Simulation of the Measured Reactivity Distributions in the Subcritical MYRRHA Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. MYRRHA Numerical Model
2.2. Theoretical Approach
2.3. Calculations
3. Results
3.1. Spatial Effect
3.2. Self-Powered 103Rh Detectors
4. Discussion
5. Conclusions
- (a)
- The kkcode as well as βeff obtained in MCNP6.2 modeling are quite close to the values reported by other teams working on MYRRHA subcritical reactors, which proves the reliability of the developed numerical model.
- (b)
- The influence of the spatial effect in calculations of kexp using the area method was directly indicated in the MYRRHA reactor core for the chosen isotopes and in-core positions.
- (c)
- The magnitude of the spatial effect depends on the detector’s isotope as well as its radial position in the core. The influence on the axial position in the fuel is less significant.
- (d)
- The distributions of Δ in the MYRRHA reactor model range from negative values of about 1000–1100 pcm for 238U and 232Th and 400 pcm for 239Pu, close to the center of the core, to positive values of about 200–300 pcm for all nuclides, on the core periphery.
- (e)
- The results (differences) closest to zero were obtained for assembly II, about 40–50 pcm for 239Pu, and assembly III, about 50–100 pcm for natU, 238U, 232Th, and 241Am; thus, these nuclides and positions should be preferred when selecting detectors for MYRRHA.
- (f)
- Pilot results show that it should be possible to use self-powered neutron detectors based on 103Rh for real negative reactivity measurements.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stanculescu, A. Accelerator Driven Systems (ADSs) for nuclear transmutation. Ann. Nucl. Energy 2013, 62, 607–612. [Google Scholar] [CrossRef]
- Gohar, Y.; Cao, Y.; Kraus, A.R. ADS design concept for disposing of the U.S. spent nuclear fuel inventory. Ann. Nucl. Energy 2021, 160, 108385. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Status of Accelerator Driven Systems Research and Technology Development; IAEA-TECDOC-1766; IAEA: Vienna, Austria, 2015; Available online: https://www.iaea.org/publications/10870/status-of-accelerator-driven-systems-research-and-technology-development (accessed on 27 April 2024).
- Engelen, J.; Abderrahim, H.A.; Baeten, P.; De Bruyn, D.; Leysen, P. MYRRHA: Preliminary front-end engineering design. Int. J. Hydrog. Energy 2015, 40, 15137–15147. [Google Scholar] [CrossRef]
- Van Oost, G.; Terentyev, D.; Abderrahim, H.A. Contributions of MYRRHA to the European Fusion Energy Roadmap. Fusion Eng. Des. 2024, 198, 114098. [Google Scholar] [CrossRef]
- Janczyszyn, J. On the Sjöstrand method of reactivity measurement. Ann. Nucl. Energy 2013, 60, 374–376. [Google Scholar] [CrossRef]
- Gajda, P.; Janczyszyn, J.; Pohorecki, W. Correction methods for pulsed neutron source reactivity measurement in accelerator driven systems. Nukleonika 2013, 58, 287–293. [Google Scholar]
- Janczyszyn, A.J.; Domańska, G.; Stanisz, P. Fission chambers for space effect reduction in the application of the area method: A new approach. Nukleonika 2020, 65, 161–166. [Google Scholar] [CrossRef]
- Bécares, V.; Villamarín, D.; Fernández-Ordóñez, M.; González-Romero, E.M.; Berglöf, C.; Bournos, V.; Fokov, Y.; Mazanik, S.; Serafimovich, I. Validation of ADS reactivity moni-toring techniques in the Yalina-Booster subcritical assembly. Ann. Nucl. Energy 2013, 53, 331–341. [Google Scholar] [CrossRef]
- Janczyszyn, J.; Domańska, G.; Stanisz, P. Fission chambers for space effect reduction in the application of the area method. Ann. Nucl. Energy 2018, 120, 896–898. [Google Scholar] [CrossRef]
- Talamo, A.; Zhong, Z.; Gohar, Y. Monte Carlo and deterministic calculation of the Bell and Glasstone spatial correction factor. Comput. Phys. Commun. 2012, 183, 1904–1910. [Google Scholar] [CrossRef]
- Romojaro, P.; Álvarez-Velarde, F.; Cabellos, O.; García-Herranz, N.; Jiménez-Carrascosa, A. On the importance of target accuracy assessments and data assimilation for the co-development of nuclear data and fast reactors: MYRRHA and ESFR. Ann. Nucl. Energy 2021, 161, 108416. [Google Scholar] [CrossRef]
- Jalůvka, D.; Van den Eynde, G.; Vandewalle, S. Development of a core management tool for MYRRHA. Energy Convers. 2013, 74, 562–568. [Google Scholar] [CrossRef]
- Luzzi, L.; Magni, A.; Billiet, S.; Di Gennaro, M.; Leinders, G.; Mariano, L.G.; Pizzocri, D.; Zanetti, M.; Zullo, G. Performance analysis and helium behaviour of Am-bearing fuel pins for irradiation in the MYRRHA reactor. Nucl. Eng. Des 2024, 420, 113048. [Google Scholar] [CrossRef]
- Magni, A.; Di Gennaro, M.; Guizzardi, E.; Pizzocri, D.; Zullo, G.; Luzzi, L. Analysis of the performance of driver MOX fuel in the MYRRHA reactor under Beam Power Jump transient irradiation conditions. Nucl. Eng. Des 2023, 414, 112589. [Google Scholar] [CrossRef]
- Magni, A.; Barani, T.; Belloni, F.; Boer, B.; Guizzardi, E.; Pizzocri, D.; Schubert, A.; Van Uffelen, P.; Luzzi, L. Extension and application of the TRANSURANUS code to the normal operating conditions of the MYRRHA reactor. Nucl. Eng. Des 2022, 386, 111581. [Google Scholar] [CrossRef]
- Rummana, A.; Barlow, R.J.; Saad, S.M. Calculations of neutron fluxes and isotope conversion rates in a thorium-fuelled MYRRHA reactor, using GEANT4 and MCNPX. Nucl. Eng. Des 2022, 388, 111629. [Google Scholar] [CrossRef]
- Preston, M.; Borella, A.; Branger, E.; Grape, S.; Rossa, R. Analysis of radiation emission from MYRRHA spent fuel and implications for non-destructive safeguards verification. Ann. Nucl. Energy 2021, 163, 108525. [Google Scholar] [CrossRef]
- Preston, M.; Borella, A.; Branger, E.; Grape, S.; Rossa, R. Simulation study of gamma-ray spectroscopy on MYRRHA spent fuel located in lead–bismuth eutectic. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2022, 1034, 166761. [Google Scholar] [CrossRef]
- Sarotto, M.; Castelliti, D.; Fernandez, R.; Lamberts, D.; Malambu, E.; Stankovskiy, A.; Jaeger, W.; Ottolini, M.; Martin-Fuertes, F.; Sabathé, L.; et al. The MYRRHA-FASTEF cores design for critical and sub-critical operational modes (EU FP7 Central Design Team project). Nucl. Eng. Des. 2013, 265, 184–200. [Google Scholar] [CrossRef]
- Krasa, A.; Kochetkov, A.; Baeten, P.; Vittiglio, G.; Wagemans, J.; Becares, V. Comparative study on neutron data in integral experiments of MYRRHA mockup critical cores in the VENUS-F reactor. EPJ Web Conf. 2017, 146, 06019. [Google Scholar] [CrossRef]
- Ait Abderrahim, H.; De Bruyn, D.; Dierckx, M.; Fernandez, R.; Popescu, L.; Schyns, M.; Stankovskiy, A.; Van den Eynde, G.; Vandeplassche, D. MYRRHA Accelerator Driven System programme: Recent progress and perspectives. Izv. Wysshikh Uchebnykh Zawedeniy Yad. Energ. 2019, 2, 29–42. [Google Scholar] [CrossRef]
- Van den Eynde, G.; Malambu, E.; Stankovskiy, A.; Fernandez, R.; Baeten, P. An updated core design for the multi-purpose irradiation facility MYRRHA. J. Nucl. Sci. Technol. 2015, 52, 1053–1057. [Google Scholar] [CrossRef]
- Sjostrand, N.G. Measurements on a subcritical reactor using a pulsed neutron source. Ark. Fys. 1956, 11, 233. [Google Scholar]
- Talamo, A.; Gohar, Y. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies; ANL-16/14; Nuclear Engineering Division, Argonne National Laboratory: Lemont, IL, USA, 2016. Available online: https://publications.anl.gov/anlpubs/2016/07/129188.pdf (accessed on 27 April 2024).
- Talamo, A.; Gohar, Y.; Gabrielli, F.; Rineiski, A.; Pyeon, C.H. Advances in the computation of the Sjöstrand, Rossi, and Feynman distributions. Prog. Nucl. Energy 2017, 101, 299–311. [Google Scholar] [CrossRef]
- Talamo, A.; Gohar, Y. Numerical Application of the Sjöstrand Method without the Pulses Superimposition Methodology. In Proceedings of the 2015 American Nuclear Society Winter Meeting and Nuclear Technology Expo, Washington, DC, USA, 8–12 November 2015. [Google Scholar]
- Kosály, G.; Valkó, J. Investigation of the area-ratio method of pulsed reactivity determination. J. Nucl. Energy 1971, 25, 297–315. [Google Scholar] [CrossRef]
- Talamo, A.; Gohar, Y.; Rabiti, C.; Aliberti, G.; Kondev, F.; Smith, D.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; et al. Pulse superimposition calculational methodology for estimating the subcriticality level of nuclear fuel assemblies. Nucl. Instrum. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 606, 661–668. [Google Scholar] [CrossRef]
- Zhou, D.; Li, Z.; Yang, A.; Xiao, R.; Guo, Z.; Zhang, Y.; Zhu, D.; Jianxiong Shao, J.; Chen, X. Simulation study of a rhodium self-powered neutron detector for irradiation of nuclear fuel and material reactor. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2024, 1060, 169070. [Google Scholar] [CrossRef]
- Romojaro, P.; Álvarez-Velarde, F.; Kodeli, I.; Stankovskiy, A.; Díez, C.J.; Cabellos, O.; García-Herranz, N.; Heyse, J.; Schillebeeckx, P.; Van den Eynde, G.; et al. Nuclear data sensitivity and uncertainty analysis of effective neutron multiplication factor in various MYRRHA core configurations. Ann. Nucl. Energy 2017, 101, 330–338. [Google Scholar] [CrossRef]
- Bécares, V.; Villamarín, D.; Baeten, P.; Billebaud, A.; Chabod, S.; Chevret, T.; Doligez, X.; Kochetkov, A.; Krasa, A.; Lecolley, F.R.; et al. Reactivity determination and monitoring in FREYA Project subcritical cores: Assessment and correction of spatial and energy effects. In Proceedings of the Technology and Components of Accelerator-Driven Systems—Workshop Proceedings, Mito, Japan, 6–9 September 2016. [Google Scholar]
- Iwamoto, H.; Stakovskiy, A.; Fiorito, L.; Van den Eynde, G. Sensitivity and uncertainty analysis of βeff for MYRRHA using a Monte Carlo technique. EPJ Nucl. Sci. Technol. 2018, 4, 42. [Google Scholar] [CrossRef]
- Al-Ssalahy, H.M.; Al Qaaod, A.A.; El-Kameesy, S.U.; Amin, E.A. Evaluation of subcritical multiplication parameters in MYRRHA-FASTEF accelerator driven system reactor. J. Phys.Conf. Ser. 2019, 1253, 012028. [Google Scholar] [CrossRef]
- Gandini, A. Recent and Potential Advances of the HGPT Methodology. In Proceedings of the International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development, Yekaterinburg, Russia, 26–29 June 2017; Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/49/085/49085794.pdf (accessed on 27 April 2024).
- Kópházi, J.; Czifrus, S.; Fehér, S.; Pór, G. Measuring Delayed Part of the current of a Self Powered Neutron Detector and Comparison with Calculations. In Proceedings of the International Conference Nuclear Energy in Central Europe, Portoroz, Slovenia, 10–13 September 2001; Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/35/095/35095371.pdf (accessed on 27 April 2024).
- Stanisz, P.; Cetnar, J.; Oettingen, M. Radionuclide neutron source trajectories in the closed nuclear fuel cycle. Nukleonika 2019, 64, 3–9. [Google Scholar] [CrossRef]
- Oettingen, M.; Cetnar, J. Comparative analysis between measured and calculated concentrations of major actinides using destructive assay data from Ohi-2 PWR. Nukleonika 2015, 60, 571–580. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, H.; Cui, Z.; Hu, Y.; Bai, H.; Fan, T.; Chen, J.; Gao, Y.; Yang, X.; Zhang, G. Simultaneous measurement of energy spectrum and fluence of neutrons using a diamond detector. Nat. Sci. Rep. 2022, 12, 12022. [Google Scholar] [CrossRef] [PubMed]
kkcode | βeff [pcm] | Reference |
---|---|---|
0.96480 ± 0.00016 | - | [32] |
0.96677 ± 0.00012 | 325 ± 7 | [22] |
0.95357 ± 0.00008 | - | [31] |
0.95410 ± 0.00003 | - | [31] |
0.95946 ± 0.00003 | 335 ± 4 | [22] |
- | 320 | [33] |
0.95944 ± 0.00018 | - | [34] |
Nuclide | Assembly | Level 1 (30 to 10 cm) | Level 2 (10 to −10 cm) | Level 3 (−10 to −30 cm) | |||
---|---|---|---|---|---|---|---|
∆ [pcm] | ± | Δ [pcm] | ± | Δ [pcm] | ± | ||
natU | I | −896.1 | 7 | −892.2 | 2.9 | −938.2 | 3.9 |
238U | −1055.6 | 6.1 | −1050.7 | 4 | −1107.3 | 4.8 | |
241Am | −932.9 | 3.6 | −922.7 | 2.4 | −969.6 | 2 | |
239Pu | −385 | 2 | −387 | 1.6 | −405.6 | 6.1 | |
232Th | −1057.4 | 5.8 | −1052.4 | 4.2 | −1108.7 | 6.1 | |
natU | II | −186.9 | 5.7 | −190.3 | 3.6 | −200.9 | 3.6 |
238U | −246.7 | 7.5 | −250.9 | 4.7 | −262.3 | 3.8 | |
241Am | −214.9 | 4.6 | −215.6 | 3.2 | −226.9 | 3.5 | |
239Pu | −40.2 | 3.6 | −41.8 | 2.1 | −50.7 | 4 | |
232Th | −248.3 | 7.7 | −251.9 | 4.8 | −263.2 | 4 | |
natU | III | 96.1 | 9.8 | 100.1 | 6.7 | 94.7 | 5.2 |
238U | 77.7 | 12.4 | 76.6 | 4 | 76.0 | 6.1 | |
241Am | 87.1 | 7.7 | 89.5 | 3.7 | 87.3 | 5.4 | |
239Pu | 152.2 | 3.1 | 156 | 2.3 | 151.2 | 4.8 | |
232Th | 78.3 | 12.7 | 76.5 | 4.4 | 78.3 | 7 | |
natU | IV | 216.2 | 5.2 | 213.5 | 5.5 | 198.6 | 6.3 |
238U | 193.8 | 6.4 | 166.7 | 17.5 | 173.3 | 7.8 | |
241Am | 205.6 | 5.5 | 204.2 | 4.4 | 191.0 | 19.4 | |
239Pu | 233.1 | 9.8 | 244.1 | 8.4 | 221.8 | 8.1 | |
232Th | 196.0 | 5.5 | 188.5 | 5.6 | 175.4 | 8.1 | |
natU | V | 253.6 | 8.5 | 244.2 | 10.7 | 226.8 | 7.8 |
238U | 240.7 | 10.3 | 243.3 | 7.3 | 215.4 | 9 | |
241Am | 245.7 | 8.9 | 251 | 6.1 | 221.2 | 19.2 | |
239Pu | 246.3 | 16.2 | 240.4 | 21.4 | 242.8 | 9.2 | |
232Th | 242 | 11.3 | 241.4 | 6.9 | 218.9 | 9.2 | |
natU | VI | 266.4 | 8.4 | 256 | 6.7 | 235.7 | 7.8 |
238U | 249.2 | 14.7 | 243.4 | 15.9 | 219.7 | 7.2 | |
241Am | 253.8 | 8.9 | 249.9 | 7.4 | 243 | 7.4 | |
239Pu | 246.8 | 23.3 | 269.4 | 11.3 | 257.8 | 9.7 | |
232Th | 245.6 | 14.8 | 240.1 | 14.6 | 224.6 | 9.7 |
Assembly | Level 1 (30 to 10 cm) | Level 2 (10 to −10 cm) | Level 3 (−10 to −30 cm) | |||
---|---|---|---|---|---|---|
Δ [pcm] | ± | Δ [pcm] | ± | Δ [pcm] | ± | |
I | −149.5 | 6.0 | −149.5 | 6.0 | −149.5 | 6.0 |
II | −59.9 | 20.3 | 14.4 | 10.4 | −74.1 | 14.1 |
III | 154.3 | 15.4 | 148.3 | 14.0 | 125.6 | 11.0 |
IV | 225.2 | 21.5 | 192.9 | 14.5 | 261 | 20.7 |
V | 218.1 | 20.4 | 206.4 | 17.2 | 210.2 | 17.4 |
VI | 223.6 | 69.5 | −19.7 | 77.1 | −75.1 | 119.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janczyszyn, J.; Domańska, G.; Oettingen, M. Simulation of the Measured Reactivity Distributions in the Subcritical MYRRHA Reactor. Energies 2024, 17, 2565. https://doi.org/10.3390/en17112565
Janczyszyn J, Domańska G, Oettingen M. Simulation of the Measured Reactivity Distributions in the Subcritical MYRRHA Reactor. Energies. 2024; 17(11):2565. https://doi.org/10.3390/en17112565
Chicago/Turabian StyleJanczyszyn, Jerzy, Grażyna Domańska, and Mikołaj Oettingen. 2024. "Simulation of the Measured Reactivity Distributions in the Subcritical MYRRHA Reactor" Energies 17, no. 11: 2565. https://doi.org/10.3390/en17112565
APA StyleJanczyszyn, J., Domańska, G., & Oettingen, M. (2024). Simulation of the Measured Reactivity Distributions in the Subcritical MYRRHA Reactor. Energies, 17(11), 2565. https://doi.org/10.3390/en17112565