Virtual Inertia Control for Power Electronics-Integrated Power Systems: Challenges and Prospects
Abstract
:1. Introduction
- It presents a comprehensive review of the status of various virtual inertia control (VIC) techniques aimed at enhancing inertia response and frequency stability and classifies these strategies into adaptive, droop, coordinated, derivative, integral, intelligent, virtual synchronous generator, and prediction-based methodologies;
- It provides a critical evaluation of diverse VIC systems concerning their configurations, fundamental attributes, simulation platforms, features, and contributions.
2. Review Methodology
2.1. Identification of Research Question
2.2. Database
2.3. Literature Search Strategy
2.4. Results of Literature Search
3. Categorisation of Virtual Inertia Control Strategies
3.1. Traditional Strategies
3.2. Classical Strategies
3.3. Intelligent Strategies
4. Analysis of Review Findings
5. Conclusions
- The droop-based VI control strategies utilised the voltage outer and inner current control loop to improve frequency regulation.
- The VSM-based VI control approaches utilised the outer active power loop to mimic the SG behaviour in the control loop of voltage and current for inertia emulation for microgrid/power stability improvement.
- The derivative VI control strategies adhere to the frequency derivative term to manipulate VI for improving frequency stability;
- The coordinated VI control strategies utilise PID control techniques coordination with other control techniques in the same system where different types of RES-based sources are integrated into the same system;
- Optimal VI control approaches utilised different optimisation techniques to optimise the controller tuning parameter. GA, ABC, PSO, mountain gazelle, fuzzy logic, and other optimisation techniques can influence the improvement of frequency stability;
- The adaptive VI control methods focused on developing the frequency performance during a disturbance by manipulating the controlling parameter changes adaptively with the system behaviour, making this controller unique;
- The model predictive intelligent VI control utilises prediction features to estimate the future need of inertia, predicting the contingencies and analysing the objective functions;
- The machine learning-based VI control approach estimates the inertia with different ML algorithms accurately for the RES integration into the grid. This method is a promising technique that can be tested for larger grid-integrated systems.
6. Future Research Directions
- Contributing to developing standards and protocols for the VI control techniques to facilitate interoperability and seamless integration of VI control solutions with existing power system networks utilising power electronic interface;
- Conducting in-depth studies on the performance and stability of VI control strategies under various operating conditions and system inconsistencies. The system sensitivities can be analysed for different proportions of RES penetration for testing the developed VI control approaches;
- Integrating RESs with machine learning-based intelligent VI control approaches is very promising. Only a few studies have explored this approach, which might be a good research direction for the future;
- It is still necessary to explore the coordination between the existing VI control approach and different optimisation algorithms. Exploring different differential evolution-based optimisation techniques combined with ML techniques will be a good future research direction;
- Very little literature addressed cybersecurity challenges associated with the implementation of VI control techniques to ensure the resilience and integrity of grid operations. So, this could be the future research that can be explored;
- Nonlinear controllers like nonlinear model predictive-based controllers utilising traditional VSM techniques could be promising future research directions;
- Future research needs to assess the economic implications and policy considerations associated with deploying VI control techniques, including incentives for grid operators and regulatory frameworks to encourage the implementation of VI control techniques;
- The grid-forming approach for inertia emulation techniques is a very promising technique for frequency stability and transient stability improvements.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations | |||
VI | Virtual inertia | RESs | Renewable energy resources |
ESS | Energy storage system | SGs | Synchronous generators |
BEES | Battery energy storage system | VSG | Virtual synchronous generator |
WT | Wind turbine | VSM | Virtual synchronous machine |
WTGs | Wind turbine generators | VIC | virtual inertia control |
WECS | Wind Energy Conversion System | PMSG | Permanent magnet synchronous generator |
RoCoF | Rate of Change of Frequency | PV | Photovoltaic |
HVDC | High-voltage DC | PI | Proportional Integral |
PID | Proportional Integral Derivative | DFIG | Doubly Fed Induction Generator |
SMES | Static Magnetic Energy Storage System | PLL | Programmable Logic Controller |
EMT | Electromagnetic Transients | SIC | Synthetic inertia control |
DE | Diffrential Evolution | IBR | Inverter-based resource |
DG | Distributed Generation | ML | Machine learning |
MG | Microgrid | MPC | Model predictive control |
RL | Reinforcement Learning | NN | Neural network |
FPMC | Flexible model predictive control | ANN | Artificial neural network |
HDP | Heuristic Dynamic Programming | LEGO | Low-carbon expansion Generation optimisation |
GA | Genetic algorithm | PSO | Particle swarm optimisation |
VIC | Virtual inertia control | OPF | Optimal Power Flow |
Symbols | |||
The generated mechanical power | The load power | ||
The generated power from wind | The disturbance function | ||
The generated power from solar | The disturbance time | ||
The generated power from virtual inertia | The power loss for the voltage dependence | ||
The disturbance power | and | The input and output inverter power, respectively | |
The reference angular frequency | The angular frequency of the virtual rotor | ||
The virtual inertia | The virtual damping | ||
The rotor phase angle | The frequency deviation | ||
The discount factor | The utility function | ||
, , and | The active power, reactive power, and frequency coefficient, respectively | The targeted frequency deviation | |
The targeted control variable |
References
- Yang, C.; Liao, H.; Liang, G.; Gao, H.; Xin, H.; Zhao, J. Coordinated restoration of inverter-based power sources and synchronous generators for the high renewable penetrated power system considering the dynamic frequency regulation capability. IET Renew. Power Gener. 2024, 18, 1292–1303. [Google Scholar] [CrossRef]
- Aragon, D.A.; Unamuno, E.; De Muro, A.G.; Ceballos, S.; Barrena, J.A. Second-Order Filter-Based Inertia Emulation (SOFIE) for Low Inertia Power Systems. IEEE Trans. Power Deliv. 2024, 39, 530–541. [Google Scholar] [CrossRef]
- Sajadinia, M. An adaptive virtual inertia control design for energy storage devices using interval type-2 fuzzy logic and fractional order PI controller. J. Energy Storage 2024, 84, 110791. [Google Scholar] [CrossRef]
- Tahir, W.; Farhan, M.; Bhatti, A.R.; Butt, A.D.; Farid, G. A modified control strategy for seamless switching of virtual synchronous generator-based inverter using frequency, phase, and voltage regulation. Int. J. Electr. Power Energy Syst. 2024, 157, 109805. [Google Scholar] [CrossRef]
- Thommessen, A.; Hackl, C.M. Virtual Synchronous Machine Control for Doubly-Fed Induction Machine based Wind Energy Conversion Systems. IEEE Open J. Ind. Electron. Soc. 2024, 5, 264–301. [Google Scholar] [CrossRef]
- Benhmidouch, Z.; Moufid, S.; Ait-Omar, A.; Abbou, A.; Laabassi, H.; Kang, M.; Chatri, C.; Hammou Ou Ali, I.; Bouzekri, H.; Baek, J. A novel reinforcement learning policy optimization based adaptive VSG control technique for improved frequency stabilization in AC microgrids. Electr. Power Syst. Res. 2024, 230, 110269. [Google Scholar] [CrossRef]
- Areed, E.F.; Yan, R.; Saha, T.K. Impact of Battery Ramp Rate Limit on Virtual Synchronous Machine Stability During Frequency Events. IEEE Trans. Sustain. Energy 2024, 15, 567–580. [Google Scholar] [CrossRef]
- Liang, K.; Wang, H.; Pozo, D.; Terzija, V. Power system restoration with large renewable Penetration: State-of-the-Art and future trends. Int. J. Electr. Power Energy Syst. 2024, 155, 109494. [Google Scholar] [CrossRef]
- Khan, A.; Aragon, D.A.; Seyedmahmoudian, M.; Mekhilef, S.; Stojcevski, A. Inertia emulation control of PMSG-based wind turbines for enhanced grid stability in low inertia power systems. Int. J. Electr. Power Energy Syst. 2024, 156, 109740. [Google Scholar] [CrossRef]
- Muftić Dedović, M.; Mujezinović, A.; Dautbašić, N.; Alihodžić, A.; Memić, A.; Avdaković, S. Estimation of Power System Inertia with the Integration of Converter-Interfaced Generation via MEMD during a Large Disturbance. Appl. Sci. 2024, 14, 681. [Google Scholar] [CrossRef]
- Lin, T.; Das, M.; Gole, A.; Isaacs, A. Adaptive fault ride through control of VSM Grid-forming converters. Electr. Power Syst. Res. 2023, 223, 109606. [Google Scholar] [CrossRef]
- Awda, Y.; Alowaifeer, M. Adaptive optimization of virtual synchronous generator based on fuzzy logic control and differential evolution. Ain Shams Eng. J. 2023, 15, 102606. [Google Scholar] [CrossRef]
- de Oliveira, J.D.A.; de Araújo Lima, F.K.; Tofoli, F.L.; Branco, C.G.C. Synchronverter-based frequency control technique applied in wind energy conversion systems based on the doubly-fed induction generator. Electr. Power Syst. Res. 2023, 214, 108820. [Google Scholar] [CrossRef]
- Shi, R.; Lan, C.; Huang, J.; Ju, C. Analysis and Optimization Strategy of Active Power Dynamic Response for VSG under a Weak Grid. Energies 2023, 16, 4593. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, Q.; Liu, S.; Wang, Z.; Meng, J.; Gu, L.; Zhou, Z. An adaptive neural fuzzy virtual inertia control method for VSC-HVDC system. Front. Energy Res. 2023, 10, 1109277. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Fang, R. Virtual Inertia Implemented by Quasi-Z-Source Power Converter for Distributed Power System. Energies 2023, 16, 6667. [Google Scholar] [CrossRef]
- Hasen, S.A.; Sönmez, Ş.; Ayasun, S. Enhancement of Stability Region by Virtual Inertia and Damping Control for Micro-Grids with Communication Time Delay. Iran. J. Sci. Technol.-Trans. Electr. Eng. 2023, 47, 177–191. [Google Scholar] [CrossRef]
- Nour, M.; Magdy, G.; Bakeer, A.; Telba, A.A.; Beroual, A.; Khaled, U.; Ali, H. A New Fractional-Order Virtual Inertia Support Based on Battery Energy Storage for Enhancing Microgrid Frequency Stability. Fractal Fract. 2023, 7, 855. [Google Scholar] [CrossRef]
- Bastiani, B.A.; Oliveira, R.V. de Frequency Dynamics of Power Systems with Inertial Response Support from Wind Generation. Energies 2023, 16, 5280. [Google Scholar] [CrossRef]
- Santra, S.; De, M. Mountain gazelle optimisation-based 3DOF-FOPID-virtual inertia controller for frequency control of low inertia microgrid. IET Energy Syst. Integr. 2023, 5, 405–417. [Google Scholar] [CrossRef]
- Yan, R.; Al-Masood, N.; Kumar Saha, T.; Bai, F.; Gu, H. The anatomy of the 2016 South Australia blackout: A catastrophic event in a high renewable network. IEEE Trans. Power Syst. 2018, 33, 5374–5388. [Google Scholar] [CrossRef]
- IEA. Global Renewable Energy Capacity by Scenario, 2022 and 2030, IEA. 2024. Available online: https://www.iea.org/data-and-statistics/charts/global-renewable-energy-capacity-by-scenario-2022-and-2030 (accessed on 21 May 2024).
- Clean Energy Australia Report 2024. Available online: https://www.cleanenergycouncil.org.au/resources/resources-hub/clean-energy-australia-report/Accessed/25-03-2024/ (accessed on 25 March 2024).
- Niu, D.; Fang, J.; Yau, W.; Goetz, S.M. Comprehensive evaluation of energy storage systems for inertia emulation and frequency regulation improvement. Energy Rep. 2023, 9, 2566–2576. [Google Scholar] [CrossRef]
- Hu, P.; Li, Y.; Yu, Y.; Blaabjerg, F. Inertia estimation of renewable-energy-dominated power system. Renew. Sustain. Energy Rev. 2023, 183, 113481. [Google Scholar] [CrossRef]
- Alam, S.; Al-ismail, F.S.; Member, S.; Abido, M.A.; Member, S. High-Level Penetration of Renewable Energy Sources Into Grid Utility: Challenges and Solutions. IEEE Access 2020, 8, 190277–190299. [Google Scholar] [CrossRef]
- Besheer, A.H.; Liu, X.; Fathalla, S.; Rabah, M.; Mahgoub, A.; Rashad, H. Overview on fast primary frequency adjustment technology for wind power future low inertia systems. Alex. Eng. J. 2023, 78, 318–338. [Google Scholar] [CrossRef]
- Sami, I.; Ullah, N.; Muyeen, S.M.; Member, S. Control Methods for Standalone and Grid Connected Micro-Hydro Power Plants With Synthetic Inertia Frequency Support: A Comprehensive Review. IEEE Access 2020, 8, 176313–176329. [Google Scholar] [CrossRef]
- Skiparev, V.; Machlev, R.; Chowdhury, N.R.; Levron, Y.; Petlenkov, E.; Belikov, J. Virtual Inertia Control Methods in Islanded Microgrids. Energies 2021, 14, 1562. [Google Scholar] [CrossRef]
- Abuagreb, M.; Allehyani, M.F. Overview of Virtual Synchronous Generators: Existing Projects, Challenges, and Future Trends. Electronics 2022, 11, 2843. [Google Scholar] [CrossRef]
- Cheng, Y.; Azizipanah-abarghooee, R.; Azizi, S.; Ding, L.; Terzija, V.; Eso, N.G.; Warwick, C. Smart frequency control in low inertia energy systems based on frequency response techniques: A review. Appl. Energy 2020, 279, 115798. [Google Scholar] [CrossRef]
- Karbouj, H.; Hussain, Z.; Flynn, D.; Qazi, H.W. Non-synchronous fast frequency reserves in renewable energy integrated power systems: A critical review. Electr. Power Energy Syst. 2019, 106, 488–501. [Google Scholar] [CrossRef]
- Yap, K.Y.; Lim, J.M.-Y.; Sarimuthu, C.R. A novel adaptive virtual inertia control strategy under varying irradiance and temperature in grid-connected solar power system. Int. J. Electr. Power Energy Syst. 2021, 132, 107180. [Google Scholar] [CrossRef]
- Afifi, M.A.; Marei, M.I.; Mohamad, A.M.I. Reinforcement-Learning-Based Virtual Inertia Controller for Frequency Support in Islanded Microgrids. Technologies 2024, 12, 39. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Z.; Fu, Y.; Li, L. Optimized virtual inertia of wind turbine for rotor angle stability in interconnected power systems. Electr. Power Syst. Res. 2020, 180, 106157. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, S.; Zhang, Z.; Li, Y.; Lin, J.; Wu, J.; Gong, Y.; He, L. An adaptive frequency regulation strategy with high renewable energy participating level for isolated microgrid. Renew. Energy 2023, 212, 683–698. [Google Scholar] [CrossRef]
- Wang, L.; Li, T.; Hu, X.; Cheng, Z.; Zhang, B. Power decoupling control of paralleled virtual synchronous generators based on virtual complex impedance. Energy Rep. 2023, 9, 43–47. [Google Scholar] [CrossRef]
- Zaman, M.S.U.; Bukhari, S.B.A.; Haider, R.; Khan, M.O.; Kim, C.-H. Effects of Modified Inertia Constant and Damping Coefficient on Power System Frequency Response. Int. J. Renew. Energy Res. 2019, 9, 525–531. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072864285&partnerID=40&md5=ef2389f800882b0aa43411d042ad9f87 (accessed on 25 January 2024).
- Saeedian, M.; Eskandari, B.; Taheri, S.; Hinkkanen, M.; Pouresmaeil, E. A Control Technique Based on Distributed Virtual Inertia for High Penetration of Renewable Energies Under Weak Grid Conditions. IEEE Syst. J. 2021, 15, 1825–1834. [Google Scholar] [CrossRef]
- Verma, P.; Seethalekshmi, K.; Dwivedi, B. A Cooperative Approach of Frequency Regulation Through Virtual Inertia Control and Enhancement of Low Voltage Ride-through in DFIG-based Wind Farm. J. Mod. Power Syst. Clean Energy 2022, 10, 1519–1530. [Google Scholar] [CrossRef]
- Nema, S.; Prakash, V.; Pandzic, H. Adaptive Synthetic Inertia Control Framework for Distributed Energy Resources in Low-Inertia Microgrid. IEEE Access 2022, 10, 54969–54979. [Google Scholar] [CrossRef]
- Perez, F.; Damm, G.; Verrelli, C.M.; Ribeiro, P.F. Adaptive Virtual Inertia Control for Stable Microgrid Operation Including Ancillary Services Support. IEEE Trans. Control Syst. Technol. 2023, 31, 1552–1564. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Xu, L.; Meng, J.; Hei, Y. Adjustable Inertial Response from the Converter with Adaptive Droop Control in DC Grids. IEEE Trans. Smart Grid 2019, 10, 3198–3209. [Google Scholar] [CrossRef]
- Fang, J.; Lin, P.; Li, H.; Yang, Y.; Tang, Y. An improved virtual inertia control for three-phase voltage source converters connected to a weak grid. IEEE Trans. Power Electron. 2019, 34, 8660–8670. [Google Scholar] [CrossRef]
- Lu, L.-Y.; Chu, C.-C. Consensus-Based Secondary Frequency and Voltage Droop Control of Virtual Synchronous Generators for Isolated AC Micro-Grids. IEEE J. Emerg. Sel. Top. Circuits Syst. 2015, 5, 443–455. [Google Scholar] [CrossRef]
- Saxena, P.; Singh, N.; Pandey, A.K. Enhancing the dynamic performance of microgrid using derivative controlled solar and energy storage based virtual inertia system. J. Energy Storage 2020, 31, 101613. [Google Scholar] [CrossRef]
- Salama, H.S.; Bakeer, A.; Magdy, G.; Vokony, I. Virtual inertia emulation through virtual synchronous generator based superconducting magnetic energy storage in modern power system. J. Energy Storage 2021, 44, 103466. [Google Scholar] [CrossRef]
- Chamorro, H.R.; Riaño, I.; Gerndt, R.; Zelinka, I.; Gonzalez-Longatt, F.; Sood, V.K. Synthetic inertia control based on fuzzy adaptive differential evolution. Int. J. Electr. Power Energy Syst. 2019, 105, 803–813. [Google Scholar] [CrossRef]
- Magdy, G.; Shabib, G.; Elbaset, A.A.; Mitani, Y. Renewable power systems dynamic security using a new coordination of frequency control strategy based on virtual synchronous generator and digital frequency protection. Int. J. Electr. Power Energy Syst. 2019, 109, 351–368. [Google Scholar] [CrossRef]
- Yildirim, B.; Gheisarnejad, M.; Mohammadzadeh, A.; Khooban, M.H. Intelligent frequency stabilization of low-inertia islanded power grids-based redox battery. J. Energy Storage 2023, 71, 108190. [Google Scholar] [CrossRef]
- Khazali, A.; Rezaei, N.; Saboori, H.; Guerrero, J.M. Using PV systems and parking lots to provide virtual inertia and frequency regulation provision in low inertia grids. Electr. Power Syst. Res. 2022, 207, 107859. [Google Scholar] [CrossRef]
- Xiong, X.; Wu, C.; Blaabjerg, F. Effects of Virtual Resistance on Transient Stability of Virtual Synchronous Generators Under Grid Voltage Sag. IEEE Trans. Ind. Electron. 2022, 69, 4754–4764. [Google Scholar] [CrossRef]
- Asensio, A.P.; Gonzalez-Longatt, F.; Arnaltes, S.; Rodríguez-Amenedo, J.L. Analysis of the converter synchronizing method for the contribution of battery energy storage systems to inertia emulation. Energies 2020, 13, 1478. [Google Scholar] [CrossRef]
- Baruwa, M.; Fazeli, M. Impact of Virtual Synchronous Machines on Low-Frequency Oscillations in Power Systems. IEEE Trans. Power Syst. 2021, 36, 1934–1946. [Google Scholar] [CrossRef]
- Datta, U.; Kalam, A.; Shi, J. Battery energy storage system for aggregated inertia-droop control and a novel frequency dependent state-of-charge recovery. Energies 2020, 13, 2003. [Google Scholar] [CrossRef]
- Pazmiño, I.; Martinez, S.; Ochoa, D. Analysis of control strategies based on virtual inertia for the improvement of frequency stability in an islanded grid with wind generators and battery energy storage systems. Energies 2021, 14, 698. [Google Scholar] [CrossRef]
- Sarojini, R.K.; Kaliannan, P.; Teekaraman, Y.; Nikolovski, S.; Baghaee, H.R. An enhanced emulated inertia control for grid-connected pv systems with hess in a weak grid. Energies 2021, 14, 1721. [Google Scholar] [CrossRef]
- Orihara, D.; Kikusato, H.; Hashimoto, J.; Otani, K.; Takamatsu, T.; Oozeki, T.; Taoka, H.; Matsuura, T.; Miyazaki, S.; Hamada, H.; et al. Contribution of voltage support function to virtual inertia control performance of inverter-based resource in frequency stability. Energies 2021, 14, 4220. [Google Scholar] [CrossRef]
- Mahajan, S.; Verma, Y.P. Performance of fast responding ultracapacitor energy storage for virtual inertia emulation control. Energy Storage 2022, 4, e346. [Google Scholar] [CrossRef]
- Liu, H.; Yang, S.; Yuan, X. Inertia control strategy of DFIG-based wind turbines considering low-frequency oscillation suppression. Energies 2022, 15, 29. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, L.; Yao, Y.; Yu, X.; Yang, Y.; Li, D. Virtual inertia coordinated allocation method considering inertia demand and wind turbine inertia response capability. Energies 2021, 14, 5002. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Guo, L.; Zhu, J.; Wang, Y.; Wang, C. Enhanced dynamic stability control for low-inertia hybrid AC/DC microgrid with distributed energy storage systems. IEEE Access 2019, 7, 91234–91242. [Google Scholar] [CrossRef]
- Kumar, D.S.; Lau, P.; Sharma, A.; Khambadkone, A.; Srinivasan, D. Improvement of transient response in grid-tied photovoltaic systems using virtual inertia. IET Smart Grid 2021, 4, 1–14. [Google Scholar] [CrossRef]
- Ying, J.; Yuan, X.; Hu, J.; He, W. Impact of Inertia Control of DFIG-Based WT on Electromechanical Oscillation Damping of SG. IEEE Trans. Power Syst. 2018, 33, 3450–3459. [Google Scholar] [CrossRef]
- Soni, N.; Doolla, S.; Chandorkar, M.C. Inertia Design Methods for Islanded Microgrids Having Static and Rotating Energy Sources. IEEE Trans. Ind. Appl. 2016, 52, 5165–5174. [Google Scholar] [CrossRef]
- Lucas, E.; Campos-Gaona, D.; Anaya-Lara, O. Assessing the impact of DFIG synthetic inertia provision on power system small-signal stability. Energies 2019, 12, 3440. [Google Scholar] [CrossRef]
- Kerdphol, T.; Watanabe, M.; Mitani, Y.; Phunpeng, V. Applying Virtual Inertia Control Topology to SMES System for Frequency Stability Improvement of Low-Inertia Microgrids Driven by High Renewables. Energies 2019, 12, 3902. [Google Scholar] [CrossRef]
- Cai, Y.; Li, Z.; Cai, X. Optimal inertia reserve and inertia control strategy for wind farms. Energies 2020, 13, 1067. [Google Scholar] [CrossRef]
- Sarojini, R.K.; Kaliannan, P. Inertia Emulation through Supercapacitor for a Weak Grid. IEEE Access 2021, 9, 30793–30802. [Google Scholar] [CrossRef]
- Ke, D.; Chung, C.Y.; Xu, J.; Shen, Y.; Sun, Y. Inertia Emulation Uncorrelated with Electromechanical Dynamics to Improve Frequency Transients Using Center of Inertia (COI) Frequency Signal. IEEE Trans. Power Syst. 2021, 36, 1736–1749. [Google Scholar] [CrossRef]
- Saeedian, M.; Pournazarian, B.; Taheri, S.; Pouresmaeil, E. Provision of Synthetic Inertia Support for Converter-Dominated Weak Grids. IEEE Syst. J. 2022, 16, 2068–2077. [Google Scholar] [CrossRef]
- Saxena, P.; Singh, N.; Pandey, A.K. Self-Regulated Solar PV Systems: Replacing Battery via Virtual Inertia Reserve. IEEE Trans. Energy Convers. 2021, 36, 2185–2194. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Y. Inertia Provision and Small Signal Stability Analysis of a Wind-Power Generation System Using Phase-Locked Synchronized Equation. Sustainability 2019, 11, 1400. [Google Scholar] [CrossRef]
- Chen, T.; Guo, J.; Chaudhuri, B.; Hui, S.Y. Virtual Inertia From Smart Loads. IEEE Trans. Smart Grid 2020, 11, 4311–4320. [Google Scholar] [CrossRef]
- Saeedian, M.; Pournazarian, B.; Seyedalipour, S.S.; Eskandari, B.; Pouresmaeil, E. Emulating rotational inertia of synchronous machines by a new control technique in grid-interactive converters. Sustain. 2020, 12, 5346. [Google Scholar] [CrossRef]
- Kerdphol, T.; Rahman, F.S.; Mitani, Y. Virtual inertia control application to enhance frequency stability of interconnected power systems with high renewable energy penetration. Energies 2018, 11, 981. [Google Scholar] [CrossRef]
- Kerdphol, T.; Turschner, D.; Beck, H. Enhanced Virtual Inertia Control Based on Derivative Technique to Emulate Simultaneous Inertia and Damping Properties for Microgrid Frequency Regulation. IEEE Access 2019, 7, 14422–14433. [Google Scholar] [CrossRef]
- Liu, J.; Yang, D.; Yao, W.; Fang, R.; Zhao, H.; Wang, B. PV-Based Virtual Synchronous Generator with Variable Inertia to Enhance Power System Transient Stability Utilizing the Energy Storage System. Prot. Control Mod. Power Syst. 2017, 2, 39. [Google Scholar] [CrossRef]
- Kerdphol, T.; Rahman, F.S.; Mitani, Y.; Watanabe, M.; Küfeoǧlu, S.K. Robust Virtual Inertia Control of an Islanded Microgrid Considering High Penetration of Renewable Energy. IEEE Access 2018, 6, 625–636. [Google Scholar] [CrossRef]
- Magdy, G.; Bakeer, A.; Alhasheem, M. Superconducting energy storage technology-based synthetic inertia system control to enhance frequency dynamic performance in microgrids with high renewable penetration. Prot. Control Mod. Power Syst. 2021, 6, 36. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Z.; Yu, J.; Huang, J.; Li, W. Coordinated control parameter setting of DFIG wind farms with virtual inertia control. Int. J. Electr. Power Energy Syst. 2020, 122, 106167. [Google Scholar] [CrossRef]
- Muftau, B.; Fazeli, M.; Egwebe, A. Stability analysis of a PMSG based Virtual Synchronous Machine. Electr. Power Syst. Res. 2020, 180, 106170. [Google Scholar] [CrossRef]
- Ali, H.; Magdy, G.; Li, B.; Shabib, G.; Elbaset, A.A.; Xu, D.; Mitani, Y. A New Frequency Control Strategy in an Islanded Microgrid Using Virtual Inertia Control-Based Coefficient Diagram Method. IEEE Access 2019, 7, 16979–16990. [Google Scholar] [CrossRef]
- Aluko, A.O.; Dorrell, D.G.; Carpanen, R.P.; Ojo, E.E. Heuristic optimization of virtual inertia control in grid-connected wind energy conversion systems for frequency support in a restructured environment. Energies 2020, 13, 564. [Google Scholar] [CrossRef]
- Thomas, V.; Kumaravel, S.; Ashok, S. Fuzzy Controller-Based Self-Adaptive Virtual Synchronous Machine for Microgrid Application. IEEE Trans. Energy Convers. 2021, 36, 2427–2437. [Google Scholar] [CrossRef]
- Alam, M.S.; Al-Ismail, F.S.; Abido, M.A. Pv/wind-integrated low-inertia system frequency control: Pso-optimized fractional-order pi-based smes approach. Sustainability 2021, 13, 7622. [Google Scholar] [CrossRef]
- Zhong, C.; Li, H.; Zhou, Y.; Lv, Y.; Chen, J.; Li, Y. Virtual synchronous generator of PV generation without energy storage for frequency support in autonomous microgrid. Int. J. Electr. Power Energy Syst. 2022, 134, 107343. [Google Scholar] [CrossRef]
- Elwakil, M.M.; El Zoghaby, H.M.; Sharaf, S.M.; Mosa, M.A. Adaptive virtual synchronous generator control using optimized bang-bang for Islanded microgrid stability improvement. Prot. Control Mod. Power Syst. 2023, 8, 57. [Google Scholar] [CrossRef]
- Kerdphol, T.; Watanabe, M.; Hongesombut, K.; Mitani, Y. Self-Adaptive Virtual Inertia Control-Based Fuzzy Logic to Improve Frequency Stability of Microgrid With High Renewable Penetration. IEEE Access 2019, 7, 76071–76083. [Google Scholar] [CrossRef]
- Setiadi, H.; Shah, R.; Islam, M.R.; Asfani, D.A.; Nasution, T.H.; Abdillah, M.; Megantoro, P.; Krismanto, A.U. An Extreme Learning Machine Based Adaptive VISMA for Stability Enhancement of Renewable Rich Power Systems. Electronics 2022, 11, 247. [Google Scholar] [CrossRef]
- Fawzy, A.; Mobarak, Y.; Osheba, D.S.; Hemeida, M.G.; Senjyu, T.; Roshdy, M. An Online Archimedes Optimization Algorithm Identifier-Controlled Adaptive Modified Virtual Inertia Control for Microgrids. Energies 2022, 15, 8884. [Google Scholar] [CrossRef]
- Phurailatpam, C.; Rather, Z.H.; Bahrani, B.; Doolla, S. Measurement-Based Estimation of Inertia in AC Microgrids. IEEE Trans. Sustain. Energy 2020, 11, 1975–1984. [Google Scholar] [CrossRef]
- Fernández-Guillamón, A.; Vigueras-Rodríguez, A.; Molina-García, Á. Analysis of power system inertia estimation in high wind power plant integration scenarios. IET Renew. Power Gener. 2019, 13, 2807–2816. [Google Scholar] [CrossRef]
- Serrano-Jiménez, D.; Unamuno, E.; Gil-de-Muro, A.; Aragon, D.A.; Ceballos, S.; Barrena, J.A. Stability tool for electric power systems with a high penetration of electronic power converters. Electr. Power Syst. Res. 2022, 210, 108115. [Google Scholar] [CrossRef]
- Saadatmand, S.; Shamsi, P.; Ferdowsi, M. Adaptive critic design-based reinforcement learning approach in controlling virtual inertia-based grid-connected inverters. Int. J. Electr. Power Energy Syst. 2021, 127, 106657. [Google Scholar] [CrossRef]
- Wogrin, S.; Tejada-Arango, D.; Delikaraoglou, S.; Botterud, A. Assessing the impact of inertia and reactive power constraints in generation expansion planning. Appl. Energy 2020, 280, 115925. [Google Scholar] [CrossRef]
- Fawzy, A.; Bakeer, A.; Magdy, G.; Atawi, I.E.; Roshdy, M. Adaptive Virtual Inertia-Damping System Based on Model Predictive Control for Low-Inertia Microgrids. IEEE Access 2021, 9, 109718–109731. [Google Scholar] [CrossRef]
- Xu, Q.; Dragicevic, T.; Xie, L.; Blaabjerg, F. Artificial Intelligence-Based Control Design for Reliable Virtual Synchronous Generators. IEEE Trans. Power Electron. 2021, 36, 9453–9464. [Google Scholar] [CrossRef]
- Qin, S.; Chang, Y.; Xie, Z.; Li, S. Improved Virtual Inertia of PMSG-Based Wind Turbines Based on Multi-Objective Model-Predictive Control. Energies 2021, 14, 3612. [Google Scholar] [CrossRef]
- Yap, K.Y.; Sarimuthu, C.R.; Lim, J.M.-Y. Grid Integration of Solar Photovoltaic System Using Machine Learning-Based Virtual Inertia Synthetization in Synchronverter. IEEE Access 2020, 8, 49961–49976. [Google Scholar] [CrossRef]
- Long, B.; Liao, Y.; Chong, K.T.; Rodríguez, J.; Guerrero, J.M. MPC-Controlled Virtual Synchronous Generator to Enhance Frequency and Voltage Dynamic Performance in Islanded Microgrids. IEEE Trans. Smart Grid 2021, 12, 953–964. [Google Scholar] [CrossRef]
- Dhara, P.K.; Rather, Z.H. Non-synchronous Inertia Estimation in a Renewable Energy Integrated Power System with Reduced Number of Monitoring Nodes. IEEE Trans. Sustain. Energy 2023, 14, 864–875. [Google Scholar] [CrossRef]
- Allella, F.; Chiodo, E.; Giannuzzi, G.M.; Lauria, D.; Mottola, F. On-Line Estimation Assessment of Power Systems Inertia with High Penetration of Renewable Generation. IEEE Access 2020, 8, 62689–62697. [Google Scholar] [CrossRef]
- Kerdphol, T.; Rahman, F.S.; Mitani, Y.; Hongesombut, K.; Küfeoğlu, S. Virtual inertia control-based model predictive control for microgrid frequency stabilization considering high renewable energy integration. Sustainability 2017, 9, 773. [Google Scholar] [CrossRef]
- Egbomwan, O.E.; Liu, S.; Chaoui, H. Twin Delayed Deep Deterministic Policy Gradient (TD3) Based Virtual Inertia Control for Inverter-Interfacing DGs in Microgrids. IEEE Syst. J. 2023, 17, 2122–2132. [Google Scholar] [CrossRef]
- Sockeel, N.; Gafford, J.; Papari, B.; Mazzola, M. Virtual Inertia Emulator-Based Model Predictive Control for Grid Frequency Regulation Considering High Penetration of Inverter-Based Energy Storage System. IEEE Trans. Sustain. Energy 2020, 11, 2932–2939. [Google Scholar] [CrossRef]
Ref. | Focus of Study | Techniques/Solutions Discussed | Key Findings | Limitations |
---|---|---|---|---|
[8] | Non-synchronous frequency reserve mechanisms | Converter-integrated RESs | Critical review of non-synchronous reserves | - |
[24] | High-power energy storage systems (ESS) | Control techniques for ESS | Comparisons based on control equations; weighted metric for comparison | Implementation challenges of optimisation-based control techniques |
[25] | Inertia estimation techniques | VI control techniques | Regional inertia requirements; VI control configurations | Lacks future research trends on VI control techniques |
[26] | Integration challenges of high RES penetration | Advanced control strategies, ESS, smart grid technologies | Mitigation of grid stability and power quality issues | - |
[27] | Fast primary frequency adjustment for wind power | Various control techniques for fast frequency adjustment | Ensuring grid stability in wind-dominated systems | - |
[28] | Control methods for micro-hydro power plants | Droop control, VI emulation, energy storage integration | Enhances synthetic inertia and frequency regulation | Lacks analysis of industrial/commercial applications |
[29] | VI control techniques for islanded microgrids | Intelligent VI control strategies | Improves microgrid stability and reliability | Focuses only on the islanded operation |
[30] | Virtual synchronous generator (VSG) technology | VSG architectures and control strategies | State-of-the-art challenges and future directions | Lacks investigation into intelligent VSG-based control techniques |
[31] | Frequency stability in low-inertia systems | Smart frequency control strategies | Design and optimisation of frequency response techniques | - |
[32] | Frequency stability in non-synchronous RES-based systems | Rapid inertia power reserves | Improving frequency stability in industrial/commercial applications | Lacks detailed investigation of control techniques with mathematical models |
Contributions | This Paper | [8] | [24] | [25] | [26] | [27] | [28] | [29] | [30] | [31] | [32] |
---|---|---|---|---|---|---|---|---|---|---|---|
Mathematical modelling with equations | ✓ | x | x | x | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | x |
Comparisons between different control techniques | ✓ | x | ✓ | x | ✓ | ✓ | ✓ | ✓ | x | ✓ | ✓ |
Inertia response with stability | ✓ | x | x | x | x | x | x | ✓ | x | x | ✓ |
Advantages with limitations | ✓ | x | x | ✓ | ✓ | ✓ | x | ✓ | ✓ | ✓ | x |
Validation platform and implementation | ✓ | x | x | x | x | x | x | x | x | x | x |
RES connection type | ✓ | x | ✓ | ✓ | ✓ | x | ✓ | ✓ | x | x | ✓ |
Classification of control techniques based on operating characteristics | ✓ | x | ✓ | x | ✓ | ✓ | ✓ | x | ✓ | ✓ | ✓ |
Ref. | Published Year | Methodology | Validation System | Research Contributions with Limitations |
---|---|---|---|---|
[2] | 2024 | Second-order filter | CSTEP, HIL |
|
[5] | 2024 | VSM | MATLAB/Simulink, IEEE 9 bus test system |
|
[7] | 2024 | VSM | PSCAD/EMTDC, Queensland transmission system |
|
[13] | Synchronverter | PSCAD/EMTDC, IEEE 14 bus test system |
| |
[16] | 2023 | VSG control of quasi-Z-source power converters | MATLAB/Simulink |
|
[19] | 2023 | VSG control with WTGs | MATLAB/Simulink |
|
[51] | 2021 | Virtual synchronous generator (VSG)-based VI control | MATLAB/Simulink |
|
[52] | 2022 | VSG-based VI control | d-SPACE |
|
[54] | 2021 | VSM | MATLAB/Simulink |
|
[55] | 2020 | Coordinated droop with VI | IEEE 9 bus test system |
|
[62] | 2019 | Unified droop control | PSCAD/EMTDC, Hybrid AC/DC microgrid |
|
[65] | 2016 | VSG control | Experimental lab, microgrid |
|
[74] | 2020 | VSG | CIGRE European test system, microgrid |
|
[1] | 2023 | Coordinated PID control | IEEE 39 bus system |
|
[56] | 2021 | Coordinated VI control between BEES and WTs | MATLAB/Simulink, electrical system of San Cristobal Island (Galapagos, Ecuador) |
|
[57] | 2021 | Coordinated VI with hybrid ESS | MATLAB/Simulink, OPAL-RT |
|
[58] | 2021 | Coordinated PID with grid following IBRs | MATLAB/Simulink, IEEE 9 Bus |
|
[60] | 2022 | Coordinated VI control with optimised PI | MATLAB/Simulink |
|
[61] | 2021 | Coordinated VI control | IEEE 39 bus New England system |
|
[17] | 2023 | Derivative VI control, quasi-polynomial mapping | MATLAB/Simulink |
|
[18] | 2023 | Fractional-order derivative PI control | MATLAB/Simulink, microgrid |
|
[66] | 2019 | Derivative synthetic inertia control | Two areas and three machines with DFIG |
|
[67] | 2019 | Derivative VI control with genetic algorithm in wind farms | MATLAB/Simulink, microgrid |
|
[68] | 2020 | Derivative VI control in wind farms | MATLAB/Simulink, OPAL-RT |
|
[53] | 2020 | Derivative VI control BESS | MATLAB/Simulink, microgrid |
|
[59] | 2021 | PID control with DFIG WTs | 2-area, 4-machine system |
|
[63] | 2019 | PID control | Python/HOMER, two-machine, two-area system |
|
[64] | 2018 | PID control | Eigenvalue analysis |
|
[69] | 2021 | PID | MATLAB/Simulink, HIL |
|
[70] | 2020 | Derivative | New York–New England interconnected system, IEEE 118 bus |
|
[72] | 2021 | Derivative | MATLAB/Simulink, microgrid |
|
[76] | 2018 | Derivative | MATLAB/Simulink, microgrid |
|
[77] | 2018 | Derivative | MATLAB/Simulink, microgrid |
|
[71] | 2022 | Distributed VI with gain compensator | MATLAB/Simulink |
|
[73] | 2019 | PLL-based inertia emulation | PSSE, single-machine infinite bus system, New York and New England test system |
|
[75] | 2020 | PLL-based inertia emulation | MATLAB/Simulink |
|
Ref. | Published Year | Methodology | Validation System | Research Contributions with Limitations |
---|---|---|---|---|
[20] | 2023 | Mountain gazelle optimisation, PID | MATLAB/Simulink, microgrid |
|
[78] | 2017 | VSG control, transient energy function | MATLAB/Simulink |
|
[79] | 2019 | -based VI control | MATLAB/Simulink, microgrid |
|
[80] | 2021 | Whale optimisation algorithm, derivative VI control | MATLAB/Simulink, microgrid |
|
[81] | 2020 | The Newton-based eigenvalue optimisation algorithm | DIgSILENT/PowerFactory, IEEE four-generator two-area system |
|
[82] | 2020 | PMSG-based VSM | MATLAB/Simulink |
|
[83] | 2019 | CDM controller | MATLAB/Simulink, microgrid |
|
[84] | 2019 | Artificial bee colony | MATLAB/Simulink |
|
[85] | 2021 | GA-tuned fuzzy-based VSG | MATLAB/Simulink, HIL |
|
[86] | 2021 | PSO, FOPI PI control | MATLAB/Simulink |
|
Ref. | Published Year | Methodology | Validation System | Research Contributions with Limitations |
---|---|---|---|---|
[11] | 2023 | Adaptive VSM | PSCAD/EMTDC |
|
[12] | 2023 | Fuzzy system, DE optimisation | MATLAB/Simulink |
|
[14] | 2023 | Virtual negative impedance combined with the active power transient damping (VNIAPTD) optimisation | MATLAB/Simulink |
|
[87] | 2022 | Adaptive VSG control | MATLAB/Simulink |
|
[88] | 2023 | Adaptive VSG, bang–bang optimisation | Time domain simulation |
|
[89] | 2019 | Self-adaptive fuzzy-based VI control | MATLAB/Simulink |
|
[90] | 2022 | ELM, fruit fly optimisation, VISMA | Java Indonesian electric grid |
|
[91] | 2022 | Archimedes optimisation algorithm, VSM | MATLAB/Simulink |
|
Ref. | Published Year | Methodology | Validation System | Research Contributions with Limitations |
---|---|---|---|---|
[10] | 2024 | Multivariate empirical mode decomposition (MEMD) | IEEE 39 bus test system |
|
[15] | 2023 | Adaptive NN, fuzzy system | HIL |
|
[50] | 2023 | Interval type-3 fuzzy system and nonlinear MPC | MATLAB/Simulink, OPAL-RT |
|
[51] | 2022 | Mixed integer linear program model for VIC | ILOG CPLEX |
|
[92] | 2020 | Variable-order polynomial curve fitting | MATLAB/Simulink, microgrid/IEEE standard test system |
|
[93] | 2019 | System identification/prediction based | MATLAB/Simulink |
|
[94] | 2022 | Stability analysis using CSTEP | IEEE 5 bus test system |
|
[6] | 2024 | Adaptive RLC | Python |
|
[95] | 2021 | ANN, heuristic dynamic programming (HDP) | MATLAB/Simulink, lab experiment using Texas instrument signal processor (TMS) |
|
[96] | 2020 | Low-carbon expansion generation optimisation (LEGO) model for reactive power constraints | IEEE 9 bust test system |
|
[98] | 2021 | Double artificial neural network (ANN) | RT-Lab OP5600 simulator |
|
[100] | 2020 | NN with ML | MATLAB/Simulink |
|
[102] | 2023 | Machine learning algorithm | IEEE 39 bus test system, Gujrat state grid model of India |
|
[103] | 2020 | Kalman filter-based estimation method | Python |
|
[105] | 2023 | RL, twin delayed deep deterministic policy gradient (TD3) algorithm | MATLAB/Simulink |
|
[36] | 2023 | FPMC | MATLAB/Simulink |
|
[97] | 2021 | Model predictive control (MPC) | MATLAB/Simulink |
|
[99] | 2021 | Multi-objective MPC | MATLAB/Simulink |
|
[101] | 2021 | MPC, VSG | MATLAB/Simulink, HIL |
|
[104] | 2017 | MPC | MATLAB/Simulink |
|
[106] | 2020 | Model predictive control (MPC) | MATLAB/Simulink |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shobug, M.A.; Chowdhury, N.A.; Hossain, M.A.; Sanjari, M.J.; Lu, J.; Yang, F. Virtual Inertia Control for Power Electronics-Integrated Power Systems: Challenges and Prospects. Energies 2024, 17, 2737. https://doi.org/10.3390/en17112737
Shobug MA, Chowdhury NA, Hossain MA, Sanjari MJ, Lu J, Yang F. Virtual Inertia Control for Power Electronics-Integrated Power Systems: Challenges and Prospects. Energies. 2024; 17(11):2737. https://doi.org/10.3390/en17112737
Chicago/Turabian StyleShobug, Md Asaduzzaman, Nafis Ahmed Chowdhury, Md Alamgir Hossain, Mohammad J. Sanjari, Junwei Lu, and Fuwen Yang. 2024. "Virtual Inertia Control for Power Electronics-Integrated Power Systems: Challenges and Prospects" Energies 17, no. 11: 2737. https://doi.org/10.3390/en17112737
APA StyleShobug, M. A., Chowdhury, N. A., Hossain, M. A., Sanjari, M. J., Lu, J., & Yang, F. (2024). Virtual Inertia Control for Power Electronics-Integrated Power Systems: Challenges and Prospects. Energies, 17(11), 2737. https://doi.org/10.3390/en17112737