Linear, Nonlinear, and Distributed-Parameter Observers Used for (Renewable) Energy Processes and Systems—An Overview
Abstract
:1. Introduction to Observers
1.1. Design of Full-Order Linear Observers
1.2. Design of Reduced-Order Linear Observers
1.3. Design of Full-Order Nonlinear Observers
1.4. Design of Reduced-Order Nonlinear Observers
1.5. Observers for Distributed-Parameter Systems
2. Linear and Nonlinear Observers for Energy Systems and Processes
2.1. Observers for Fuel Cell Systems
2.2. Observers for Solar Cell Systems
2.3. Observers for Wind Turbine Energy Systems
2.4. Observers for Batteries
3. Distributed-Parameter Observers for Energy Systems and Processes
3.1. Lithium-Ion Battery Systems
3.2. Power Grids
3.3. Proton Exchange Membrane Fuel Cells
3.4. Solar Collectors
3.5. Wind Turbines
4. Observers for Electric Power Systems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luenberger, D. Observing the state of a linear system. IEEE Trans. Mil. Electron. 1964, 8, 74–80. [Google Scholar] [CrossRef]
- Luenberger, D. Observers for multivariable systems. IEEE Trans. Autom. Control 1966, 11, 190–197. [Google Scholar] [CrossRef]
- Luenberger, D. An introduction to observers. IEEE Trans. Autom. Control 1971, 16, 596–602. [Google Scholar] [CrossRef]
- Antsaklis, J.; Michel, N. Linear Systems; Bikhauser: Boston, MA, USA, 2005. [Google Scholar]
- Sinha, A. Linear Systems: Optimal and Robust Control; Francis & Taylor: Boca Raton, FL, USA, 2007. [Google Scholar]
- Chen, T.-C. Linear System Theory and Design, 4th ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Ogata, K. Modern Control Engineering; Prentice Hall: Upper Saddle River NJ, USA, 2002. [Google Scholar]
- Franklin, G.; Powel, J.; Emami-Naeini, A. Feedback Control of Dynamic Systems; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Dorf, R.; Bishop, R. Modern Control Systems; Pearson Education: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Nise, N. Control Systems Engineering; John Wiley and Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Anderson, B.; Moore, J. Optimal Control: Linear-Quadratic Methods; Dover Publications: Mineola, NY, USA, 2005. [Google Scholar]
- Lewis, F.; Vrabie, D.; Syrmos, V. Optimal Control; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Radisavljevic-Gajic, V. Full-order and reduced-order observer implementations in MATLAB/SIMULINK. IEEE Control Syst. Mag. 2015, 35, 91–101. [Google Scholar]
- Radisavljevic-Gajic, V.; Milanovic, M. Loss of optimal performance of the finite-horizon continuous-time linear-quadratic controller driven by a reduced-order observer. Trans. ASME J. Dyn. Syst. Meas. Control 2018, 140, 061014. [Google Scholar] [CrossRef]
- Radisavljevic-Gajic, V. Linear-quadratic (LQ) optimal steady state controllers for engineering students and practicing engineers. Int. J. Mech. Eng. Educ. 2021, 49, 316–358. [Google Scholar] [CrossRef]
- Friedland, B. Advanced Control System Design; Prentice Hall: Engleood Cliffs, NJ, USA, 1996. [Google Scholar]
- Xia, X.-H.; Gao, W.-B. Nonlinear observer design by observer error linearization. SIAM J. Control Optim. 1989, 27, 199–216. [Google Scholar] [CrossRef]
- Khalil, H.K. Nonlinear Systems; Prentice Hall: Engleood Cliffs, NJ, USA, 2002. [Google Scholar]
- Khalil, H.K. High-Gain Observers in Nonlinear Feedback Control; SIAM Publishers: Philadelphia, PA, USA, 2017. [Google Scholar]
- Bernard, P. Obserever Design for Nonlinear Systems; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Naifar, O.; Makhouf, A. (Eds.) Advances in Observer Design and Observation of Nonlinear Systems: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Nijmeijer, H.; Fossen, T. New Directions in Nonlinear Observer Design; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Isidori, A. Nonlinear Control Systems; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Attasi, A.; Khalil, H. A separation principle for a stabilization of a class of nonlinear systems. IEEE Trans. Autom. Control 1999, 44, 1672–1687. [Google Scholar] [CrossRef]
- Homayaounzade, M.; Keshmiri, K. A note on a reduced-order observer based controller for a class of Lipschitz nonlinear systems. Trans. ASME J. Dyn. Syst. Meas. Control 2013, 135, 014505. [Google Scholar] [CrossRef]
- Wang, Q.; Hou, D.; Dong, C.; Sun, X. Reduced-order observer-based back-stepping tracking control for a class of stochastic nonlinear systems. Nonlinear Dyn. 2014, 78, 939–956. [Google Scholar] [CrossRef]
- Smyshlyaev, A.; Krstic, M. Backstepping observers for a class of parabolic PDEs. Syst. Control Lett. 2005, 54, 613–625. [Google Scholar] [CrossRef]
- Krstic, M.; Smyshlyaev, A. Boundary Control of PDEs: A Course on Backstepping Designs; SIAM Publishers: Philadelphia, PA, USA, 2008. [Google Scholar]
- Krstic, M.; Guo, B.-Z.; Balogh, A.; Smysjlyaev, A. Control of a tip-force destabilization shear beam by observer-based boundary feedback. SIAM J. Control Optim. 2008, 47, 553–574. [Google Scholar] [CrossRef]
- Krstic, M.; Guo, B.-Z.; Smyshlyaev, A. Boundary controllers and observers for the linearized Schrodinger equation. SIAM J. Control Optim. 2011, 49, 1479–1497. [Google Scholar] [CrossRef]
- Cheng, M.-B.; Radisavljevic-Gajic, V.; Cheng, C.-C.; Lin, C.-F.; Su, W.-C. A Sampled-data singularly perturbed boundary control for a heat conduction system with noncollocated observation. IEEE Trans. Autom. Control 2009, 54, 1305–1310. [Google Scholar] [CrossRef]
- Krstic, M.; Magnus, L.; Vazquez, R. Nonlinear control of the viscous Burgers equation: Trajectory generation, tracking, and observer design. Trans. ASME J. Dyn. Syst. Meas. Control 2009, 131, 021012. [Google Scholar] [CrossRef]
- Moura, S.; Chaturverdi, N.; Krstic, M. Adaptive partial differential equation observer for battery state-of-charge/state-of-health estimation via an electrochemical model. Trans. ASME J. Dyn. Syst. Meas. Control 2014, 136, 011015. [Google Scholar] [CrossRef]
- Meurer, T. On the extended Luenberger-type observer for semilinear distributed-parameter systems. IEEE Trans. Autom. Control 2013, 58, 1732–1743. [Google Scholar] [CrossRef]
- Natarajan, V.; Bentsman, J. Adaptive projection-based observers and L1 adaptive controllers for infinite-dimensional systems with full-state measurement. IEEE Trans. Autom. Control 2014, 59, 585–598. [Google Scholar] [CrossRef]
- Khosroushahi, R.B.; Marquez, H.J. PDE backstepping boundary observer design for microfluidic systems. IEEE Trans. Control Syst. Technol. 2015, 23, 380–388. [Google Scholar] [CrossRef]
- Yang, H.; Liu, J.; Lan, X. Observer design for a flexible-link manipulator with PDE model. J. Sound Vib. 2015, 341, 237–245. [Google Scholar] [CrossRef]
- Radisavljevic-Gajic, V.; Milanovic, M.; Rose, P. Multi-Stage and Multi-Time Feedback Control of Linear Systems with Applications to Fuel Cells; Series Research Monographs in Mechanical Engineering; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Sarmiento-Carnevali, M.; Serra, M.; Battle, C. Distribute parameter model-based control of water activity and concentration of reactants in a polymer electrolyte membrane fuel cell. Int. J. Hydrogen Energy 2017, 42, 26389–26407. [Google Scholar] [CrossRef]
- Laghrouche, S.; Liu, J.; Ahmed, F.S.; Harmouche, M.; Wack, M. Adaptive second-order sliding mode observer-based fault reconstruction sliding mode observer-based fault reconstruction for PEM fuel cell air-feed system. IEEE Trans. Control Syst. Technol. 2015, 23, 1098–1109. [Google Scholar] [CrossRef]
- Pilloni, A.; Pisano, A.; Usai, E. Observer-based air excess ratio control of a PEM fuel cell system via higher-order sliding mode. IEEEE Trans. Ind. Electron. 2015, 62, 5236–5246. [Google Scholar] [CrossRef]
- Deng, H.; Li, Q.; Chen, W.; Zhang, G. High-order sliding mode observer based control for PEM fuel cell air-feed system. IEEE Trans. Energy Convers. 2018, 33, 232–244. [Google Scholar] [CrossRef]
- Arcuk, M.; Gorgun, H.; Pedersen, L.M.; Varigonda, S. A nonlinear observer design for fuel cell hydrogen estimation. IEEE Trans. Control Syst. Technol. 2004, 12, 101–110. [Google Scholar] [CrossRef]
- Benallouch, M.; Outbib, R.; Biutayeb, M.; Laaroche, E. Robust observers for a class of nonlinear systems using PEM fuel cells as a simulated case study. IEEE Trans. Control Syst. Technol. 2018, 26, 291–299. [Google Scholar] [CrossRef]
- Emami, K.; Ariakia, H.; Fernando, T. A functional observer based dynamic state estimation technique for grid connected solid oxide fuel cells. IEEE Trans. Energy Convers. 2018, 33, 96–105. [Google Scholar] [CrossRef]
- Zhao, D.; Li, F.; Ma, R.; Zhao, G.; Huangfu, Y. An unkown input nonlinear observer based fractional order PID control of fuel cell air supply system. IEEE Trans. Ind. Appl. 2020, 56, 5523–5532. [Google Scholar] [CrossRef]
- Liu, J.; Gao, Y.; Su, X.; Wack, M.; Wu, L. Disturbance-observer-based control for air management of PEM fuel cell systems via sliding mode technique. IEEE Trans. Control Syst. Technol. 2019, 27, 1129–1138. [Google Scholar] [CrossRef]
- Zhuo, S.; Gaillard, A.; Xu, L.; Liu, C.; Paire, D.; Gao, F. An observer-based switch open-circuit fault diagnosis of DC-DC converter for fuel cell applications. IEEE Trans. Ind. Appl. 2020, 56, 3159–3167. [Google Scholar] [CrossRef]
- Niu, W.; Liang, C. Development of Internet-based distributed test platform for fuel cell electric vehicle powertrain system with observer. IEEE Access 2023, 11, 36672–36681. [Google Scholar] [CrossRef]
- Du, Z.P.; Steindl, C.; Jakubek, S.; Hametner, C. Concentration estimation for fuel cells: Design of experiments, nonlinear identification, and observer design with experimental validation. IEEE Access 2023, 11, 10453–10470. [Google Scholar] [CrossRef]
- Huangfu, Y.; Li, Q.; Xu, L.; Ma, R.; Gao, F. Extended state obseerver based flatness control for a fuel cell output series interleaved boost converter. IEEE Trans. Ind. Appl. 2019, 55, 6427–6437. [Google Scholar] [CrossRef]
- Zhuo, S.; Gaillard, A.; Xu, L.; Paire, D.; Gao, F. Extended state observer-based control of DC-DC converters for fuel cell applications. IEEE Trans. Power Electron. 2020, 35, 9923–9932. [Google Scholar] [CrossRef]
- Zhuo, S.; Gaillard, A.; Xu, L.; Bai, H. Enhanced robust control of a DC-DC converter for fuel cell applications based on high-order extended state observer. IEEE Trans. Transp. Electrif. 2020, 6, 278–287. [Google Scholar] [CrossRef]
- Kim, I.-S.; Kim, M.-B.; Youn, M.-J. New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system. IEEE Trans. Ind. Electron. 2006, 53, 1027–1035. [Google Scholar] [CrossRef]
- Singh, B.; Chishti, F.; Murshid, S. Disturbance rejection through adaptive frequency estimation observer for wind-solar integrated AC microgrid. IEEE Trans. Ind. Inform. 2019, 15, 6035–6047. [Google Scholar] [CrossRef]
- Shah, R. Adaptive observer based control for rooftop solar PV system. IEEE Trans. Power Electron. 2020, 35, 9402–9415. [Google Scholar] [CrossRef]
- Kim, I.-S.; Youn, M.-J. Variable-structure observer for solar array current estimation in a photovoltaic power-generated systems. IEE Proc. Electr. Power Appl. 2005, 152, 953–959. [Google Scholar] [CrossRef]
- Dungkratoke, N.; Sangtungrong, W. Second-order sliding-mode observer for solar-array current estimation. In Proceedings of the 3rd International Conference on Power and Energy Applications, Busan, Republic of Korea, 9–11 October 2020. [Google Scholar]
- Gumulang, Y.; Rusli, M.; Siswoyo, B. Linear quadratic regulator and Leunberger observer for solar tacking system. In Proceedings of the 2021 International Conference on Electrical and Information Technology, Malang, Indonesia, 14–15 September 2021. [Google Scholar] [CrossRef]
- Kashif, M.; Murshid, S.; Singh, B. Solar PV array fed self-sensing control of PMSM drive with robust adaptive hybrid SOGI based flux observer for water pumping. IEEE Trans. Ind. Electron. 2021, 68, 6962–6972. [Google Scholar] [CrossRef]
- Criollo, P.; Ortiz, L.; Aguila, A.; Pavon, Q. A method based on a sliding mode observer for fault detection in photovoltaic solar systems connected to AC microgrids. In Proceedings of the 2022 IEEE Sixth Ecuador Chapter Meeting, Quito, Ecuador, 11–14 October 2022. [Google Scholar] [CrossRef]
- Siahi, K.; Arvan, M.; Behnamgol, V.; Mosayebi, M. Design of observer-based nonlinear controller for tracking maximum power point in the solar cell. In Proceedings of the 30th International Conference on Electrical Engineering, Seoul, Republic of Korea, 28 June–2 July 2022. [Google Scholar] [CrossRef]
- Jain, C.; Dingh, B. Luenberger observer based control algorithm for single-phase two-stage multifunctional grid connected solar energy conversion system. In Proceedings of the 9th International Conference on Industrial and Information Systems, Gwalior, India, 15–17 December 2014. [Google Scholar] [CrossRef]
- Trejo, D.; Barcenas, E.; Diez, J.; Bossio, G.; Perez, G. Open- and short-circuit fault identification for a boost dc/dc converter in PV MPPT systems. Energies 2018, 11, 616. [Google Scholar] [CrossRef]
- Yang, S.; Ajjarapu, V. A speed-adaptive reduced-order observer for sensorless vector control of doubly fed induction generator-based variable-speed wind turbines. IEEE Trans. Energy Convers. 2010, 25, 891–900. [Google Scholar] [CrossRef]
- Corradini, M.; Ippoliti, G.; Orlando, G. Robust control of variable-speed wind turbines based on an aerodynamic torque observer. IEEE Trans. Control Syst. Technol. 2013, 21, 1199–1206. [Google Scholar] [CrossRef]
- Sanchez, H.; Escobel, T.; Odgaard, P. Fault diagnosis of an advanced wind turbine benchmark using interval-based ARRs and observers. IEEE Trans. Ind. Electron. 2015, 62, 3783–3793. [Google Scholar] [CrossRef]
- Do, T.D. Disturbance observer-based fuzzy SMC of WECSs without wind speed measurement. IEEE Access 2016, 5, 147–155. [Google Scholar] [CrossRef]
- Hussain, J.; Mishra, M. An efficient wind speed computational method using sliding mode control observers in wind energy conversion system control applications. IEEE Trans. Ind. Appl. 2020, 56, 730–739. [Google Scholar] [CrossRef]
- Vu, V.-P.; Ngo, V.-T.; Do, V.-D.; Truong, D.-N.; Quynh, N.; Bui, P.; Mail, V.; Do, T. Polynomial observer-based controller synthesis and fault-tolerant control for tracking optimal power of wind energy conversion systems. IEEE Access 2020, 8, 150130–150141. [Google Scholar] [CrossRef]
- Vijay, D.; Singh, B.; Bhuvaneswari, G. Position sensor-less synchronous reluctance generator based grid-tied wind energy conversion system with adaptive observer control. IEEE Trans. Sustain. Energy 2020, 11, 693–702. [Google Scholar] [CrossRef]
- Habibi, H.; Howard, I.; Simani, S.; Fekih, A. Decoupling adaptive sliding mode observer design for windturbines subject to simultaneous faults in sensors and actuators. IEEE/CAA J. Autom. Sin. 2021, 8, 837–847. [Google Scholar] [CrossRef]
- Yang, J.; Zhong, Q.; Shi, K.; Zhong, S. Co-design of observer-based fault detection filter and dynamic event-driggered controller for wind power system under dual alterable DoS attacks. IEEE Trans. Inf. Forensics 2022, 17, 1270–1284. [Google Scholar] [CrossRef]
- Amini, A.; Ghafouri, M.; Mohammadi, A.; Hou, M.; Asif, A.; Plataniotis, K. Secure sampled-data observer-based control for wind turbine oscillation under cyber attacks. IEEE Trans. Smart Grid 2022, 13, 3188–3202. [Google Scholar] [CrossRef]
- Pradhan, S.; Singh, B.; Panigrahi, B. Adaptive position observer for multimode wind-BES based microgrid interfaced to distribution network. IEEE Trans. Ind. Appl. 2022, 58, 5081–5092. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Joo, Y. Observer-based non-PDC control design for PMSG-based wind energy conversion systems. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 2676–2683. [Google Scholar] [CrossRef]
- Calabrese, D.; Tricarico, G.; Brescia, E.; Cascella, G.; Monopoli, V.; Cupertino, F. Variable structure control of a small ducted wind turbine in the whole wind speed range using a Luenberger observer. Energies 2020, 13, 4647. [Google Scholar] [CrossRef]
- Wu, T.; Cai, S.; Dai, W.; Zhu, Y.; Liu, X.; Li, X. Interturn short fault detection and location of permanent magnet wind generator based on negative sequence current residuals. Energies 2022, 15, 9441. [Google Scholar] [CrossRef]
- Zou, Z.; Xu, J.; Mi, C.; Cao, B.; Chen, Z. Evaluations of model based state of charge estimation methods for lithium-ion batteries. Energies 2014, 7, 5065–5082. [Google Scholar] [CrossRef]
- Do, D.V.; Forgez, C.; Benkara, K.; Friedrich, G. Impedance observer for a Li-ion battery using Kalman filter. IEEE Trans. Veh. Technol. 2009, 58, 3930–3937. [Google Scholar]
- Chen, W.; Chen, W.-T.; Saif, M.; Li, M.-F.; Wu, H. Simultaneous fault isolation and estimation of Lithium-ion batteries via synthesized design of a Luenberger and learning observers. IEEE Trans. Control Syst. Technol. 2014, 22, 290–298. [Google Scholar] [CrossRef]
- Cambron, D.; Cramer, A. A lithium-ion battery current estimation technique using an unknown input observer. IEEE Trans. Veh. Technol. 2017, 66, 6707–6714. [Google Scholar] [CrossRef]
- Allam, A.; Onori, S. An interconnected observer for concurrent estimation of bulk and surface concentration in the cathode and anode of a lithium-ion battery. IEEE Trans. Ind. Electron. 2018, 65, 7311–7321. [Google Scholar] [CrossRef]
- Thenaisie, G.; Park, C.-H.; Lee, S.-G. A real-time entropy estimation algorithm for lithium batteries based on a combination of Kalman filter and nonlinear observer. IEEE Trans. Ind. Electron. 2020, 67, 8034–8043. [Google Scholar] [CrossRef]
- Allam, A.; Onori, S. Online capacity estimation for lithium-ion battery cells via an electrochemical model-based adaptive interconnected observer. IEEE Trans. Control Syst. Technol. 2021, 29, 1636–1651. [Google Scholar] [CrossRef]
- Lone, J.; Tomar, N.; Bhaumik, S. Functional observer design for parallel connected Li-ion battery: A descriptor systems theory approach. IEEE Control Syst. Lett. 2023, 7, 961–966. [Google Scholar] [CrossRef]
- Trinh, H.; Fernando, T. Functional Observers for Dynamical Systems; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Boyd, S.; El Ghaouli, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in Systems and Control Theory; SIAM: Philadelphia, PA, USA, 1994. [Google Scholar]
- Yang, W.; Liang, S.-M.; Wang, Y.-W.; Liu, Z.-W. Prescribed-time observer-based distributed control of battery energy storage systems. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 1089–1093. [Google Scholar]
- Zhang, X.; Wang, Y.; Yuan, X.; Shen, Y.; Zeyu, Z. Adaptive dynamic surface control with disturbance observers for battery/supercapacitor-based hybrid energy sources in electric vehicles. IEEE Trans. Transp. Electrif. 2024, 9, 5165–5181. [Google Scholar] [CrossRef]
- Bhangu, S.; Bentley, P.; Stone, D.; Bingham, C. Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles. IEEE Trans. Veh. Technol. 2005, 54, 783–794. [Google Scholar] [CrossRef]
- Goud, C.; Bingham, C.; Stone, D.; Bentley, P. New battery model and state-of health determination through subspace parameter estimation and state-observer techniques. IEEE Trans. Veh. Technol. 2009, 58, 3905–3916. [Google Scholar]
- Liu, C.-Z.; Zhu, Q.; Li, L.; Liu, W.-Q.; Wang, L.-Y.; Xiong, N.; Wang, X.-Y. A state of charge estimation method based on H∞ observer for switched systems of lithium-ion nickel-manganese-cobalt batteries. IEEE Trans. Ind. Electron. 2017, 64, 8128–8137. [Google Scholar] [CrossRef]
- Rao, K.; Chander, A.; Ghosh, S. Robust observer design for mitigating the impact of unknown disturbances on state of chare estimation of lithium iron phosphate batteries using fractional calculus. IEEE Trans. Veh. Technol. 2021, 70, 3218–3229. [Google Scholar] [CrossRef]
- Kim, I.-S. A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer. IEEE Trans. Power Electron. 2010, 25, 1013–1022. [Google Scholar]
- Xu, J.; Mi, C.; Cao, B.; Deng, J.; Chen, Z.; Li, S. The state of charge estimation of lithium-ion batteries based on a proportional-integral observer. IEEE Trans. Veh. Technol. 2014, 63, 1614–1624. [Google Scholar] [CrossRef]
- He, H.; Xiong, R.; Fan, J. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies 2011, 4, 582–598. [Google Scholar] [CrossRef]
- Li, W.; Liang, L.; Liu, W.; Wu, X. State of charge estimation of lithium-ion batteries using a discrete-time nonlinear observer. IEEE Trans. Ind. Electron. 2017, 64, 8557–8565. [Google Scholar] [CrossRef]
- Charette, R. Can flow batteries finally beat lithium? IEEE Spectr. 2024, 61, 24–27. [Google Scholar] [CrossRef]
- Xiong, B.; Zhao, J.; Su, Y.; Wei, Z.; Skyllas-Kazacoa, M. State of charge estimation ov vadium redox flow battery based on sliding mode observer and dynamic model including capacity fading factor. IEEE Trans. Sustain. Energy 2017, 8, 1658–1667. [Google Scholar] [CrossRef]
- Clemente, A.; Montiel, M.; Barrera, F.; Lozano, A.; Costa-Castelo, R. Vanadium redox battery state of charge estimation using a concentration model and a sliding mode observer. IEEE Access 2021, 9, 72368–72376. [Google Scholar] [CrossRef]
- Shen, P.; Ouyang, M.; Han, X.; Feng, X.; Lu, L.; Li, J. Error analysis of the model-based state-of-chare observer for lithium-ion battery. IEEE Trans. Veh. Technol. 2018, 67, 8055–8064. [Google Scholar] [CrossRef]
- Hametner, C.; Jakubek, S.; Prochazka, W. Data-driven design of a cascaded observer for battery state of health estimation. IEEE Trans. Ind. Appl. 2018, 54, 6258–6267. [Google Scholar] [CrossRef]
- Wei, Z.; Zou, C.; Leng, F.; Soong, B.; Tseng, K.-J. Online model identification and state-of-charge estimate for Lithium-ion battery with a recursive total least-squares-based observer. IEEE Trans. Ind. Electron. 2018, 65, 1336–1346. [Google Scholar] [CrossRef]
- Quyang, Q.; Chen, J.; and Zheng, J. State-of-charge observer design for batteries with online model parameter identification: A robust approach. IEEE Trans. Power Electron. 2020, 35, 5820–5830. [Google Scholar]
- Movahedi, H.; Tian, N.; Fang, H.; Rajamani, R. Hysteresis compensation and nonlinear observer design for state-of-charge estimation using a nonlinear double-capacitor Li-Ion battery model. IEEE/ASME Trans. Mech. 2022, 27, 594–604. [Google Scholar] [CrossRef]
- Obeid, H.; Petrone, R.; Chaoui, H.; Gualous, H. Higher order sliding-mode observers for state-of-charge and state-of-health estimation of lithium-ion batteries. IEEE Trans. Veh. Technol. 2023, 72, 4482–4492. [Google Scholar] [CrossRef]
- Radisavljevic-Gajic, V.; Karagiannis, D.; Gajic, Z. The Modeling and Control of (Renewable) Energy Systems by Partial Differential Equations—An Overview. Energies 2023, 16, 8042. [Google Scholar] [CrossRef]
- Karagiannis, D.; Radisavljevic-Gajic, V. A backstepping boundary observer for a simple supported beam. IEEE Trans. Autom. Control 2019, 64, 3809–3816. [Google Scholar] [CrossRef]
- Luna, J.; Husar, A.; Serra, M. Nonlinear distributed parameter observer design for fuel cell systems. Int. J. Hydrogen Energy 2015, 40, 11322–11332. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef]
- Nwanna, E.C.; Bitire, S.; Imoisili, P.E.; Jen, T. An overview of the application of atomic layer deposition process for lithium-ion based batteries. Int. J. Energy Res. 2022, 46, 10499–10521. [Google Scholar] [CrossRef]
- Behabtu, H.A.; Messagie, M.; Coosemans, T.; Berecibar, M.; Anlay Fante, K.; Kebede, A.A.; Mierlo, J.V. A review of energy storage technologies: Application potentials in renewable energy sources grid integration. Sustainability 2020, 12, 10511. [Google Scholar] [CrossRef]
- Camargos, P.H.; Santos, P.H.J.; Santos, I.R.; Ribeiro, G.S.; Caetano, R.E. Perspectives on Li-ion battery categories for electric vehicle applications: A review of state of the art. Int. J. Energy Res. 2022, 46, 19258–19268. [Google Scholar] [CrossRef]
- Pillot, C. The rechargeable battery market and main trends 2018–2030. In Proceedings of the 36th Annual International Battery Seminar & Exhibit, Lyon, France, 25–28 March 2019. [Google Scholar]
- Wakihara, M. Recent developments in lithium ion batteries. Mater. Sci. Eng. R Rep. 2001, 33, 109–134. [Google Scholar] [CrossRef]
- Diaz-Gonzalez, F.; Sumper, A.; Gomis-Bellmunt, O.; Villafafila-Robles, R. A review of energy storage technologies for wind power applications. Renew. Sustain. Energy Rev. 2012, 16, 2154–2171. [Google Scholar] [CrossRef]
- Williard, N.; He, W.; Hendricks, C.; Pecht, M. Lessons learned from the 787 Dreamliner issue on lithium-ion battery reliability. Energies 2013, 6, 4682–4695. [Google Scholar] [CrossRef]
- Mathew, M.; Janhunen, S.; Rashid, M.; Long, F.; Fowler, M. Comparative analysis of lithium-ion battery resistance estimation techniques for battery management systems. Energies 2018, 11, 1490. [Google Scholar] [CrossRef]
- Thomas, K.E.; Newman, J.; Darling, R.M. Mathematical Modeling of Lithium Batteries. In Advances in Lithium-Ion Batteries; van Schalkwijk, W.A., Scrosati, B., Eds.; Springer: Boston, MA, USA, 2002; pp. 345–392. [Google Scholar]
- Doyle, M.; Fuller, T.F.; Newman, J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 1993, 140, 1526–1533. [Google Scholar] [CrossRef]
- Fuller, T.F.; Doyle, M.; Newman, J. Simulation and optimization of the dual lithium ion insertion cell. J. Electrochem. Soc. 1994, 141, 1. [Google Scholar] [CrossRef]
- Darling, R.; Newman, J. Modeling side reactions in composite Li Mn2O4 electrodes. J. Electrochem. Soc. 1998, 145, 990. [Google Scholar] [CrossRef]
- Chaturvedi, N.A.; Klein, R.; Christensen, J.; Ahmed, J.; Kojic, A. Algorithms for advanced battery-management systems. IEEE Control Syst. Mag. 2010, 30, 49–68. [Google Scholar]
- Atlung, S.; West, K.; Jacobsen, T. Dynamic aspects of solid solution cathodes for electrochemical power sources. J. Electrochem. Soc. 1979, 126, 1311. [Google Scholar] [CrossRef]
- Santhanagopalan, S.; Guo, Q.; Ramadass, P.; White, R.E. Review of models for predicting the cycling performance of lithium ion batteries. J. Power Sources 2006, 156, 620–628. [Google Scholar] [CrossRef]
- Zhang, X.; Shyy, W.; Sastry, A.M. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 2007, 154, A910. [Google Scholar] [CrossRef]
- Zhang, D.; Dey, S.; Couto, L.D.; Moura, S.J. Battery adaptive observer for a single-particle model with intercalation-induced stress. IEEE Trans. Control Syst. Technol. 2020, 28, 1363–1377. [Google Scholar] [CrossRef]
- Perez, H.E.; Moura, S.J. Sensitivity-based interval PDE observer for battery SOC estimation. In Proceedings of the 2015 American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015; pp. 323–328. [Google Scholar]
- Camacho-Solorio, L.; Moura, S.; Krstic, M. Robustness of boundary observers for radial diffusion equations to parameter uncertainty. In Proceedings of the 2018 Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 3484–3489. [Google Scholar]
- Cen, Z.; Kubiak, P. Lithium-ion battery SOC/SOH adaptive estimation via simplified single particle model. Int. J. Energy Res. 2020, 44, 12444–12459. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, R.; Pang, S.; Xu, L.; Zhao, D.; Huangfu, Y.; Gao, F. A nonlinear observer SOC estimation method based on electrochemical model for lithium-ion battery. IEEE Trans. Ind. Appl. 2021, 57, 1094–1104. [Google Scholar] [CrossRef]
- Di Domenico, D.; Stefanopoulou, A.; Fiengo, G. Lithium-ion battery state of charge and critical surface charge estimation using an electrochemical model-based extended Kalman filter. Trans. ASME J. Dyn. Syst. Meas. Control 2010, 132, 061302. [Google Scholar] [CrossRef]
- Santhanagopalan, S.; White, R.E. State of charge estimation using an unscented filter for high power lithium ion cells. Int. J. Energy Res. 2010, 34, 152–163. [Google Scholar] [CrossRef]
- Blondel, P.; Postoyan, R.; Raël, S.; Benjamin, S.; Desprez, P. Nonlinear circle-criterion observer design for an electro-chemical battery model. IEEE Trans. Control Syst. Technol. 2019, 27, 889–897. [Google Scholar] [CrossRef]
- Jenkins, B.; Krupadanam, A.; Annaswamy, A.M. Fast adaptive observers for battery management systems. IEEE Trans. Control Syst. Technol. 2020, 28, 776–789. [Google Scholar] [CrossRef]
- Prada, E.; Di Domenico, D.; Creff, Y.; Bernard, J.; Sauvant-Moynot, V.; Huet, F. Simplified electrochemical and thermal model of LiFePO4-graphite Li-Ion batteries for fast charge applications. J. Electrochem. Soc. 2012, 159, A1508. [Google Scholar] [CrossRef]
- Nath, A.; Mehta, R.; Gupta, R.; Bahga, S.S.; Gupta, A.; Bhasin, S. Control-oriented physics-based modeling and observer design for state-of-charge estimation of lithium-ion cells for high current applications. IEEE Trans. Control Syst. Technol. 2022, 30, 2466–2479. [Google Scholar] [CrossRef]
- Moura, S.J.; Argomedo, F.B.; Klein, R.; Mirtabatabaei, A.; Krstic, M. Battery state estimation for a single particle model with electrolyte dynamics. IEEE Trans. Control Syst. Technol. 2017, 25, 453–468. [Google Scholar] [CrossRef]
- Wu, L.; Liu, K.; Pang, H. Evaluation and observability analysis of an improved reduced-order electrochemical model for lithium-ion battery. Electrochim. Acta 2021, 368, 137604. [Google Scholar] [CrossRef]
- Li, X.; Fan, G.; Pan, K.; Wei, G.; Zhu, C.; Rizzoni, G.; Canova, M. A physics-based fractional order model and state of en-ergy estimation for lithium ion batteries. Part I: Model development and observability analysis. J. Power Sources 2017, 367, 187–201. [Google Scholar] [CrossRef]
- Bartlett, A.; Marcicki, J.; Onori, S.; Rizzoni, G.; Yang, X.G.; Miller, T. Electrochemical model-based state of charge and capacitye estimation for a composite electrode lithium-ion battery. IEEE Trans. Control Syst. Technol. 2016, 24, 384–399. [Google Scholar]
- Zhang, D.; Couto, L.D.; Moura, S.J. Electrode-level state estimation in lithium-ion batteries via Kalman decomposition. In Proceedings of the 2021 American Control Conference (ACC), New Orleans, LA, USA, 25–28 May 2021; pp. 3082–3087. [Google Scholar]
- Zhang, D.; Park, S.; Couto, L.D.; Viswanathan, V.; Moura, S.J. Beyond battery state of charge estimation: Observer for electrode-level state and cyclable lithium with electrolyte dynamics. IEEE Trans. Transp. Electrif. 2023, 9, 4846–4861. [Google Scholar] [CrossRef]
- Barcellona, S.; Piegari, L. Lithium ion battery models and parameter identification techniques. Energies 2017, 10, 2007. [Google Scholar] [CrossRef]
- Samadi, M.F.; Alavi, S.M.M.; Saif, M. Online state and parameter estimation of the Li-ion battery in a Bayesian framework. In Proceedings of the 2013 American Control Conference, Washington, DC, USA, 17–19 June 2013; pp. 4693–4698. [Google Scholar]
- Fang, H.; Wang, Y.; Sahinoglu, Z.; Wada, T.; Hara, S. Adaptive estimation of state of charge for lithium-ion batteries. In Proceedings of the 2013 American Control Conference, Washington, DC, USA, 17–19 June 2013; pp. 3485–3491. [Google Scholar]
- Fang, H.; Wang, Y.; Sahinoglu, Z.; Wada, T.; Hara, S. State of charge estimation for lithium-ion batteries: An adaptive approach. Control Eng. Pract. 2014, 25, 45–54. [Google Scholar] [CrossRef]
- Dey, S.; Ayalew, B.; Pisu, P. Nonlinear adaptive observer for a lithium-ion battery cell based on coupled electrochemical—Thermal model. Trans. ASME J. Dyn. Syst. Meas. Control 2015, 137, 111005. [Google Scholar] [CrossRef]
- Klein, R.; Chaturvedi, N.A.; Christensen, J.; Ahmed, J.; Findeisen, R.; Kojic, A. Electrochemical model based observer design for a lithium-ion battery. IEEE Trans. Control Syst. Technol. 2013, 21, 289–301. [Google Scholar] [CrossRef]
- Waag, W.; Fleischer, C.; Sauer, D.U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. J. Power Sources 2014, 258, 321–339. [Google Scholar] [CrossRef]
- Hussein, H.M.; Aghmadi, A.; Abdelrahman, M.S.; Rafin, S.M.S.H.; Mohammed, O. A review of battery state of charge estimation and management systems: Models and future prospective. WIREs Energy Environ. 2024, 13, e507. [Google Scholar]
- Marques, T.M.B.; dos Santos, J.L.F.; Castanho, D.S.; Ferreira, M.B.; Stevan, S.L., Jr.; Illa Font, C.H.; Antonini Alves, T.; Piekarski, C.M.; Siqueira, H.V.; Corrêa, F.C. An overview of methods and technologies for estimating battery state of charge in electric vehicles. Energies 2023, 16, 5050. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, L.; Zhang, Z.; Yu, H.; Wang, W.; Ouyang, M.; Zhang, C.; Sun, Q.; Yan, X.; Yang, S.; et al. Battery state of health estimate strategies: From data analysis to end-cloud collaborative framework. Batteries 2023, 9, 351. [Google Scholar] [CrossRef]
- Bashash, S.; Fathy, H.K. Modeling and control of aggregate air conditioning Loads for Robust Renewable Power Management. IEEE Trans. Control Syst. Technol. 2013, 21, 1318–1327. [Google Scholar] [CrossRef]
- Moura, S.; Bendtsen, J.; Ruiz, V. Parameter identification of aggregated thermostatically controlled loads for smart grids using PDE techniques. Int. J. Control 2014, 87, 1373–1386. [Google Scholar] [CrossRef]
- Moura, S.; Ruiz, V.; Bendsten, J. Modeling heterogeneous populations of thermostatically controlled loads using diffusion-advection PDEs. In Proceedings of the ASME 2013 Dynamic Systems and Control Conference, Palo Alto, CA, USA, 21–23 October 2013; p. V002T23A001. [Google Scholar]
- Moura, S.; Bendtsen, J.; Ruiz, V. Observer design for boundary coupled PDEs: Application to thermostatically controlled loads in smart grids. In Proceedings of the 52nd IEEE Conference on Decision and Control, Firenze, Italy, 10–13 December 2013; pp. 6286–6291. [Google Scholar]
- Ghanavati, M.; Chakravarthy, A. Demand-side energy management by use of a design-then-approximate controller for aggregated thermostatic loads. IEEE Trans. Control Syst. Technol. 2018, 26, 1439–1448. [Google Scholar] [CrossRef]
- Ghaffari, A.; Moura, S.; Krstić, M. Modeling, control, and stability analysis of heterogeneous thermostatically controlled load populations using partial differential equations. Trans. ASME J. Dyn. Syst. Meas. Control 2015, 137, 101009. [Google Scholar] [CrossRef]
- Zheng, J.; Laparra, G.; Zhu, G.; Li, M. Aggregate power control of heterogeneous TCL populations governed by Fokker–Planck equations. IEEE Trans. Control Syst. Technol. 2020, 28, 1915–1927. [Google Scholar] [CrossRef]
- Docimo, D.; Fathy, H.K. Demand response using heterogeneous thermostatically controlled loads: Characterization of aggregate power dynamics. Trans. ASME J. Dyn. Syst. Meas. Control 2017, 139, 101009. [Google Scholar] [CrossRef]
- Ghanavati, M.; Chakravarthy, A. PDE-based modeling and control for power generation management of wind farms. IEEE Trans. Sustain. Energy 2019, 10, 2104–2113. [Google Scholar] [CrossRef]
- Jahnke, T.; Futter, G.; Latz, A.; Malkow, T.; Papakonstantinou, G.; Tsotridis, G.; Schott, P.; Gérard, M.; Quinaud, M.; Quiroga, M.; et al. Performance and degradation of proton exchange membrane fuel cells: State of the art in modeling from atomistic to system scale. J. Power Sources 2016, 304, 207–233. [Google Scholar] [CrossRef]
- Yuan, H.; Dai, H.; Wei, X.; Ming, P. Model-based observers for internal states estimation and control of proton exchange membrane fuel cell system: A review. J. Power Sources 2020, 468, 228376. [Google Scholar] [CrossRef]
- Mangold, M.; Bück, A.; Hanke-Rauschenbach, R. Passivity based control of a distributed PEM fuel cell model. J. Process Control 2010, 20, 292–313. [Google Scholar] [CrossRef]
- Farkas, I.; Vajk, I. Internal model-based controller for a solar plant. IFAC Proc. Vol. 2002, 35, 49–54. [Google Scholar] [CrossRef]
- Johansen, T.A.; Storaa, C. Energy-based control of a distributed solar collector field. Automatica 2002, 38, 1191–1199. [Google Scholar] [CrossRef]
- Camacho, E.F.; Rubio, F.R.; Berenguel, M.; Valenzuela, L. A survey on control schemes for distributed solar collector fields. Part I: Modeling and basic control approaches. Sol. Energy 2007, 81, 1240–1251. [Google Scholar] [CrossRef]
- Camacho, E.F.; Berenguel, M.; Rubio, F.; Martinez, D. Control of Solar Energy Systems; Springer: London, UK, 2012. [Google Scholar]
- Mechhoud, S.; Laleg-Kirati, T.-M. Source term boundary adaptive estimation in a first-order 1D hyperbolic PDE: Application to a one loop solar collector. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 5219–5224. [Google Scholar]
- Mechhoud, S.; Laleg-Kirati, T.-M. Observer-based bilinear control of first-order hyperbolic PDEs: Application to the solar collector. In Proceedings of the 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 15–18 December 2015; pp. 4909–4914. [Google Scholar]
- Elmetennani, S.; Laleg-Kirati, T.M. Fuzzy universal model approximator for distributed solar collector field control. In Proceedings of the 2014 UKACC International Conference on Control (CONTROL), Loughborough, UK, 9–11 July 2014; pp. 203–208. [Google Scholar]
- Igreja, J.M.; Lemos, J.M.; Silva, R.N. Adaptive control of hyperbolic systems: A CLF approach. In Proceedings of the 2007 European Control Conference (ECC), Kos, Greece, 2–5 July 2007; pp. 2332–2339. [Google Scholar]
- Sbarbaro, D.; Pena, R.; Luarte, D.; Fuentealba, E. Adaptive observers for monitoring soiling rates in thermal solar collectors. In Proceedings of the XIII Brazilian Symposium on Intelligent Automation, Porto Alegre, Brasil, 1–4 October 2017. [Google Scholar]
- Sbarbaro, D.; Peña, R.; Fuentealba, E. Model-based soiling estimation in parabolic solar concentrators. Proc. AIP Conf. 2018, 2033, 030018. [Google Scholar]
- Wright, A.D. Modern Control Design for Flexible Wind Turbines; National Renewable Energy Laboratory: Golden, CO, USA, 2004. [Google Scholar]
- Njiri, J.G.; Söffker, D. State-of-the-art in wind turbine control: Trends and challenges. Renew. Sustain. Energy Rev. 2016, 60, 377–393. [Google Scholar] [CrossRef]
- He, W.; Ge, S.S. Vibration control of a nonuniform wind turbine tower via disturbance observer. IEEE/ASME Trans. Mechatron. 2015, 20, 237–244. [Google Scholar] [CrossRef]
- Han, Z.; Liu, Z.; Kang, W.; He, W. Boundary feedback control of a nonhomogeneous wind turbine tower with exogenous disturbances. IEEE Trans. Autom. Control 2022, 67, 1952–1959. [Google Scholar] [CrossRef]
- Wilkinson, M.; Spianto, F.; Knowles, M. Towards the zero maintenance wind turbine. In Proceedings of the 41st International Universities Power Engineering Conference, Newcastle upon Tyne, UK, 6–8 September 2006; pp. 74–78. [Google Scholar]
- McMillan, D.; Ault, G. Quantification of condition monitoring benefit for offshore wind turbines. Wind Eng. 2007, 31, 267–285. [Google Scholar] [CrossRef]
- Nezami, S.; Jung, H.; Sung, M.K.; Lee, S. Dynamics of vibration energy harvester governed by gravity and magnetic force in a rotating wind turbine blade. In Proceedings of the Smart Materials, Adaptive Structures and Intelligent Systems, Dearborn, MI, USA, 10–12 September 2018; p. V002T07A002.s. [Google Scholar]
- Fridman, E. Observers and initial state recovering for a class of hyperbolic systems via Lyapunov method. Automatica 2013, 49, 2250–2260. [Google Scholar] [CrossRef]
- Dogan, M.; Morgl, Ö. Boundary control of a rotating shear beam with observer feedback. J. Vib. Control 2012, 18, 2257–2265. [Google Scholar] [CrossRef]
- Guo, B.-Z.; Wang, J.-M.; Yang, K.-Y. Dynamic stabilization of an Euler-Bernoulli beam under boundary control and non-collocated observation. Syst. Control Lett. 2008, 57, 740–749. [Google Scholar] [CrossRef]
- Lertphinyovong, J.; Khovidhungij, W. Backstepping boundary controllers and observers for the Rayleigh beam. IFAC Proc. 2008, 41, 8731–8736. [Google Scholar] [CrossRef]
- Krstic, M.; Siranosian, A.A.; Smyshlyaev, A. Backstepping boundary controllers and observers for the slender Timoshenko beam: Part I—Design. In Proceedings of the 2006 American Control Conference, Minneapolis, MN, USA, 14–16 June 2006; pp. 2412–2417. [Google Scholar]
- Krstic, M.; Siranosian, A.A.; Smyshlyaev, A.; Bement, M. Backstepping boundary controllers and observers for the slender Timoshenko beam: Part II—Stability and simulations. In Proceedings of the IEEE Conference on Decision and Control, San Diego, CA, USA, 13–15 December 2006. [Google Scholar]
- Genov, J.; Gilev, B.; Slavchev, Y.; Venkov, G. Modeling and control of wind turbine tower vibrations. Proc. AIP Conf. 2010, 1293, 30–38. [Google Scholar]
- Jokar, H.; Vatankhah, R.; Mahzoon, M. Active vibration control of horizontal-axis wind turbine blades using disturbance observer-based boundary control approach. Eng. Struct. 2023, 275 Pt B, 115323. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, Z.; Li, H.; Peng, J.; Liu, W.; Liao, H. A generalized extended state observer for supercapacitor state of energy estimation with online identical model. IEEE Access 2018, 6, 27706–27713. [Google Scholar] [CrossRef]
- Wang, B.; Wang, C.; Wang, Z.; Xue, H.; Ni, S. Adaptive energy estimation for supercapasitor based on a real-time voltage state observer in electric vehicle application. IEEE Trans. Power Electron. 2021, 36, 7337–7341. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, W.; Jiang, B.; Peng, S.; Wang, S. Directed-graph-observer-based model-free cooperative sliding mode control for distributed energy storage systems in DC microgrids. IEEE Trans. Ind. Inform. 2020, 16, 1224–1235. [Google Scholar] [CrossRef]
- Chishti, F.; Murshid, S.; Dingh, B. Grid integration of renewable energy generating system using nonlinear harmonic observer under nonideal distribution system. IEEE Trans. Ind. Appl. 2021, 57, 5571–5581. [Google Scholar] [CrossRef]
- Hang, J.; Ge, C.; Ding, S.; Li, W.; Huang, Y.; Hua, W. A global state observer-based open-switch fault diagnosis for bidirectional DC-DC converters in hybrid energy source system. IEEE Power Electron. 2024; in press. [Google Scholar] [CrossRef]
- Yoon, S.-J.; Lai, N.; Kim, K.-H. A systematic controller design for a grid-connected inverter with LCL filter using a discrete-time integral state feedback control and state observer. Energies 2018, 11, 437. [Google Scholar] [CrossRef]
- Che, X.; Wu, W.; Gao, N.; Liu, J.; Chung, H.; Blaabjerg, F. Finite control set model predictive control for an LCL-filtered grid-tied inverter with full status estimation under unbalanced grid voltage. Energies 2019, 12, 2691. [Google Scholar] [CrossRef]
- He, G.; Lin, J.; Li, G.; Dong, Y.; Zhang, W. DC component suppression of grid-connected Z-source inverter based on disturbance observer. Energies 2022, 15, 5700. [Google Scholar] [CrossRef]
- Kim, S.-D.; Tran, T.; Yoon, S.-J.; Kim, K.-H. Current controller design of grid-connected inverter with complete observation considering L-/LC-type grid impedance. Energies 2024, 17, 1855. [Google Scholar] [CrossRef]
- Shen, X.; Liu, J.; Marquez, A.; Luo, W.; Leon, J.; Vazquez, S.; Franquelo, G. A high-gain observer-based adaptive super-twisting algorithm for DC-link voltage control of NPC converters. Energies 2020, 13, 1110. [Google Scholar] [CrossRef]
- Aillane, A.; Dahech, K.; Chrifi-Alaoui, L.; Chouder, A.; Damak, T.; Hadjkaddour, A.; Bussy, P. The design and processor-in-the-loop implementation of a super-twisting control algorithm based on a Luenberger observer for a seamless transition between grid-connected and stand-alone modes in microgrids. Energies 2023, 16, 3878. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, C. Luenberger observer based microgrid control strategy for mixed load conditions. Energies 2022, 15, 3655. [Google Scholar] [CrossRef]
- Cecilia, A. Advances in Nonlinear Observer Design for State and Parameter Estimation in Energy Systems. Ph.D. Thesis, Polytechnic University of Catalonia, Catalonia, Spain, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radisavljevic-Gajic, V.; Karagiannis, D.; Gajic, Z. Linear, Nonlinear, and Distributed-Parameter Observers Used for (Renewable) Energy Processes and Systems—An Overview. Energies 2024, 17, 2700. https://doi.org/10.3390/en17112700
Radisavljevic-Gajic V, Karagiannis D, Gajic Z. Linear, Nonlinear, and Distributed-Parameter Observers Used for (Renewable) Energy Processes and Systems—An Overview. Energies. 2024; 17(11):2700. https://doi.org/10.3390/en17112700
Chicago/Turabian StyleRadisavljevic-Gajic, Verica, Dimitri Karagiannis, and Zoran Gajic. 2024. "Linear, Nonlinear, and Distributed-Parameter Observers Used for (Renewable) Energy Processes and Systems—An Overview" Energies 17, no. 11: 2700. https://doi.org/10.3390/en17112700
APA StyleRadisavljevic-Gajic, V., Karagiannis, D., & Gajic, Z. (2024). Linear, Nonlinear, and Distributed-Parameter Observers Used for (Renewable) Energy Processes and Systems—An Overview. Energies, 17(11), 2700. https://doi.org/10.3390/en17112700