Investigation of Hydrothermal Carbonization of Exhausted Chestnut from Tannin Extraction: Impact of Process Water Recirculation for Sustainable Fuel Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. HTC Experimental Procedure
2.3. Sample Characterization
2.4. Calculations
3. Results and Discussion
3.1. Effects on the Mass Yield of Hydrochars
3.2. Effects on Proximate and Elemental Composition of Hydrochars
3.2.1. Proximate Analysis
3.2.2. Elemental Composition Analysis
3.3. Effects on the Energy Recovery Efficiency
3.4. Combustion Behavior of Hydrochars
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, G.; Zhang, M.; Lu, Y.; Zhang, H.; Lau, E.V. New Insights for Improving Low-Rank Coal Flotation Performance via Emulsified Waste Fried Oil Collector. Fuel 2024, 357, 129925. [Google Scholar] [CrossRef]
- Karamaneas, A.; Koasidis, K.; Frilingou, N.; Xexakis, G.; Nikas, A.; Doukas, H. A Stakeholder-Informed Modelling Study of Greece’s Energy Transition amidst an Energy Crisis: The Role of Natural Gas and Climate Ambition. Renew. Sustain. Energy Transit. 2023, 3, 100049. [Google Scholar] [CrossRef]
- Cheng, G.; Li, Y.; Cao, Y.; Zhang, Z. A Novel Method for the Desulfurization of Medium–High Sulfur Coking Coal. Fuel 2023, 335, 126988. [Google Scholar] [CrossRef]
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Mahmood Ali, B.; Algburi, S.; Alzoubi, H.M.; Khudhair Al-Jiboory, A.; Zuhair Sameen, A.; Salman, H.M.; Jaszczur, M. The Renewable Energy Role in the Global Energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Popp, J.; Kovács, S.; Oláh, J.; Divéki, Z.; Balázs, E. Bioeconomy: Biomass and Biomass-Based Energy Supply and Demand. New Biotechnol. 2021, 60, 76–84. [Google Scholar] [CrossRef]
- Moccia, F.; Gallucci, N.; Giovando, S.; Zuorro, A.; Lavecchia, R.; D’Errico, G.; Panzella, L.; Napolitano, A. A Tunable Deep Eutectic Solvent-Based Processing for Valorization of Chestnut Wood Fiber as a Source of Ellagic Acid and Lignin. J. Environ. Chem. Eng. 2022, 10, 107773. [Google Scholar] [CrossRef]
- Romani, A.; Simone, G.; Campo, M.; Moncini, L.; Bernini, R. Sweet Chestnut Standardized Fractions from Sustainable Circular Process and Green Tea Extract: In Vitro Inhibitory Activity against Phytopathogenic Fungi for Innovative Applications in Green Agriculture. PLoS ONE 2021, 16, e0247298. [Google Scholar] [CrossRef]
- Emporio Enologico Albanese, Tannino Di Castagno Etann C 1 Kg. 2024. Available online: https://www.Emporioenologico.com/it/catalogo/prodotti-enologici/tannini/tannino-di-castagno-etann-c-1-kg-513.html (accessed on 8 April 2024).
- Panzella, L.; Moccia, F.; Toscanesi, M.; Trifuoggi, M.; Giovando, S.; Napolitano, A. Exhausted Woods from Tannin Extraction as an Unexplored Waste Biomass: Evaluation of the Antioxidant and Pollutant Adsorption Properties and Activating Effects of Hydrolytic Treatments. Antioxidants 2019, 8, 84. [Google Scholar] [CrossRef]
- Cheng, G.; Niu, Z.; Zhang, C.; Zhang, X.; Li, X. Extraction of Humic Acid from Lignite by KOH-Hydrothermal Method. Appl. Sci. 2019, 9, 1356. [Google Scholar] [CrossRef]
- Cavali, M.; Libardi Junior, N.; De Sena, J.D.; Woiciechowski, A.L.; Soccol, C.R.; Belli Filho, P.; Bayard, R.; Benbelkacem, H.; De Castilhos Junior, A.B. A Review on Hydrothermal Carbonization of Potential Biomass Wastes, Characterization and Environmental Applications of Hydrochar, and Biorefinery Perspectives of the Process. Sci. Total Environ. 2023, 857, 159627. [Google Scholar] [CrossRef]
- Zhuang, X.; Liu, J.; Zhang, Q.; Wang, C.; Zhan, H.; Ma, L. A Review on the Utilization of Industrial Biowaste via Hydrothermal Carbonization. Renew. Sustain. Energy Rev. 2022, 154, 111877. [Google Scholar] [CrossRef]
- Picone, A.; Volpe, M.; Messineo, A. Process Water Recirculation during Hydrothermal Carbonization of Waste Biomass: Current Knowledge and Challenges. Energies 2021, 14, 2962. [Google Scholar] [CrossRef]
- Maniscalco, M.P.; Volpe, M.; Messineo, A. Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review. Energies 2020, 13, 4098. [Google Scholar] [CrossRef]
- Köchermann, J.; Görsch, K.; Wirth, B.; Mühlenberg, J.; Klemm, M. Hydrothermal Carbonization: Temperature Influence on Hydrochar and Aqueous Phase Composition during Process Water Recirculation. J. Environ. Chem. Eng. 2018, 6, 5481–5487. [Google Scholar] [CrossRef]
- Xu, Z.-X.; Song, H.; Li, P.-J.; He, Z.-X.; Wang, Q.; Wang, K.; Duan, P.-G. Hydrothermal Carbonization of Sewage Sludge: Effect of Aqueous Phase Recycling. Chem. Eng. J. 2020, 387, 123410. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, X.; Zheng, C.; Huang, T.; Lu, X.; Tian, Y. Co-Hydrothermal Carbonization of Water Hyacinth and Sewage Sludge: Effects of Aqueous Phase Recirculation on the Characteristics of Hydrochar. Energy Fuels 2020, 34, 14147–14158. [Google Scholar] [CrossRef]
- Lu, X.; Ma, X.; Qin, Z.; Chen, X.; Qi, X. Investigation of Aqueous Phase Recirculation on Co-Hydrothermal Carbonization of Sewage Sludge and Lignite: Hydrochar Properties and Heavy Metal Chemical Speciation. J. Environ. Chem. Eng. 2022, 10, 107111. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D.L.A.P. Determination of Structural Carbohydrates and Lignin in Biomass. Lab. Anal. Proced. 2008, 1617, 1–16. [Google Scholar]
- Antero, R.V.P.; Alves, A.C.F.; De Oliveira, S.B.; Ojala, S.A.; Brum, S.S. Challenges and Alternatives for the Adequacy of Hydrothermal Carbonization of Lignocellulosic Biomass in Cleaner Production Systems: A Review. J. Clean. Prod. 2020, 252, 119899. [Google Scholar] [CrossRef]
- UNI EN 15104:2011; Solid biofuels—Determination of total content of carbon, hydrogen and nitrogen—Instrumental methods. European Committee for Standardization: Brussels, Belgium, 2011.
- EN 14774-2:2009; Solid biofuels—Determination of moisture content—Oven dry method—Part 2: Total moisture—Simplified method. European Committee for Standardization: Brussels, Belgium, 2009.
- EN 15148:2009; Solid biofuels—Method for the determination of the content of volatile matter. European Committee for Standardization: Brussels, Belgium, 2009.
- EN 14775:2009; Solid biofuels—Method for the determination of ash content. European Committee for Standardization: Brussels, Belgium, 2009.
- Sheng, C.; Azevedo, J.L.T. Estimating the Higher Heating Value of Biomass Fuels from Basic Analysis Data. Biomass Bioenergy 2005, 28, 499–507. [Google Scholar] [CrossRef]
- Ding, Y.; Li, D.; Lv, M.; Yuan, L.; Zhang, J.; Qin, S.; Wang, B.; Cui, X.; Guo, C.; Zhao, P. Influence of Process Water Recirculation on Hydrothermal Carbonization of Rice Husk at Different Temperatures. J. Environ. Chem. Eng. 2023, 11, 109364. [Google Scholar] [CrossRef]
- Yan, W.; Acharjee, T.C.; Coronella, C.J.; Vásquez, V.R. Thermal Pretreatment of Lignocellulosic Biomass. Environ. Prog. Sustain. Energy 2009, 28, 435–440. [Google Scholar] [CrossRef]
- Uddin, M.H.; Reza, M.T.; Lynam, J.G.; Coronella, C.J. Effects of Water Recycling in Hydrothermal Carbonization of Loblolly Pine. Environ. Prog. Sustain. Energy 2014, 33, 1309–1315. [Google Scholar] [CrossRef]
- Wang, R.; Jin, Q.; Ye, X.; Lei, H.; Jia, J.; Zhao, Z. Effect of Process Wastewater Recycling on the Chemical Evolution and Formation Mechanism of Hydrochar from Herbaceous Biomass during Hydrothermal Carbonization. J. Clean. Prod. 2020, 277, 123281. [Google Scholar] [CrossRef]
- Arauzo, P.J.; Olszewski, M.P.; Wang, X.; Pfersich, J.; Sebastian, V.; Manyà, J.; Hedin, N.; Kruse, A. Assessment of the Effects of Process Water Recirculation on the Surface Chemistry and Morphology of Hydrochar. Renew. Energy 2020, 155, 1173–1180. [Google Scholar] [CrossRef]
- Wang, F.; Wang, J.; Gu, C.; Han, Y.; Zan, S.; Wu, S. Effects of Process Water Recirculation on Solid and Liquid Products from Hydrothermal Carbonization of Laminaria. Bioresour. Technol. 2019, 292, 121996. [Google Scholar] [CrossRef]
- Reza, M.T.; Rottler, E.; Herklotz, L.; Wirth, B. Hydrothermal Carbonization (HTC) of Wheat Straw: Influence of Feedwater pH Prepared by Acetic Acid and Potassium Hydroxide. Bioresour. Technol. 2015, 182, 336–344. [Google Scholar] [CrossRef]
- Lynam, J.G.; Coronella, C.J.; Yan, W.; Reza, M.T.; Vasquez, V.R. Acetic Acid and Lithium Chloride Effects on Hydrothermal Carbonization of Lignocellulosic Biomass. Bioresour. Technol. 2011, 102, 6192–6199. [Google Scholar] [CrossRef]
- Ding, Y.; Guo, C.; Qin, S.; Wang, B.; Zhao, P.; Cui, X. Effects of Process Water Recirculation on Yields and Quality of Hydrochar from Hydrothermal Carbonization Process of Rice Husk. J. Anal. Appl. Pyrolysis 2022, 166, 105618. [Google Scholar] [CrossRef]
- Leng, L.; Xu, S.; Liu, R.; Yu, T.; Zhuo, X.; Leng, S.; Xiong, Q.; Huang, H. Nitrogen Containing Functional Groups of Biochar: An Overview. Bioresour. Technol. 2020, 298, 122286. [Google Scholar] [CrossRef]
- Wu, S.; Wang, Q.; Wu, D.; Cui, D.; Wu, C.; Bai, J.; Xu, F.; Liu, B.; Shan, Z.; Zhang, J. Influence of Temperature and Process Water Circulation on Hydrothermal Carbonization of Food Waste for Sustainable Fuel Production. J. Energy Inst. 2024, 112, 101459. [Google Scholar] [CrossRef]
- Picone, A.; Volpe, M.; Codignole Lùz, F.; Malik, W.; Volpe, R.; Messineo, A. Co-Hydrothermal Carbonization with Process Water Recirculation as a Valuable Strategy to Enhance Hydrochar Recovery with High Energy Efficiency. Waste Manag. 2024, 175, 101–109. [Google Scholar] [CrossRef]
- Volpe, M.; Picone, A.; Luz, F.C.; Mosonik, M.C.; Volpe, R.; Messineo, A. Potential Pitfalls on the Scalability of Laboratory-Based Research for Hydrothermal Carbonization. Fuel 2022, 315, 123189. [Google Scholar] [CrossRef]
- Reza, M.T.; Lynam, J.G.; Uddin, M.H.; Coronella, C.J. Hydrothermal Carbonization: Fate of Inorganics. Biomass Bioenergy 2013, 49, 86–94. [Google Scholar] [CrossRef]
- Kabadayi Catalkopru, A.; Kantarli, I.C.; Yanik, J. Effects of Spent Liquor Recirculation in Hydrothermal Carbonization. Bioresour. Technol. 2017, 226, 89–93. [Google Scholar] [CrossRef]
- Zhou, Y.; Remón, J.; Pang, X.; Jiang, Z.; Liu, H.; Ding, W. Hydrothermal Conversion of Biomass to Fuels, Chemicals and Materials: A Review Holistically Connecting Product Properties and Marketable Applications. Sci. Total Environ. 2023, 886, 163920. [Google Scholar] [CrossRef]
- Pavkov, I.; Radojčin, M.; Stamenković, Z.; Bikić, S.; Tomić, M.; Bukurov, M.; Despotović, B. Hydrothermal Carbonization of Agricultural Biomass: Characterization of Hydrochar for Energy Production. Solid Fuel Chem. 2022, 56, 225–235. [Google Scholar] [CrossRef]
- Islam, M.T.; Chambers, C.; Toufiq Reza, M. Effects of Process Liquid Recirculation on Material Properties of Hydrochar and Corresponding Adsorption of Cationic Dye. J. Anal. Appl. Pyrolysis 2022, 161, 105418. [Google Scholar] [CrossRef]
- Volpe, M.; Fiori, L.; Volpe, R.; Messineo, A. Upgrading of Olive Tree Trimmings Residue as Biofuel by Hydrothermal Carbonization and Torrefaction: A Comparative Study. Chem. Eng. Trans. 2016, 50, 13–18. [Google Scholar] [CrossRef]
- Benavente, V.; Calabuig, E.; Fullana, A. Upgrading of Moist Agro-Industrial Wastes by Hydrothermal Carbonization. J. Anal. Appl. Pyrolysis 2015, 113, 89–98. [Google Scholar] [CrossRef]
- Arauzo, P.; Olszewski, M.; Kruse, A. Hydrothermal Carbonization Brewer’s Spent Grains with the Focus on Improving the Degradation of the Feedstock. Energies 2018, 11, 3226. [Google Scholar] [CrossRef]
- Kambo, H.S.; Minaret, J.; Dutta, A. Process Water from the Hydrothermal Carbonization of Biomass: A Waste or a Valuable Product? Waste Biomass Valor 2018, 9, 1181–1189. [Google Scholar] [CrossRef]
- Volpe, M.; Messineo, A.; Mäkelä, M.; Barr, M.R.; Volpe, R.; Corrado, C.; Fiori, L. Reactivity of Cellulose during Hydrothermal Carbonization of Lignocellulosic Biomass. Fuel Process. Technol. 2020, 206, 106456. [Google Scholar] [CrossRef]
- Liu, Z.; Quek, A.; Kent Hoekman, S.; Balasubramanian, R. Production of Solid Biochar Fuel from Waste Biomass by Hydrothermal Carbonization. Fuel 2013, 103, 943–949. [Google Scholar] [CrossRef]
- Heidari, M.; Dutta, A.; Acharya, B.; Mahmud, S. A Review of the Current Knowledge and Challenges of Hydrothermal Carbonization for Biomass Conversion. J. Energy Inst. 2019, 92, 1779–1799. [Google Scholar] [CrossRef]
- Akhtar, J.; Saidina Amin, N. A Review on Operating Parameters for Optimum Liquid Oil Yield in Biomass Pyrolysis. Renew. Sustain. Energy Rev. 2012, 16, 5101–5109. [Google Scholar] [CrossRef]
- Nakason, K.; Panyapinyopol, B.; Kanokkantapong, V.; Viriya-empikul, N.; Kraithong, W.; Pavasant, P. Characteristics of Hydrochar and Liquid Fraction from Hydrothermal Carbonization of Cassava Rhizome. J. Energy Inst. 2018, 91, 184–193. [Google Scholar] [CrossRef]
- Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A Review of the Hydrothermal Carbonization of Biomass Waste for Hydrochar Formation: Process Conditions, Fundamentals, and Physicochemical Properties. Renew. Sustain. Energy Rev. 2018, 90, 223–247. [Google Scholar] [CrossRef]
- Akarsu, K.; Duman, G.; Yilmazer, A.; Keskin, T.; Azbar, N.; Yanik, J. Sustainable Valorization of Food Wastes into Solid Fuel by Hydrothermal Carbonization. Bioresour. Technol. 2019, 292, 121959. [Google Scholar] [CrossRef]
- Nhuchhen, D.; Afzal, M. HHV Predicting Correlations for Torrefied Biomass Using Proximate and Ultimate Analyses. Bioengineering 2017, 4, 7. [Google Scholar] [CrossRef]
- Adeleke, A.A.; Odusote, J.K.; Ikubanni, P.P.; Lasode, O.A.; Malathi, M.; Paswan, D. The Ignitability, Fuel Ratio and Ash Fusion Temperatures of Torrefied Woody Biomass. Heliyon 2020, 6, e03582. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, S.; Yuan, X.; Xi, Y.; Huang, Z.; Tan, M.; Li, C. The Effects of Temperature and Color Value on Hydrochars’ Properties in Hydrothermal Carbonization. Bioresour. Technol. 2018, 249, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Zhou, X.; Zheng, R.; Zhou, Z.; Zhang, Y.; Zhu, G.; Yu, C.; Hantoko, D.; Yan, M. Hydrothermal Carbonization of Food Waste after Oil Extraction Pre-Treatment: Study on Hydrochar Fuel Characteristics, Combustion Behavior, and Removal Behavior of Sodium and Potassium. Sci. Total Environ. 2021, 754, 142192. [Google Scholar] [CrossRef] [PubMed]
- Periyavaram, S.R.; Uppala, L.; Sivaprakash, S.; Reddy, P.H.P. Thermal Behaviour of Hydrochar Derived from Hydrothermal Carbonization of Food Waste Using Leachate as Moisture Source: Kinetic and Thermodynamic Analysis. Bioresour. Technol. 2023, 373, 128734. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Peng, C.; Song, X.; Peng, N.; Gai, C. Pyrolysis Kinetics of the Hydrothermal Carbons Derived from Microwave-Assisted Hydrothermal Carbonization of Food Waste Digestate. Energy 2022, 245, 123269. [Google Scholar] [CrossRef]
- Fu, M.-M.; Mo, C.-H.; Li, H.; Zhang, Y.-N.; Huang, W.-X.; Wong, M.H. Comparison of Physicochemical Properties of Biochars and Hydrochars Produced from Food Wastes. J. Clean. Prod. 2019, 236, 117637. [Google Scholar] [CrossRef]
- Islam, M.T.; Reza, M.T. Evaluation of Fuel and Combustion Properties of Hydrochar Derived from Co-Hydrothermal Carbonization of Biomass and Plastic. Biomass Bioenergy 2023, 172, 106750. [Google Scholar] [CrossRef]
- Barbanera, M.; Cotana, F.; Di Matteo, U. Co-Combustion Performance and Kinetic Study of Solid Digestate with Gasification Biochar. Renew. Energy 2018, 121, 597–605. [Google Scholar] [CrossRef]
- Cong, K.; Zhang, Y.; Gan, Y.; Li, Q. Experimental Study of the Ignition Temperatures of Low-Rank Coals Using TGA under Oxygen-Deficient Conditions. J. Therm. Anal. Calorim. 2018, 133, 1597–1607. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Z.; Zhang, H.; Yang, H.; Zhang, D. An Experimental Investigation on the Effect of Convection on the Ignition Behaviour of Single Coal Particles under Various O2 Concentrations. Fuel 2014, 116, 77–83. [Google Scholar] [CrossRef]
- Buratti, C.; Barbanera, M.; Bartocci, P.; Fantozzi, F. Thermogravimetric Analysis of the Behavior of Sub-Bituminous Coal and Cellulosic Ethanol Residue during Co-Combustion. Bioresour. Technol. 2015, 186, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Meng, J.; Moore, A.M.; Chang, J.; Gou, J.; Park, S. Thermogravimetric Investigation on the Degradation Properties and Combustion Performance of Bio-Oils. Bioresour. Technol. 2014, 152, 267–274. [Google Scholar] [CrossRef] [PubMed]
Samples | Proximate Analysis (wt%) | ||
---|---|---|---|
VM | Ash | FC | |
ECW | 79.48 | 1.25 | 19.27 |
HY-HTC0-220 | 73.58 | 0.84 | 25.58 |
HY-HTC1-220 | 73.19 | 0.79 | 26.02 |
HY-HTC2-220 | 73.17 | 0.78 | 26.05 |
HY-HTC3-220 | 72.15 | 0.58 | 27.27 |
HY-HTC4-220 | 71.92 | 0.60 | 27.48 |
HY-HTC0-270 | 50.97 | 0.46 | 48.57 |
HY-HTC1-270 | 50.65 | 0.49 | 48.86 |
HY-HTC2-270 | 49.85 | 0.50 | 49.65 |
HY-HTC3-270 | 50.60 | 0.42 | 48.98 |
HY-HTC4-270 | 50.17 | 0.61 | 49.22 |
Samples | Ultimate Analysis (wt%) | Atomic Ratio | ||||
---|---|---|---|---|---|---|
C | H | N | O | H/C | O/C | |
ECW | 52.32 | 5.97 | 0.10 | 41.61 | 1.37 | 0.60 |
HY-HTC0-220 | 53.43 | 5.86 | 0.12 | 40.59 | 1.32 | 0.57 |
HY-HTC1-220 | 54.11 | 5.78 | 0.16 | 39.95 | 1.28 | 0.55 |
HY-HTC2-220 | 54.18 | 5.71 | 0.14 | 39.97 | 1.26 | 0.55 |
HY-HTC3-220 | 54.80 | 5.66 | 0.19 | 39.35 | 1.24 | 0.54 |
HY-HTC4-220 | 54.85 | 5.59 | 0.22 | 39.34 | 1.22 | 0.54 |
HY-HTC0-270 | 69.23 | 5.55 | 0.16 | 25.06 | 0.96 | 0.27 |
HY-HTC1-270 | 69.50 | 5.59 | 0.24 | 24.67 | 0.97 | 0.27 |
HY-HTC2-270 | 69.50 | 5.45 | 0.19 | 24.86 | 0.94 | 0.27 |
HY-HTC3-270 | 70.00 | 5.53 | 0.22 | 24.25 | 0.95 | 0.26 |
HY-HTC4-270 | 69.80 | 5.36 | 0.26 | 24.58 | 0.92 | 0.26 |
Samples | HHVs (MJ/Kg) | Energy Density | ERE (%) | Carbon Retention (%) | Fuel Ratio |
---|---|---|---|---|---|
ECW | 20.55 | - | - | - | 0.242 |
HY-HTC0-220 | 20.79 | 1.012 | 58.47 | 59.03 | 0.348 |
HY-HTC1-220 | 20.93 | 1.018 | 61.81 | 62.78 | 0.356 |
HY-HTC2-220 | 20.90 | 1.017 | 61.53 | 62.65 | 0.356 |
HY-HTC3-220 | 21.04 | 1.024 | 64.91 | 66.41 | 0.378 |
HY-HTC4-220 | 21.01 | 1.022 | 63.48 | 65.10 | 0.382 |
HY-HTC0-270 | 25.04 | 1.218 | 45.86 | 49.82 | 0.953 |
HY-HTC1-270 | 25.14 | 1.223 | 50.56 | 54.91 | 0.965 |
HY-HTC2-270 | 25.05 | 1.219 | 52.12 | 56.81 | 0.996 |
HY-HTC3-270 | 25.24 | 1.228 | 53.58 | 58.37 | 0.968 |
HY-HTC4-270 | 25.07 | 1.220 | 50.70 | 55.46 | 0.981 |
Samples | Ti (°C) | Tp (°C) | Tb (°C) | (%/min) | (%/min) | S |
---|---|---|---|---|---|---|
HY-HTC0-220 | 276.31 | 329.63 | 508.60 | 38.60 | 8.09 | 8.04 |
HY-HTC1-220 | 277.20 | 329.29 | 528.81 | 40.88 | 7.51 | 7.55 |
HY-HTC2-220 | 277.90 | 334.78 | 539.97 | 40.75 | 7.15 | 6.99 |
HY-HTC3-220 | 277.79 | 335.84 | 541.96 | 40.66 | 7.18 | 6.98 |
HY-HTC4-220 | 273.56 | 336.36 | 548.10 | 37.95 | 6.97 | 6.45 |
HY-HTC0-270 | 280.36 | 526.36 | 581.11 | 19.67 | 6.20 | 2.67 |
HY-HTC1-270 | 269.36 | 533.86 | 588.36 | 19.14 | 5.95 | 2.67 |
HY-HTC2-270 | 280.36 | 535.36 | 594.86 | 17.36 | 5.93 | 2,20 |
HY-HTC3-270 | 276.36 | 535.36 | 592.61 | 17.59 | 5.95 | 2.31 |
HY-HTC4-270 | 275.86 | 535.86 | 599.36 | 16.96 | 5.85 | 2.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardarelli, A.; Cordelli, C.; Romagnoli, M.; Pizzo, F.; Barbanera, M. Investigation of Hydrothermal Carbonization of Exhausted Chestnut from Tannin Extraction: Impact of Process Water Recirculation for Sustainable Fuel Production. Energies 2024, 17, 2732. https://doi.org/10.3390/en17112732
Cardarelli A, Cordelli C, Romagnoli M, Pizzo F, Barbanera M. Investigation of Hydrothermal Carbonization of Exhausted Chestnut from Tannin Extraction: Impact of Process Water Recirculation for Sustainable Fuel Production. Energies. 2024; 17(11):2732. https://doi.org/10.3390/en17112732
Chicago/Turabian StyleCardarelli, Alessandro, Cristian Cordelli, Manuela Romagnoli, Francesco Pizzo, and Marco Barbanera. 2024. "Investigation of Hydrothermal Carbonization of Exhausted Chestnut from Tannin Extraction: Impact of Process Water Recirculation for Sustainable Fuel Production" Energies 17, no. 11: 2732. https://doi.org/10.3390/en17112732
APA StyleCardarelli, A., Cordelli, C., Romagnoli, M., Pizzo, F., & Barbanera, M. (2024). Investigation of Hydrothermal Carbonization of Exhausted Chestnut from Tannin Extraction: Impact of Process Water Recirculation for Sustainable Fuel Production. Energies, 17(11), 2732. https://doi.org/10.3390/en17112732