Predicting the Remaining Useful Life of Solid Oxide Fuel Cell Systems Using Adaptive Trend Models of Health Indicators
Abstract
:1. Introduction
2. Methodology
2.1. Local Linear Trend Model
2.2. Distribution of the Ratio of Two Jointly Normal Variables
3. Performance Analysis on Simulated Time Series
3.1. Case 1: Time Series with a Fixed Linear Trend
3.2. Case 2: Time Series with Linear Trend Subjected to Abrupt Changes
3.3. Case 3: Time Series Resulting from Arma Process with Fixed Parameters
3.4. Case 4: Time Series Resulting from Arma Process with Abruptly Changing Parameters
4. Application to the Prognosis of a Laboratory Sofc System
4.1. System Description
4.2. Lumped Model of the Stack
4.3. Prognostics of the Remaining Useful Life Based on ASR as a Health Indicator
Validation of the Proposed Method by Comparison to an Alternative Prognostic Algorithm
4.4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FHT | First-hitting time |
OLS | Ordinary least squares |
MC | Monte Carlo |
SOFC | Solid oxide fuel cell |
BoP | Balance of plant |
RUL | Remaining useful life |
EECD | Electrochemical energy conversion devices |
ASR | Area-specific resistance |
SMR | Steam methane reforming |
WGS | Water–gas shift |
EOL | End-of-life |
ARMA | Autoregressive moving-average |
KDE | Kernel density estimation |
PEM | Proton-exchange membrane fuel cell |
APU | Auxilary power unit |
References
- Peng, J.; Huang, J.; Wu, X.; Xu, Y.; Chen, H.; Li, X. Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis and health control: A review. J. Power Sources 2021, 505, 230058. [Google Scholar] [CrossRef]
- Nakajo, A.; Tanasini, P.; Diethelm, S.; herle, J.V.; Favrat, D. Electrochemical model of solid oxide fuel cell for simulation at the stack scale II: Implementation of degradation processes. J. Electrochem. Soc. 2011, 158, B1102–B1118. [Google Scholar] [CrossRef]
- Marra, D.; Sorrentino, M.; Pohjoranta, A.; Pianese, C.; Kiviaho, J. A Lumped Dynamic Modelling Approach for Model-Based Control and Diagnosis of Solid Oxide Fuel Cell System with Anode Off-Gas Recycling. ECS Trans. 2015, 68, 3095. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, X.; Pang, Q.; Wang, J.; Lian, Y.; Ouyang, M.; Burke, A.F. Battery prognostics and health management from a machine learning perspective. J. Power Sources 2023, 581, 233474. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Q.; Zhang, Y.; Wang, J.; Stimming, U.; Lee, A.A. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. Nat. Commun. 2020, 11, 1706. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, J.; Hissel, D.; Lu, J.; Hou, M.; Shao, Z. Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review. Renew. Sustain. Energy Rev. 2020, 123, 109721. [Google Scholar] [CrossRef]
- Ming, W.; Sun, P.; Zhang, Z.; Qiu, W.; Du, J.; Li, X.; Zhang, Y.; Zhang, G.; Liu, K.; Wang, Y.; et al. A systematic review of machine learning methods applied to fuel cells in performance evaluation, durability prediction, and application monitoring. Int. J. Hydrogen Energy 2023, 48, 5197–5228. [Google Scholar] [CrossRef]
- Marra, D.; Sorrentino, M.; Pianese, C.; Iwanschitz, B. A neural network estimator of solid oxide fuel cell performance for on-field diagnostics and prognostics applications. J. Power Sources 2013, 241, 320–329. [Google Scholar] [CrossRef]
- Wu, X.; Ye, Q. Fault diagnosis and prognostic of solid oxide fuel cells. J. Power Sources 2016, 321, 47–56. [Google Scholar] [CrossRef]
- Cheng, S.J.; Li, W.K.; Chang, T.J.; Hsu, C.H. Data-Driven Prognostics of the SOFC System Based on Dynamic Neural Network Models. Energies 2021, 14, 5841. [Google Scholar] [CrossRef]
- Zhang, X.; He, Z.; Zhan, Z.; Han, T. Performance degradation analysis and fault prognostics of solid oxide fuel cells using the data-driven method. Int. J. Hydrogen Energy 2021, 46, 18511–18523. [Google Scholar] [CrossRef]
- Dolenc, B.; Boškoski, P.; Pohjoranta, A.; Noponen, M.; Juričić, Đ. Hybrid Approach to Remaining Useful Life Prediction of Solid Oxide Fuel Cell Stack. ECS Trans. 2017, 78, 2251. [Google Scholar] [CrossRef]
- Cui, L.; Huo, H.; Xie, G.; Xu, J.; Kuang, X.; Dong, Z. Long-Term Degradation Trend Prediction and Remaining Useful Life Estimation for Solid Oxide Fuel Cells. Sustainability 2022, 14, 9069. [Google Scholar] [CrossRef]
- Dolenc, B.; Juričić, D.; Boškoski, P. Identification of the coupling functions between the process and the degradation dynamics by means of the variational Bayesian inference: An application to the solid-oxide fuel cells. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20190086. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Jiang, C.; Peng, J.; Wu, X.L.; Xiao, L.; Li, X. Fault Prognosis Method for Solid Oxide Fuel Cells Based on Mechanism Degradation Process Model and Particle Filtering. IEEE Trans. Power Electron. 2023, 38, 6831–6840. [Google Scholar] [CrossRef]
- Polverino, P.; Gallo, M.; Pianese, C. Development of mathematical transfer functions correlating Solid Oxide Fuel Cell degradation to operating conditions for Accelerated Stress Test protocols design. J. Power Sources 2021, 491, 229521. [Google Scholar] [CrossRef]
- Guida, M.; Postiglione, F.; Pulcini, G. A random-effects model for long-term degradation analysis of solid oxide fuel cells. Reliab. Eng. Syst. Saf. 2015, 140, 88–98. [Google Scholar] [CrossRef]
- Naeini, M.; Cotton, J.S.; Adams, T.A. An eco-technoeconomic analysis of hydrogen production using solid oxide electrolysis cells that accounts for long-term degradation. Front. Energy Res. 2022, 10, 1015465. [Google Scholar] [CrossRef]
- Goldberger, A.; Shenhart, W.; Wilks, S. Econometric Theory; Wiley Series In Probability and Statistics: Applied Probability and Statist Ics Section Series; John Wiley & Sons: New York, NY, USA, 1964. [Google Scholar]
- Simon, M.K. Probability Distributions Involving Gaussian Random Variables: A Handbook for Engineers and Scientists; International Series in Engineering and Computer Science; Springer: New York, NY, USA, 2007. [Google Scholar]
- Shumway, R.H.; Stoffer, D.S. ARIMA Models. In Time Series Analysis and Its Applications: With R Examples; Springer International Publishing: Cham, Switzerland, 2017; pp. 75–163. [Google Scholar] [CrossRef]
- Aguiar, P.; Adjiman, C.S.; Brandon, N.P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model-based steady-state performance. J. Power Sources 2004, 138, 120–136. [Google Scholar] [CrossRef]
- Marra, D.; Pianese, C.; Polverino, P.; Sorrentino, M. Models Hierarchy; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Sorrentino, M.; Pianese, C.; Guezennec, Y.G. A hierarchical modeling approach to the simulation and control of planar solid oxide fuel cells. J. Power Sources 2008, 180, 380–392. [Google Scholar] [CrossRef]
- Wahl, S.; Segarra, A.G.; Horstmann, P.; Carré, M.; Bessler, W.G.; Lapicque, F.; Friedrich, K.A. Modeling of a thermally integrated 10 kWe planar solid oxide fuel cell system with anode offgas recycling and internal reforming by discretization in flow direction. J. Power Sources 2015, 279, 656–666. [Google Scholar] [CrossRef]
- Massardo, A.F.; Lubelli, F. Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT): Part A—Cell Model and Cycle Thermodynamic Analysis. J. Eng. Gas Turbines Power 1999, 122, 27–35. [Google Scholar] [CrossRef]
- Dolenc, B.; Vrečko, D.; Juričić, Ð.; Pohjoranta, A.; Pianese, C. Online gas composition estimation in solid oxide fuel cell systems with anode off-gas recycle configuration. J. Power Sources 2017, 343, 246–253. [Google Scholar] [CrossRef]
- Huang, B.; Qi, Y.; Murshed, A.M. Dynamic Modelling and Predictive Control in Solid Oxide Fuel Cells: First Principle and Data-Based Approaches; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Wan, E.; Van Der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), Lake Louise, AB, Canada, 4 October 2000; pp. 153–158. [Google Scholar] [CrossRef]
- Seabold, S.; Perktold, J. statsmodels: Econometric and statistical modeling with python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010. [Google Scholar]
- Härdle, W.K.; Müller, M.; Sperlich, S.; Werwatz, A. Nonparametric and Semiparametric Models; Springer: Berlin/Heidelberg, Germany, 2006; pp. 68–69. [Google Scholar] [CrossRef]
Simulated Scenario | n | k | ||
---|---|---|---|---|
Case 1 | 0 | 1 | 30 | 600 |
Simulated Scenario | n | k | [h] | [h−1] | ||
---|---|---|---|---|---|---|
Case 2 | 30 | 250 | 800 | |||
(calculated by (20)) = | 30 |
Simulated Scenario | n | k | ||||
---|---|---|---|---|---|---|
ARMA | 0 | 1 | 5 | 5 | 0 | |
ARMA | 0 | 1 | 5 | 5 | 0 | |
ARMA | 0 | 1 | 5 | 5 |
Simulated Scenario | n | k | Time of Change [h] | ||
---|---|---|---|---|---|
Case 4 | 500 | 60 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žnidarič, L.; Gradišar, Ž.; Juričić, Đ. Predicting the Remaining Useful Life of Solid Oxide Fuel Cell Systems Using Adaptive Trend Models of Health Indicators. Energies 2024, 17, 2729. https://doi.org/10.3390/en17112729
Žnidarič L, Gradišar Ž, Juričić Đ. Predicting the Remaining Useful Life of Solid Oxide Fuel Cell Systems Using Adaptive Trend Models of Health Indicators. Energies. 2024; 17(11):2729. https://doi.org/10.3390/en17112729
Chicago/Turabian StyleŽnidarič, Luka, Žiga Gradišar, and Đani Juričić. 2024. "Predicting the Remaining Useful Life of Solid Oxide Fuel Cell Systems Using Adaptive Trend Models of Health Indicators" Energies 17, no. 11: 2729. https://doi.org/10.3390/en17112729
APA StyleŽnidarič, L., Gradišar, Ž., & Juričić, Đ. (2024). Predicting the Remaining Useful Life of Solid Oxide Fuel Cell Systems Using Adaptive Trend Models of Health Indicators. Energies, 17(11), 2729. https://doi.org/10.3390/en17112729