Evaluation of Efficiency Enhancement in Photovoltaic Panels via Integrated Thermoelectric Cooling and Power Generation
Abstract
:1. Introduction
2. Model Design
2.1. Fundamental Equations for Thermoelectric Cooler (TEC)
2.1.1. Peltier Coefficient
2.1.2. Internal Electrical Resistance
2.1.3. Thermal Conductance
2.2. Fundamental Equations for Thermoelectric Generator (TEG)
2.2.1. Seebeck Coefficient
2.2.2. Internal Electrical Resistance
2.3. Scenarios
2.3.1. Seebeck Mode (Passive Cooling)
2.3.2. Peltier Mode (Active Cooling)
3. Simulation Analysis
3.1. Thermoelectric Cooler (TEC)
3.2. Thermoelectric Generator (TEG)
3.3. Thermoelectric Generator (TEG) with Solar Panel
3.4. Thermoelectric Cooler (TEC) with Solar Panels
4. Experimental Results
4.1. Indoor (Controlled) Environment
4.2. Outdoor Environment
4.2.1. Active Cooling Mode
4.2.2. Passive Cooling Mode
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thoma, M. Electrical energy usage over the business cycle. Energy Econ. 2004, 26, 463–485. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Bose, B.K. Global warming: Energy, environmental pollution, and the impact of power electronics. IEEE Ind. Electron. Mag. 2010, 4, 6–17. [Google Scholar] [CrossRef]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Weaver, P.; Jansen, L.; van Grootveld, G.; van Spiegel, E.; Vergragt, P. Sustainable Technology Development; Routledge: London, UK, 2017. [Google Scholar] [CrossRef]
- Lewis, N.S. Toward Cost-Effective Solar Energy Use. Science 2007, 315, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Xu, X. A regenerative concept for thermoelectric power generation. Appl. Energy 2017, 185, 119–125. [Google Scholar] [CrossRef]
- Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A.A.; Kim, K.-H. Solar energy: Potential and future prospects. Renew. Sustain. Energy Rev. 2018, 82, 894–900. [Google Scholar] [CrossRef]
- Sampaio, P.G.V.; González, M.O.A. Photovoltaic solar energy: Conceptual framework. Renew. Sustain. Energy Rev. 2017, 74, 590–601. [Google Scholar] [CrossRef]
- Tschopp, D.; Tian, Z.; Berberich, M.; Fan, J.; Perers, B.; Furbo, S. Large-scale solar thermal systems in leading countries: A review and comparative study of Denmark, China, Germany and Austria. Appl. Energy 2020, 270, 114997. [Google Scholar] [CrossRef]
- Mehmood, H.; Tauqeer, T.; Hussain, S. Recent progress in silicon-based solid-state solar cells. Int. J. Electron. 2018, 105, 1568–1582. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 2015, 23, 1–9. [Google Scholar] [CrossRef]
- Munshi, A.H.; Kephart, J.M.; Abbas, A.; Shimpi, T.M.; Barth, K.L.; Walls, J.M.; Sampath, W.S. Polycrystalline CdTe photovoltaics with efficiency over 18% through improved absorber passivation and current collection. Sol. Energy Mater. Sol. Cells 2018, 176, 9–18. [Google Scholar] [CrossRef]
- Marion, B.; Adelstein, J.; Boyle, K.; Hayden, H.; Hammond, B.; Fletcher, T.; Canada, B.; Narang, D.; Kimber, A.; Mitchell, L.; et al. Performance parameters for grid-connected PV systems. In Proceedings of the Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA, 3–7 January 2005; pp. 1601–1606. [Google Scholar] [CrossRef]
- Gokhale, P.; Loganathan, B.; Crowe, J.; Date, A.; Date, A. Development of Flexible Thermoelectric Cells and Performance Investigation of Thermoelectric Materials for Power Generation. Energy Procedia 2017, 110, 281–285. [Google Scholar] [CrossRef]
- Alboteanu, I.L.; Ocoleanu, C.F.; Bulucea, C.A. Cooling System for Photovoltaic Module; University of Craiova: Craiova, Romania, 2012; ISBN 978-1-61804-110-4. [Google Scholar]
- Kim, J.; Rabelo, M.; Padi, S.P.; Yousuf, H.; Cho, E.C.; Yi, J. A review of the degradation of photovoltaic modules for life expectancy. Energies 2021, 14, 4278. [Google Scholar] [CrossRef]
- Yin, E.; Li, Q.; Xuan, Y. One-day performance evaluation of photovoltaic-thermoelectric hybrid system. Energy 2018, 143, 337–346. [Google Scholar] [CrossRef]
- Siecker, J.; Kusakana, K.; Numbi, E.B. A review of solar photovoltaic systems cooling technologies. Renew. Sustain. Energy Rev. 2017, 79, 192–203. [Google Scholar] [CrossRef]
- Salem Ahmed, M.; Mohamed AS, A.; Maghrabie, H.M. Performance evaluation of combined photovoltaic thermal water-cooling system for hot climate regions. J. Sol. Energy Eng. 2019, 141, 041010. [Google Scholar] [CrossRef]
- Khamooshi, M.; Salati, H.; Egelioglu, F.; Hooshyar Faghiri, A.; Tarabishi, J.; Babadi, S. A review of solar photovoltaic concentrators. Int. J. Photoenergy 2014, 2014, 958521. [Google Scholar] [CrossRef]
- Maghrabie, H.; Mohamed, A.; Fahmy, A.; Abdel Samee, A.A. Performance augmentation of PV panels using phase change material cooling technique: A review. SVU-Int. J. Eng. Sci. Appl. 2021, 2, 1–13. [Google Scholar] [CrossRef]
- Nižetić, S.; Čoko, D.; Yadav, A.; Grubišić-Čabo, F. Water spray cooling technique applied on a photovoltaic panel: The performance response. Energy Convers. Manag. 2016, 108, 287–296. [Google Scholar] [CrossRef]
- Sheik, M.S.; Kakati, P.; Dandotiya, D.; Ramesh, C.S. A comprehensive review on various cooling techniques to decrease an operating temperature of solar photovoltaic panels. Energy Nexus 2022, 8, 100161. [Google Scholar] [CrossRef]
- Biwole, P.H.; Eclache, P.; Kuznik, F. Phase-change materials to improve solar panel’s performance. Energy Build. 2013, 62, 59–67. [Google Scholar] [CrossRef]
- Shoeibi, S.; Kargarsharifabad, H.; Sadi, M.; Arabkoohsar, A.; Mirjalily, S.A.A. A review on using thermoelectric cooling, heating, and electricity generators in solar energy applications. Sustain. Energy Technol. Assess. 2022, 52, 102105. [Google Scholar] [CrossRef]
- Uchida, K.-I.; Adachi, H.; Kikkawa, T.; Kirihara, A.; Ishida, M.; Yorozu, S.; Maekawa, S.; Saitoh, E. Thermoelectric Generation Based on Spin Seebeck Effects. Proc. IEEE 2016, 104, 1946–1973. [Google Scholar] [CrossRef]
- Gorai, P.; Stevanović, V.; Toberer, E.S. Computationally guided discovery of thermoelectric materials. Nat. Rev. Mater. 2017, 2, 17053. [Google Scholar] [CrossRef]
- Contento, G.; Lorenzi, B.; Rizzo, A.; Narducci, D. Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies. Energy 2017, 131, 230–238. [Google Scholar] [CrossRef]
- Lin, J.; Liao, T.; Lin, B. Performance analysis and load matching of a photovoltaic–thermoelectric hybrid system. Energy Convers. Manag. 2015, 105, 891–899. [Google Scholar] [CrossRef]
- Lorenzi, B.; Chen, G. Theoretical efficiency of hybrid solar thermoelectric-photovoltaic generators. J. Appl. Phys. 2018, 124, 024501. [Google Scholar] [CrossRef]
- Alahmer, A.; Khalid, M.B.; Beithou, N.; Borowski, G.; Alsaqoor, S.; Alhendi, H. An Experimental Investigation into Improving the Performance of Thermoelectric Generators. J. Ecol. Eng. 2022, 23, 100–108. [Google Scholar] [CrossRef]
- Van Sark, W.G.J.H.M. Feasibility of photovoltaic–thermoelectric hybrid modules. Appl. Energy 2011, 88, 2785–2790. [Google Scholar] [CrossRef]
- Fisac, M.; Villasevil, F.X.; López, A.M. High-efficiency photovoltaic technology including thermoelectric generation. J. Power Sources 2014, 252, 264–269. [Google Scholar] [CrossRef]
- Malik, M.S.; Azmatullah, U.; Khan, M.O.; Abu Bakr, M.; Ahmad, M. Analysis of Energy Management and Battery Sizing in an Off-Grid Hybrid Solar Thermoelectric Generation System. Energy Technol. 2022, 10, 2100732. [Google Scholar] [CrossRef]
- Shatar, N.M.; Rahman, M.A.A.A.; Salim, S.A.Z.S.; Ariff, M.H.M.; Muhtazaruddin, M.N.; Badlisah, A.K.A. Design of Photovoltaic-Thermoelectric Generator (PV-TEG) Hybrid System for Precision Agriculture. In Proceedings of the 2018 IEEE 7th International Conference on Power and Energy (PECon), Kuala Lumpur, Malaysia, 3–4 December 2018; pp. 50–55. [Google Scholar] [CrossRef]
- Utomo, B.R.; Sulistyanto, A.; Riyadi, T.W.B.; Wijayanta, A.T. Enhanced Performance of Combined Photovoltaic–Thermoelectric Generator and Heat Sink Panels with a Dual-Axis Tracking System. Energies 2023, 16, 2658. [Google Scholar] [CrossRef]
- Riyadi, T.W.B.; Soumi, A.I.; Haryanto; Hendrawan, A. Performance Assessment of a Photovoltaic Cell Coupled with a Thermoelectric Generator. Eng. Proc. 2024, 63, 23. [Google Scholar] [CrossRef]
- Maryani, S.; Kusumanto, R.D.; Carlos, R.S. Solar Panel Optimization Using Peltier Module TEC1-12706. J. Mech. Civ. Ind. Eng. 2023, 4, 43–50. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.-D. Thermoelectric materials: Energy conversion between heat and electricity. J. Mater. 2015, 1, 92–105. [Google Scholar] [CrossRef]
- Yilmaz, U.; Cavus, T.; İslamoğlu, Y. Bidirectional Modeling of Thermoelectric Module Using MATLAB/Simulink for Circuit Simulations. IEEE Access 2022, 10, 82680–82696. [Google Scholar] [CrossRef]
- Hasan, M.H.; Toh, K.C. Optimization of a Thermoelectric Cooler-Heat Sink Combination for Active Processor Cooling. In Proceedings of the 2007 9th Electronics Packaging Technology Conference, Singapore, 10–12 December 2007; pp. 848–857. [Google Scholar] [CrossRef]
- Hammad, W.; Sweidan TE, O.; Abuashour, M.I.; Khalid, H.M.; Muyeen, S.M. Thermal management of grid-tied PV system: A novel active and passive cooling design-based approach. IET Renew. Power Gener. 2021, 15, 2715–2725. [Google Scholar] [CrossRef]
- Patil, T.G.; Asokan, S. Comparative analysis of calculation of solar panel efficiency degradation. In Proceedings of the 2017 Third International Conference on Science Technology Engineering & Management (ICONSTEM), Chennai, India, 23–24 March 2017; pp. 522–525. [Google Scholar] [CrossRef]
S. No. | Item | Description | Quantity |
---|---|---|---|
1 | Solar Panel | Power: 15 W | 2 |
2 | Thermoelectric Modules | Model: TEC-12706 Current: 6A | 20 |
3 | Thermoelectric Paste | Conductivity: 4.2 W/m2 | 10 |
4 | Heat Sinks | Aluminum Heat Sinks | 20 |
5 | Light Sensor | BH1750—Light Intensity Sensor Module | 1 |
6 | Temperature Sensor | LM35 | 2 |
7 | Arduino Mega | ATmega2560 | 1 |
8 | Temperature Gun | Digital Laser Infrared | 1 |
S. No. | Ambient Temp. (°C) | PV Temp. without TEC (°C) | PV Temp. with TEC (°C) | PV Power without TEC (W) | PV Power with TEC (W) |
---|---|---|---|---|---|
1 | 30.4 | 32.5 | 32.5 | 1.811 | 1.812 |
2 | 30.4 | 30.9 | 29.4 | 1.826 | 2.034 |
3 | 30.4 | 31 | 29.5 | 1.785 | 1.993 |
4 | 30.5 | 31.1 | 29.6 | 1.967 | 2.176 |
5 | 30.9 | 31.2 | 29.7 | 1.784 | 1.992 |
6 | 30.8 | 31.4 | 30.1 | 1.824 | 2.032 |
7 | 30.7 | 31.1 | 29.6 | 1.985 | 2.195 |
8 | 30.6 | 31 | 29.5 | 2.350 | 2.564 |
9 | 30.7 | 31.3 | 29.8 | 2.706 | 2.922 |
10 | 30.9 | 32 | 30.5 | 3.107 | 3.326 |
11 | 30.8 | 32.7 | 31.4 | 2.562 | 2.777 |
12 | 31.3 | 32.7 | 31.2 | 1.780 | 1.988 |
13 | 30.8 | 32.3 | 30.8 | 1.588 | 1.794 |
14 | 30.8 | 31.2 | 29.6 | 1.724 | 1.931 |
15 | 30.7 | 30.9 | 29.4 | 2.094 | 2.305 |
16 | 31.1 | 31.1 | 29.6 | 2.389 | 2.603 |
S. No. | Ambient Temp. (°C) | PV Temp. without TEG (°C) | PV Temp. with TEG (°C) | PV Power without TEG (W) | PV Power with TEG (W) | TEG Power (mW) | Net Power (W) |
---|---|---|---|---|---|---|---|
1 | 43.2 | 69.5 | 59 | 14.071 | 16.126 | 53.1 | 16.179 |
2 | 40.8 | 70.25 | 60 | 14.518 | 16.591 | 54.74 | 16.645 |
3 | 40.5 | 69.5 | 58.5 | 14.660 | 16.744 | 48.96 | 16.793 |
4 | 40.8 | 70.5 | 60 | 14.443 | 16.515 | 51.23 | 16.566 |
5 | 40.6 | 70.7 | 60.4 | 14.298 | 16.364 | 43.73 | 16.408 |
6 | 42.9 | 71.95 | 61.9 | 14.117 | 16.173 | 42.02 | 16.215 |
7 | 42.7 | 74 | 64 | 13.965 | 16.011 | 46.55 | 16.057 |
8 | 41.4 | 73 | 63 | 14.552 | 16.627 | 43.2 | 16.670 |
9 | 41.7 | 73 | 63 | 13.850 | 15.891 | 49.41 | 15.940 |
10 | 42.1 | 71 | 61 | 13.886 | 15.928 | 47.01 | 15.975 |
11 | 41.6 | 70 | 60 | 13.975 | 16.021 | 42.33 | 16.063 |
12 | 38.2 | 61.5 | 51 | 11.113 | 13.206 | 36.72 | 13.242 |
13 | 39.2 | 63 | 52 | 10.545 | 12.6 | 35.28 | 12.635 |
14 | 38.3 | 62.5 | 51 | 10.854 | 12.932 | 32.34 | 12.964 |
15 | 38.2 | 61 | 50 | 10.545 | 12.6 | 32.34 | 12.632 |
16 | 43.2 | 69.5 | 59 | 14.071 | 16.126 | 53.1 | 16.179 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faheem, M.; Abu Bakr, M.; Ali, M.; Majeed, M.A.; Haider, Z.M.; Khan, M.O. Evaluation of Efficiency Enhancement in Photovoltaic Panels via Integrated Thermoelectric Cooling and Power Generation. Energies 2024, 17, 2590. https://doi.org/10.3390/en17112590
Faheem M, Abu Bakr M, Ali M, Majeed MA, Haider ZM, Khan MO. Evaluation of Efficiency Enhancement in Photovoltaic Panels via Integrated Thermoelectric Cooling and Power Generation. Energies. 2024; 17(11):2590. https://doi.org/10.3390/en17112590
Chicago/Turabian StyleFaheem, Muhammad, Muhammad Abu Bakr, Muntazir Ali, Muhammad Awais Majeed, Zunaib Maqsood Haider, and Muhammad Omer Khan. 2024. "Evaluation of Efficiency Enhancement in Photovoltaic Panels via Integrated Thermoelectric Cooling and Power Generation" Energies 17, no. 11: 2590. https://doi.org/10.3390/en17112590
APA StyleFaheem, M., Abu Bakr, M., Ali, M., Majeed, M. A., Haider, Z. M., & Khan, M. O. (2024). Evaluation of Efficiency Enhancement in Photovoltaic Panels via Integrated Thermoelectric Cooling and Power Generation. Energies, 17(11), 2590. https://doi.org/10.3390/en17112590