in industrial applications. Mengelkamp et al.’s 2017 paper in Computer Science—Research and Development stands out for its rapid citation growth, achieving 438 total citations, a TCY of 62.57, and an NTC of 13.75, indicating an emerging significance of integrating computer science with energy research. Other notable papers include Karki et al.’s 2006 publication in IEEE Transactions on Energy Conversion and Sortomme et al.’s 2010 paper in IEEE Transactions on Power Delivery, which maintain strong citation rates and influence in their respective fields. Hafez et al.’s 2012 paper in Renewable Energy and Liu et al.’s 2012 paper in IEEE Transactions on Energy Conversion also demonstrate robust citation performance, underscoring their contributions to renewable energy and energy conversion research.
Overall, these documents collectively highlight the critical areas of focus and the evolving trends in renewable energy research, emphasizing the importance of interdisciplinary approaches and the integration of advanced technologies in addressing contemporary energy challenges.
Next, we will carry out a qualitative analysis of the 15 studies extracted in
Table 4. Mao et al. [
35], in their study, mentioned the importance of mobile-edge computing (MEC), given the new technical requirements that are being applied to new technology from the perspective of mobile applications. The researchers stated that the performance of mobile applications is directly impacted by the mobile’s battery, and have spoken about the importance of achieving green computing, emphasizing how significant the renewable energy sources to power up mobile devices such as energy harvesting (EH), are. The authors analyzed how the offloading strategy works in the case of green MEC systems that are operating on EH devices. For this, they proposed an algorithm called Lyapunov, its task being to decide how the main processes of mobile devices should run. More than this, the algorithm itself is based on the current performance state of the device.
In the second study [
36] from
Table 4, the authors underlined the disadvantages that the nowadays-traditional grid-control has. It was stated by the authors that the newer control methods, such as virtual synchronous generator (VSG) and droop control, are more efficient, the only difference between them being the inertia topic, with VSG emulating the swing equation and droop control having no inertia at all. Thus, the researchers studied the delay effects of both control mechanisms with the help of simulations, stating that both of them are more efficient than the traditional approach.
In next paper [
37], the researchers studied the impact that renewable energy sources as a method of generating electricity had on Germany’s price market. The authors examined this by employing simulations over an agent-based model tool, finding that the financial volume decreased along with the price reduction. Based on the results, the scientists emphasized that, from a short-term perspective, effects were distributed in such a way that the demanders had their savings increased; this only with the help of having the generator profits reduced. More than this, with regards to Germany’s renewable energy generation for the year 2006, the renewable electricity generation was further funded with the help of the consumers.
Reznik et al. [
38], in their study, put an emphasis on how important the power converters are when it comes to maximizing the power that can be transferred to the utility grid from renewable energy sources, like fuel cells that are hydrogen-based, wind energy, or solar energy. The authors stated that the LCL filter topic has not been fully covered by the existing papers, with systemic designs’ methodology not being comprehensively described. By conducting this research, the authors proposed a new design methodology that can be considered for LCL filters when approaching the grid-interconnected inverters topic, but also how to reduce the harmonics. Furthermore, the authors stated that the techniques used in their article could also be used for small-scaled renewable energy, but could also be further extended to a medium- or large-scale grid-connected system.
Mengelkamp et al. [
39] stated that there should be new approaches with regards to the market price, decentralized generation, and volatile distribution topics given the constant increase in the renewable energy sources that exist. The scientists shared a market design in which the local energy market of approximately 100 households was studied, based on their communication technology and distributed information, emphasizing the decentralized nature that the local energy markets have. This design took into consideration the energy consumers and providers with the help of a decentralized market platform that had the trade of local energy generation as its main target.
In the next article [
40], the authors emphasized how important wind power as a renewable energy source is, especially considering how low its impact on the environment is. The scientists underscored how complex and difficult the process of making a reliability evaluation of wind power is, stating that very accurate measurements of wind speeds are mandatory, for which a significant amount of historical data with regards to wind speed are required. Compared to the Monte Carlo simulation that is widely used for these kinds of analyses, the authors proposed a simpler methodology for estimating the wind power. Based on the geographic locations (these wind power plants are located in Canada), the authors provided a six-step model that can be applied to a variety of geographic locations.
Sortomme et al. [
41], in their study, discuss the microgrids approach, with it being responsible for integrating lots of renewable energy sources in distribution systems, underscoring the fact that it is lacking an adequate protection scheme. By their analysis, the scientists propose a better scheme for protecting the microgrid, considering also a communication network along with digital relays in their study. Simulated with the help of Matlab Simulink against a real-life distribution system, the authors proved that the primary and secondary relays were not impacted, continuing to perform their functions.
The authors from the next study [
42] aimed to minimize the lifecycle cost of the renewable energy that is based on microgrids, also taking into account the environmental emissions that they produce. For this, the scientists considered the optimal planning, sizing, design, and operations of a renewable energy microgrid. More than this, there were a varying numbers of configuration use-cases considered, such as diesel-renewable, fully renewable, diesel-only, or external grid-connected, with the aim to compare all of them to the others from an economics, environmental emissions, and operational performance perspective. In order to achieve the results, the authors used the HOMER model to compare use-cases.
In the following study [
43], the authors studied the MPPT device, which is responsible, under various environmental conditions, for extracting the highest available power from a photovoltaic module. It was mentioned by the scientists that the MPPT misses out on tracking the maximum power in a scenario of partial shading condition (PSC), which is the module’s most common circumstance. Widely, the particle swarm optimization is used for these kinds of evaluations, but in their paper, the authors propose a new solution, combining PSO and ANN methods, leading to a better performance of the evaluation.
In the following paper [
44], the authors emphasized how important is to have battery energy storage when integrating renewable energy sources amongst power grids. It is stated that vehicle-to-grid (V2G) should be the key player in further smart grid strategies with regards to electric vehicles (EV); thus, the scientists proposed a V2G control scheme that is autonomously distributed. For the proposed analysis, the authors came up with a smart charging control for an EV, for which the authors examined the overall satisfaction of EV users from a convenience point of view.
Weitemeyer et al. [
45], in their research, focused on the integration of renewable energy sources (RES) that are non-dispatchable in power supply systems. Considering that the widespread integration approach is unclear, the authors used a high number of wind and solar energy data in order to employ a model that examines what the influence of efficiency and storage size on a 100% RES scenario is. The researchers applied their model against Germany’s data, and its results proved that up to 50% of the overall electricity demand can be achieved by correctly mixing the solar and wind power.
Li et al. [
46] describe, in their study, a bidirectional DC/DC converter with high-frequency isolation, which are gaining increasing attention in renewable energy systems due to their small size and high-power density. They analyze a resonant converter using two simple circuit analysis methods, considering only the fundamental components of voltages and currents.
In the following study [
47], the authors use time-domain simulations to analyze the performance of installed controllers with the aim of reducing the frequency deviations of an energy system caused by sudden changes in load or generation. Additionally, the authors employ genetic algorithms for their study, and the results demonstrate the effectiveness of the introduced controllers.
Hamdy et al. [
48], in their research, focus on finding cost-optimal solutions for near-zero-energy buildings (nZEB) in accordance with the European Energy Performance of Buildings Directive (EPBD-recast 2010). The authors introduce a simulation-based optimization method that is efficient, transparent, and time-saving for such explorations. The method is applied to find the cost-optimal and nZEB energy performance levels for a case study of a single-family house in Finland.
In the last study among the top 15, the authors [
49] present an innovative approach for connecting renewable energy sources to the utility grid. Due to the increasing power capacity of the available generation systems, a three-level three-phase neutral-point-clamped voltage-source inverter is selected as the central element of the interfacing system. For the regulator, the authors utilize a multivariable control law due to the intrinsically multivariable structure of the system.
In
Figure 10, the top 15 most relevant affiliations highlight the research institutions and universities that significantly contribute to the fields of renewable energy and modeling and simulation. These affiliations are evaluated based on the number of articles published, indicating their influence and impact in this research area. Egyptian Knowledge Bank (EKB) leads the ranking with 347 articles, demonstrating Egypt’s strong commitment to promoting research in renewable energy and associated technologies. The National Institute of Technology (NIT System) from India ranks second with 160 articles, highlighting the important role of technology and technical education in advancing renewable energy research. Islamic Azad University, with 137 articles, and Indian Institute of Technology System (IIT System), with 133 articles, underlines the significant contributions of universities from Iran and India, respectively, in this field. On the other hand, the United States Department of Energy (DOE) has 112 articles, indicates the American government’s involvement in supporting research and development in renewable energy. Swiss Federal Institutes of Technology Domain has 72 articles, showing Swiss involvement in scientific and technological innovations. These affiliations illustrate the geographical and institutional diversity of renewable energy research, reflecting international collaborations and collective efforts to advance knowledge and technologies in this critical field.
In
Figure 11, the distribution of articles by the corresponding authors’ countries provides insights into the global landscape of research in renewable energy and modeling and simulation. The data reveal a significant concentration of research output from specific countries, highlighting their contribution to the field. China leads with 851 articles, accounting for 15.5% of the total. Of these, 557 are single-country publications (SCPs), and 294 are multi-country publications (MCPs), representing 34.5% of China’s total publications. This indicates a substantial level of international collaboration in China’s research efforts. India follows with 524 articles (9.5%), with a higher proportion of SCPs (449) compared to MCPs (75), showing that most research is conducted domestically with limited international cooperation (14.3% MCPs). The USA is the third largest contributor with 368 articles (6.7%). The country has a significant number of MCPs (112), which is 30.4% of its total publications, reflecting strong international research partnerships. Iran and Germany also show substantial research activity with 289 (5.3%) and 251 (4.6%) articles, respectively. Iran has 28.4% MCPs, while Germany has 25.9% MCPs, indicating moderate levels of international collaboration. Italy and the United Kingdom both contribute notably with 237 (4.3%) and 223 (4.1%) articles. The UK, in particular, has a high percentage of MCPs (40.8%), suggesting robust international research networks. Korea and Egypt are also significant contributors, with Egypt showing a remarkably high MCP percentage (63.3%), indicating a strong tendency towards international collaboration. Other notable countries include Canada (123 articles, 36.6% MCPs), Australia (113 articles, 34.5% MCPs), and Japan (102 articles, 37.3% MCPs), all demonstrating significant research output and international cooperation. Smaller contributors such as Malaysia, Pakistan, and Colombia show high MCP percentages (56.9%, 58.5%, and 56.7%, respectively), highlighting their reliance on international partnerships to advance research in renewable energy.
In summary, the data illustrate that, while countries such as China and India have a high domestic research output, countries like the UK, Egypt, and several smaller nations significantly engage in international collaborations, enhancing the global exchange of knowledge and technological advancements in renewable energy and related fields.
The analysis of the reference spectroscopy from
Figure 12 indicates a significant evolution in the number of citations over the years, reflecting the growing importance and utilization of spectroscopy in research. Starting from a modest 208 citations in 1979, there is a steady and notable increase in citations over the following decades, with some fluctuations. Throughout the 1980s and early 1990s, the citations increased gradually, demonstrating a rising interest in and application of spectroscopy. For instance, the citations rose from 208 in 1979 to 626 in 1992, with some years showing more substantial increases, such as 1989 with 486 citations (an increase of 190 compared to the median) and 1994 with 892 citations (an increase of 266 compared to the median). The late 1990s and early 2000s mark a significant surge in citations, indicating a rapid expansion of the field. Notably, the year 2000 saw a leap to 1706 citations, a substantial increase of 535 compared to the previous median. This trend continued with remarkable growth, reaching 2767 citations in 2004 and peaking at 4841 citations in 2007. This period reflects an era of heightened research activity and breakthroughs in spectroscopy. The subsequent years saw continued growth, with 6701 citations in 2009 and an impressive peak of 9617 citations in 2011. This period marks the zenith of citation activity, highlighting the peak influence and application of spectroscopy in various research domains. However, post-2011, there is a gradual decline in citations. By 2019, the citations had decreased to 16,544, followed by a more pronounced drop in the following years. The citations fell sharply to 12,258 in 2021 and plummeted to 7259 in 2022. The trend continued downward, reaching a low of 1775 citations in 2023. This decline could be attributed to various factors, such as the emergence of newer technologies, shifts in research focus, or changes in publication and citation practices. Overall, the graph depicts the rise and fall of reference spectroscopy’s prominence in research, showcasing its peak periods of influence and subsequent decline in recent years.
The word cloud depicted in
Figure 13 provides a visual representation of the most frequently occurring keywords in the context of renewable energy simulation and modeling research. The prominence of certain terms reflects the major themes and focus areas within this field. “Optimization” emerges as the most frequently used keyword, indicating a significant focus on improving and fine-tuning various aspects of renewable energy systems. This includes optimizing the performance, efficiency, and cost-effectiveness of energy systems, which is crucial for enhancing the viability and sustainability of renewable energy solutions. “Design” and “system” are also highly prevalent, highlighting the importance of system design and integration in renewable energy research. The design phase is critical for developing robust and efficient renewable energy systems that can meet the growing energy demands while maintaining sustainability. The keywords “model” and “systems” underscore the role of modeling and simulation in understanding and predicting the behavior of complex renewable energy systems. These models are essential for planning, testing, and validating new technologies and strategies before their practical implementation. “Generation”, “management”, and “power” indicate a strong focus on the generation and management of renewable energy. The effective management of power generation, including the integration of various renewable sources like wind and solar, is vital for ensuring a stable and reliable energy supply. “Storage” and “energy” are key components, reflecting the ongoing research into energy storage solutions, such as batteries and other technologies, which are essential for balancing supply and demand in renewable energy systems.
The keywords “wind”, “performance”, “operation”, and “renewable energy” further highlight the specific areas of interest within the field. Wind energy, in particular, is a major focus, as indicated by the significant frequency of related terms. Performance and operation optimization are critical for maximizing the efficiency and effectiveness of renewable energy systems. “Simulation”, another frequently mentioned keyword, is fundamental to this research area, enabling researchers to create virtual models of energy systems to test and refine various approaches without the need for costly real-world trials.
Other notable terms include “algorithm”, “integration”, “electricity”, and “impact”, which suggest a focus on developing and implementing advanced algorithms for system control and optimization, integrating renewable energy into existing grids, and assessing the impacts of renewable energy adoption on the environment and economy.
“Strategy”, “cost”, “solar”, “demand response”, “consumption”, and “technologies” indicate the breadth of research addressing strategic planning, cost analysis, and the adoption of various renewable technologies. The emphasis on solar and demand response technologies points to the diverse methods being explored to enhance renewable energy systems.
Figure 14 showcases a word cloud generated from the author’s keywords, providing insights into the focal points and trends within the field of renewable energy simulation and modeling. The most prominent terms highlight the key areas of research and the evolving interests of scholars in this domain. The “Renewable energy” keywords are the most frequently mentioned term, emphasizing the core subject of the research: exploring various sources of renewable energy and their applications. This underscores the central theme of my research, which focuses on how simulation and modeling can serve as catalysts for the adoption and optimization of renewable energy. “Optimization” is a recurring theme, indicating the significant emphasis on improving the efficiency and effectiveness of renewable energy systems. Researchers are actively seeking ways to optimize various aspects of these systems, from energy generation to storage and distribution. “Uncertainty” and “microgrid” are also frequently mentioned. The presence of uncertainty highlights the challenges in predicting and managing the variability associated with renewable energy sources. Microgrids, on the other hand, represent a crucial area of study, as they offer localized, decentralized energy solutions that can enhance reliability and resilience. “Energy policy”, “load modeling”, and “energy storage” reflect the multifaceted approach needed to advance renewable energy adoption. Energy policies are critical for creating a supportive regulatory environment, while load modeling helps in understanding and predicting energy demand patterns. Energy storage remains a vital research area for balancing supply and demand and ensuring the stability of renewable energy systems. “Energy management”, “simulation”, and “smart grid” are key terms that highlight the integration of advanced technologies and management practices into renewable energy systems. Effective energy management ensures optimal operation, while simulation tools are essential for testing and refining new approaches. Smart grids, which incorporate advanced communication and control technologies, are significant for integrating renewable energy into existing power systems. Other notable terms include “costs”, “electric vehicles”, “frequency control”, “distributed generation”, and “photovoltaic”. These keywords suggest a broad spectrum of research interests, from economic considerations and the integration of electric vehicles to the technical aspects of frequency control and distributed generation.
Table 5 was created to present the frequency of occurrence of each keyword, offering a clearer and quantitative view of the data. This table, combined with the word clouds in
Figure 13 and
Figure 14, provides a comprehensive overview of the most commonly used terms and their relevance to the scope of this study.
The clustering by coupling analysis from
Figure 15 reveals significant thematic groups within the research, highlighting how certain topics are interconnected through co-citation patterns. This method uncovers the structural relationships between different research areas, providing insights into central themes and their impacts in the field of renewable energy simulation and modeling.
Cluster 1 (red), with the keywords “optimization” (confidence 33.3%), “generation” (confidence 30.5%), and “renewable energy” (confidence 56.2%), represents a crucial research area focused on optimizing renewable energy generation. The high frequency and centrality suggest that optimization techniques are vital for improving the efficiency and effectiveness of renewable energy systems. The significant impact score reflects the critical importance of this cluster in advancing the field, with optimization strategies playing a central role in integrating and enhancing the performance of renewable energy technologies.
Cluster 2 (blue), with the keywords “stability” (confidence 77.8%), “systems” (confidence 34.8%), and “control strategy” (confidence 63.6%), focuses on stability and control strategies within renewable energy systems. The high confidence in stability and control strategies indicates concentrated research efforts on ensuring the reliability and robustness of energy systems. The significant impact of this cluster underscores the importance of developing advanced control strategies to maintain system stability, which is essential for the safe and efficient operation of renewable energy grids.
Cluster 3 (green), with the keywords “generation” (confidence 35.6%), “optimization” (confidence 33.3%), and “demand response” (confidence 69.2%), links renewable energy generation with optimization and demand response strategies. The high confidence in demand response indicates a significant research focus on how energy demand can be managed to align with the supply of renewable energy. This approach is crucial for balancing the grid and ensuring the efficient use of renewable energy sources. The centrality and impact scores highlight the relevance of integrating demand response with generation and optimization techniques to improve the overall performance of renewable energy systems.
Cluster 4 (purple), with the keywords “design” (confidence 48.6%), “generation” (confidence 28.8%), and “optimization” (confidence 26.7%), emphasizes the design aspects of renewable energy systems, alongside generation and optimization. The high frequency and centrality suggest that efficient design is crucial for optimizing energy generation processes. The very high impact score indicates that innovative design methodologies are essential for advancing renewable energy technologies and ensuring their efficiency, scalability, and capability to meet future energy demands.
The co-occurrence network analysis from
Figure 16 provides a detailed perspective of the relationships and interactions between key terms in the field of renewable energy simulation and modeling. This analysis helps to identify central themes and how they interlink, offering insights into the research’s structural organization.
Cluster 1 (red) focuses on policy and efficiency, with “energy policy” showing high betweenness and closeness centrality, indicating its significant role in the network. “Energy efficiency”, “sustainability”, and “energy transition” are also prominent, suggesting that policy and efficiency are crucial components driving research in renewable energy.
Cluster 2 (blue) includes terms such as “renewable energy”, “simulation”, “solar energy”, “wind energy”, “photovoltaic”, and “fuel cell”. “Renewable energy” stands out with the highest betweenness centrality, highlighting its central importance in the network. This cluster emphasizes technological advancements and applications in renewable energy, focusing on simulation and specific energy types like solar and wind.
Cluster 3 (green) is characterized by keywords related to system stability and control, such as “renewable energy sources”, “uncertainty”, “load modeling”, “microgrids”, and “demand response”. “Renewable energy sources” has the highest betweenness centrality in this cluster, underscoring its foundational role in the network. This cluster highlights the importance of managing and optimizing energy systems for stability and efficiency.
Cluster 4 (purple) includes terms related to optimization and management, such as “optimization”, “microgrid”, “energy storage”, “energy management”, and “smart grid”. “Optimization” shows high betweenness and closeness centrality, indicating its critical role in improving renewable energy systems. This cluster emphasizes strategies and technologies for optimizing energy generation, storage, and management.
These clusters reflect the comprehensive and interconnected nature of research in this field, aligning with the overarching theme of using simulation and modeling to advance renewable energy technologies and systems. The analysis provides a clear picture of how different research areas are interlinked, highlighting key themes and their importance in driving the transition to sustainable energy solutions.
In
Figure 17, a factorial analysis was carried out based on the authors’ keywords. The factorial analysis provides a detailed examination of how different keywords related to renewable energy research are grouped and positioned within a two-dimensional space (Dim1 and Dim2). This analysis helps to identify the underlying structure and relationships between these keywords, which can be clustered based on their similarity and relevance to each other.
Cluster 1 (red) comprises a majority of the keywords and represents the core technical and application-related terms in renewable energy research. Keywords like “optimization”, “generation”, “management”, “storage”, “renewable energy”, “wind”, and “solar” are central to this cluster. These terms are closely associated with the practical aspects of renewable energy systems, such as improving efficiency, managing energy resources, and integrating renewable technologies. The high positive values in Dim1 and varying values in Dim2 indicate their significant impact and relevance across different dimensions of renewable energy research.
Cluster 2 (blue) includes keywords such as “operation”, “algorithm”, “strategy”, “power system”, “microgrids”, and “energy management”. These terms are more focused on the operational and strategic aspects of renewable energy systems. The presence of keywords such as “operation” and “microgrids” with high positive values in both dimensions suggests a strong focus on the practical implementation and management strategies in renewable energy.
Cluster 3 (green) contains keywords like “consumption”, “efficiency”, “impacts”, and “emissions”. These terms are related to environmental impacts, energy consumption, and efficiency. The negative values in both dimensions for most terms in this cluster indicate their distinct focus on environmental concerns and the efficiency of energy systems. This cluster highlights the importance of addressing environmental impacts and improving the efficiency of renewable energy systems.
Cluster 4 (purple) is represented by keywords such as “control strategy”, “stability”, and “voltage”. These terms are crucial for the control and stability of renewable energy systems. The high positive values in Dim2 for terms like “stability” and “control strategy” indicate their significant role in ensuring the reliable and stable operation of energy systems.
Overall, this factorial analysis provides a comprehensive view of the main themes and research directions in renewable energy simulation and modeling. It highlights the interconnected nature of technical, operational, environmental, and control aspects, all of which are essential for advancing renewable energy technologies and achieving sustainable energy solutions.
The country collaboration map from
Figure 18 highlights the extensive international cooperation in renewable energy research, illustrating the interconnectedness and global nature of efforts to advance this field. Many countries are involved in extensive bilateral collaborations, indicating a strong global network. For example, the United States has collaborations with a wide range of countries including Australia, Canada, India, Japan, and the United Kingdom, among others. This demonstrates the USA’s central role in renewable energy research, facilitating knowledge exchange and innovation across continents.
Several regional partnerships are evident, reflecting geographical and possibly cultural proximities that facilitate easier collaboration. For instance, European countries such as Germany, France, and the United Kingdom show significant inter-collaboration with neighboring countries like Austria, Italy, and Spain. Similarly, Australia’s collaborations with countries in the Asia-Pacific region, including Malaysia, Japan, and New Zealand, highlight regional cooperation.
There are notable instances of north–south collaborations, where developed countries partner with developing nations. This is crucial for technology transfer and capacity building in renewable energy sectors in the developing world. Examples include Canada’s partnerships with countries like Algeria, Jordan, and Malaysia, and China’s collaborations with Pakistan, Indonesia, and Ethiopia.
Certain countries emerge as significant hubs of collaboration, suggesting their leadership or significant roles in specific areas of renewable energy research. China, for instance, has a broad network extending to the United States, Germany, Denmark, and various countries across Asia and Africa. Similarly, Saudi Arabia shows extensive collaboration efforts with Egypt, Pakistan, and Malaysia, highlighting its role in renewable energy research within the Middle Eastern context.
These international collaborations are essential for advancing global renewable energy research. By pooling resources, expertise, and technology, these partnerships enhance research quality, foster innovation, and accelerate the development and deployment of renewable energy solutions. This global network is essential for addressing the common challenges of energy sustainability, climate change, and transitioning to cleaner energy sources.