Modeling of Heat and Mass Transfer in Cement-Based Materials during Cement Hydration—A Review
Abstract
:1. Introduction
2. Theory and Existing Models
2.1. General Model for Heat and Mass Transfer
2.2. Modeling Heat and Mass Transfer in Concrete
2.2.1. Heat Diffusion
- —temperature, K;
- —thermal diffusion coefficient, m2/s;
- —specific hear of concrete, kJ/(kg·K);
- —density of concrete, kg/m3;
- —amount of cement, kg/m3.
2.2.2. Moisture Diffusion
- —moisture concentration by mass, kg/kg, which is in the following relation with the moisture content by volume W, m3/m3:—moisture diffusion coefficient, m2/s;
- —coefficient to reflect the effect of hydration on the moisture content, m3/J.
2.2.3. Coupling
2.2.4. Boundary Conditions
- —coefficient of heat exchange, W/(m2K);
- —coefficient of moisture exchange, m/s;
- , —surface and ambient temperature, respectively, K;
- , —surface and ambient humidity, respectively, kg/kg.
2.3. Model Parameters
2.3.1. Coefficients in Thermal Analysis
2.3.2. Coefficients in Moisture Analysis
- ;
- , , —calibration coefficients.
- —diffusion coefficient in saturated concrete (for ), which can be estimated according to Model Code 2010 as:
- —ratio ; can be assumed;
- —minimum at ;
- —coefficient representing the lower bound of diffusivity approached at a low humidity level;
- —diffusivity increment from a low humidity level to a saturation state;
- —coefficient characterizing the humidity level at which the diffusivity begins to increase.
- —moisture diffusion coefficient of the covering material, m2/s;
- —thickness of the covering material layer, m;
- —humidity exchange coefficient of the covering layer, m/s.
2.3.3. Heat of hydration
- —reference temperature, K;
- —apparent activation energy, J/mol,
- —universal gas constant, 8.314 J/(mol K).
3. Numerical Applications
3.1. DIANA FEA
- —normalized heat generation rate;
- —rate constant.
- —moisture capacity;
- —total water concentration, kg/m2s;
- —time, s;
- —moisture diffusivity, m2/s.
3.2. MIDAS
- —adiabatic temperature rise, °C;
- —maximum adiabatic temperature rise, °C;
- —response speed, 1/day;
- —time, days.
3.3. ABAQUS
- —concrete shrinkage strain during the humidity saturation period;
- —concrete shrinkage strain during the humidity decline period;
- —elastic modulus of concrete;
- —chemical shrinkage at the starting moment;
- —chemical shrinkage at any moment;
- —saturation fraction;
- —universal gas constant;
- —molar weight of water;
- —absolute temperature;
- —bulk modulus of the concrete;
- —bulk modulus of the aggregate;
3.4. ANSYS
3.5. B4Cast
3.6. ATENA
3.7. JCMAC
- —vapor pressure within the concrete;
- —moisture density;
- —moisture capacity;
- —diffusion coefficient;
- —moisture density loss by hydration.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klemczak, B.; Gołaszewski, J.; Cygan, G.; Smolana, A.; Gołaszewska, M. Shrinkage Strains Development in Ultralight Cementitious Foams with Embedded MPCM. Dev. Built Environ. 2024, 17, 100299. [Google Scholar] [CrossRef]
- Caggiano, A.; Mankel, C.; Koenders, E. Reviewing Theoretical and Numerical Models for PCM-Embedded Cementitious Composites. Buildings 2019, 9, 3. [Google Scholar] [CrossRef]
- Mastori, H.; Piluso, P.; Haquet, J.-F.; Denoyel, R.; Antoni, M. Limestone-Siliceous and Siliceous Concretes Thermal Damaging at High Temperature. Constr. Build. Mater. 2019, 228, 116671. [Google Scholar] [CrossRef]
- Li, K.-Q.; Li, D.-Q.; Liu, Y. Meso-Scale Investigations on the Effective Thermal Conductivity of Multi-Phase Materials Using the Finite Element Method. Int. J. Heat Mass Transf. 2020, 151, 119383. [Google Scholar] [CrossRef]
- Li, Y.; Fang, J.; Cheng, L.; He, X.; Su, Y.; Tan, H. Mechanical Performance, Hydration Characteristics and Microstructures of High Volume Blast Furnace Ferronickel Slag Cement Mortar by Wet Grinding Activation. Constr. Build. Mater. 2022, 320, 126148. [Google Scholar] [CrossRef]
- ACI Committee. ACI 207.1R-05—Guide to Mass Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2005; p. 30. [Google Scholar]
- Godart, B.; Divet, L. Recommandations for Preventing Disorders Due to Delayed Ettringite Formation: Technical Guide; ResearchGate: Berlin, Germany, 2018. [Google Scholar]
- Bamforth, P.B. Construction Industry Research and Information Association. In Control of Cracking Caused by Restrained Deformation in Concrete; CIRIA C766; CIRIA: London, UK, 2018. [Google Scholar]
- ACI Committee. ACI 116R-00—Cement and Concrete Terminology; American Concrete Institute: Farmington Hills, MI, USA, 2005; p. 73. [Google Scholar]
- Kanavaris, F.; Jędrzejewska, A.; Sfikas, I.P.; Schlicke, D.; Kuperman, S.; Šmilauer, V.; Honório, T.; Fairbairn, E.M.R.; Valentim, G.; Funchal de Faria, E.; et al. Enhanced Massivity Index Based on Evidence from Case Studies: Towards a Robust Pre-Design Assessment of Early-Age Thermal Cracking Risk and Practical Recommendations. Constr. Build. Mater. 2020, 271, 121570. [Google Scholar] [CrossRef]
- Jędrzejewska, A.; Kanavaris, F.; Zych, M.; Schlicke, D.; Azenha, M. Experiences on Early Age Cracking of Wall-on-Slab Concrete Structures. Structures 2020, 27, 2520–2549. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, M.; Chu, X.; Li, R. A Coupled Hygro-Thermo-Mechanical Cosserat Peridynamic Modelling of Fire-Induced Concrete Fracture. Acta Mech. 2024. [Google Scholar] [CrossRef]
- Mansour, D.M.; Ebid, A.M. Modeling of Heat Transfer in Massive Concrete Foundations Using 3D-FDM. Civ. Eng. J. 2023, 9, 2430–2444. [Google Scholar] [CrossRef]
- Ebid, A.M.; Onyelowe, K.C.; Kontoni, D.-P.N.; Gallardo, A.Q.; Hanandeh, S. Heat and Mass Transfer in Different Concrete Structures: A Study of Self-Compacting Concrete and Geopolymer Concrete. Int. J. Low-Carbon Technol. 2023, 18, 404–411. [Google Scholar] [CrossRef]
- Luikov, A.V. Heat and Mass Transfer in Capillary-Porous Bodies. In Advances in Heat Transfer; Irvine, T.F., Hartnett, J.P., Eds.; Elsevier: Amsterdam, The Netherlands, 1964; Volume 1, pp. 123–184. [Google Scholar]
- Luikov, A.V. Systems of Differential Equations of Heat and Mass Transfer in Capillary-Porous Bodies (Review). Int. J. Heat Mass Transf. 1975, 18, 1–14. [Google Scholar] [CrossRef]
- Harmathy, T.Z. Moisture and Heat Transport With Particular Reference to Concrete. In Proceedings of the Environmental Effects on Concrete, Highway Research Board, Washington, DC, USA, 12–16 January 1970; pp. 5–16. [Google Scholar]
- De Vries, D.A. Simultaneous Transfer of Heat and Moisture in Porous Media. Eos Trans. Am. Geophys. Union 1958, 39, 909–916. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Thonguthai, W. Pore Pressure and Drying of Concrete at High Temperature. J. Eng. Mech. Div. 1978, 104, 1059–1079. [Google Scholar] [CrossRef]
- Gawin, D.; Pesavento, F.; Schrefler, B.A. Modelling of Hygro-Thermal Behaviour of Concrete at High Temperature with Thermo-Chemical and Mechanical Material Degradation. Comput. Methods Appl. Mech. Eng. 2003, 192, 1731–1771. [Google Scholar] [CrossRef]
- Lien, H.-P.; Wittmann, F.H. Coupled Heat and Mass Transfer in Concrete Elements at Elevated Temperatures. Nucl. Eng. Des. 1995, 156, 109–119. [Google Scholar] [CrossRef]
- Davie, C.T.; Pearce, C.J.; Bićanić, N. Coupled Heat and Moisture Transport in Concrete at Elevated Temperatures—Effects of Capillary Pressure and Adsorbed Water. Numer. Heat Transf. Part A Appl. 2006, 49, 733–763. [Google Scholar] [CrossRef]
- Ožbolt, J.; Periški, G.; Reinhardt, H.W. 3D Thermo-Hygro-Mechanical Model for Concrete. In Proceedings of the FraMCoS-6, Catania, Italy, 17–22 June 2007; Taylor & Francis: Abingdon, UK, 2007; pp. 533–539. [Google Scholar]
- Bary, B.; Ranc, G.; Durand, S.; Carpentier, O. A Coupled Thermo-Hydro-Mechanical-Damage Model for Concrete Subjected to Moderate Temperatures. Int. J. Heat Mass Transf. 2008, 51, 2847–2862. [Google Scholar] [CrossRef]
- Burkan Isgor, O.; Razaqpur, A.G. Finite Element Modeling of Coupled Heat Transfer, Moisture Transport and Carbonation Processes in Concrete Structures. Cem. Concr. Compos. 2004, 26, 57–73. [Google Scholar] [CrossRef]
- Kwak, H.-G.; Ha, S.-J.; Kim, J.-K. Non-Structural Cracking in RC Walls: Part I. Finite Element Formulation. Cem. Concr. Res. 2006, 36, 749–760. [Google Scholar] [CrossRef]
- Di Luzio, G.; Cusatis, G. Hygro-Thermo-Chemical Modeling of High Performance Concrete. I: Theory. Cem. Concr. Compos. 2009, 31, 301–308. [Google Scholar] [CrossRef]
- Di Luzio, G.; Cusatis, G. Hygro-Thermo-Chemical Modeling of High-Performance Concrete. II: Numerical Implementation, Calibration, and Validation. Cem. Concr. Compos. 2009, 31, 309–324. [Google Scholar] [CrossRef]
- Aurich, M.; Campos Filho, A.; Bittencourt, T.N.; Shah, S.P. Finite Element Modeling of Concrete Behavior at Early Age. Rev. IBRACON Estrut. Mater. 2009, 2, 37–58. [Google Scholar] [CrossRef]
- Gawin, D. A Numerical Solution of Coupled Heat and Moisture Transfer Problems with Phase Changes in Porous Building Materials. Arch. Civ. Eng. 1993, 39, 393–412. [Google Scholar]
- Gawin, D.; Pesavento, F.; Schrefler, B.A. Hygro-Thermo-Chemo-Mechanical Modelling of Concrete at Early Ages and beyond. Part I: Hydration and Hygro-Thermal Phenomena. Int. J. Numer. Methods Eng. 2006, 67, 299–331. [Google Scholar] [CrossRef]
- de Araújo, J.; Awruch, A.M. Cracking Safety Evaluation on Gravity Concrete Dams during the Construction Phase. Comput. Struct. 1998, 66, 93–104. [Google Scholar] [CrossRef]
- Zreiki, J.; Bouchelaghem, F.; Chaouche, M. Early-Age Behaviour of Concrete in Massive Structures, Experimentation and Modelling. Nucl. Eng. Des. 2010, 240, 2643–2654. [Google Scholar] [CrossRef]
- Chen, B.; Tang, G.; Lu, X.; Xiong, B.; Guan, B.; Tian, B. Thermal Property Evolution and Prediction Model of Early-Age Low-Heat Cement Concrete under Different Curing Temperatures. J. Build. Eng. 2024, 82, 108020. [Google Scholar] [CrossRef]
- Mirković, U.; Kuzmanović, V.; Todorović, G. Influence of Monolith Length on Temperature Field of Concrete Gravity Dams. Appl. Sci. 2024, 14, 3248. [Google Scholar] [CrossRef]
- Sumarno, A.; Prasetyo, A.M.; Sari, D.P.; Maidina; Ngeljaratan, L. Thermal Analysis and Solution of Green Cementitious Composites Model under Constant and Elevated Temperature-a Preliminary Study. AIP Conf. Proc. 2024, 2973, 060002. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, P.; Liu, L.; Huang, J.; Cheng, X.; Chen, Y.; Chen, L.; He, S.; Zhang, N.; Yu, Z. Heat of Hydration Analysis and Temperature Field Distribution Study for Super-Long Mass Concrete. Coatings 2024, 14, 369. [Google Scholar] [CrossRef]
- Yu, H.; Wang, F.; Mao, D.; Chen, J.; Xiong, X.; Song, R.; Liu, J. Temperature Monitoring and Simulation Analysis of the Bottom Orifices of Baihetan Arch Dam When Outflowing. Int. Commun. Heat Mass Transf. 2024, 150, 107200. [Google Scholar] [CrossRef]
- Van Tran, M.; Chau, V.N.; Nguyen, P.H. Prediction and Control of Temperature Rise of Massive Reinforced Concrete Transfer Slab with Embedded Cooling Pipe. Case Stud. Constr. Mater. 2023, 18, e01817. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, F.; Zhao, Z.; Lyu, Z.; Wang, Y.; Zou, P. Early-Hydration Heat and Influencing Factor Analysis of Large-Volume Concrete Box Girder Based on Equivalent Age. Structures 2023, 50, 1699–1713. [Google Scholar] [CrossRef]
- Lajimi, N.; Ben Taher, N.; Boukadida, N. Numerical Simulation of Heat and Mass Transfer of a Wall Containing Micro-Encapsulated Phase Change Concrete (PCC). Front. Environ. Sci. 2023, 10, 973725. [Google Scholar] [CrossRef]
- Wasik, M.; Dereszewski, A.; Łapka, P. Prototype of an Experimental Stand for Investigating Heat and Moisture Transfer Phenomena in Building Materials. J. Phys. Conf. Ser. 2023, 2423, 012010. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Xiao, R.; Yang, J. Multiscale Theoretical Model of Thermal Conductivity of Concrete and the Mesoscale Simulation of Its Temperature Field. J. Mater. Civ. Eng. 2023, 35, 04022359. [Google Scholar] [CrossRef]
- Prskalo, S.; Gfrerer, M.H.; Schanz, M. Multiphasic Model of Early Stage Hydration in Concrete Using the Theory of Porous Media. Proc. Appl. Math. Mech. 2023, 23, e202300220. [Google Scholar] [CrossRef]
- Yin, H.; Cibelli, A.; Brown, S.-A.; Yang, L.; Shen, L.; Alnaggar, M.; Cusatis, G.; Di Luzio, G. Flow Lattice Model for the Simulation of Chemistry Dependent Transport Phenomena in Cementitious Materials. Eur. J. Environ. Civ. Eng. 2023, 28, 1039–1063. [Google Scholar] [CrossRef]
- Rossat, D.; Baroth, J.; Briffaut, M.; Dufour, F.; Monteil, A.; Masson, B.; Michel-Ponnelle, S. Bayesian Inference with Correction of Model Bias for Thermo-Hydro-Mechanical Models of Large Concrete Structures. Eng. Struct. 2023, 278, 115433. [Google Scholar] [CrossRef]
- Lyu, C.; Xu, M.; Lu, X.; Tian, B.; Chen, B.; Xiong, B.; Cheng, B. Research on Thermal- Humidity -Force Coupling Characteristics of Mass Concrete Structures under Temperature Control. Constr. Build. Mater. 2023, 398, 132540. [Google Scholar] [CrossRef]
- Li, X.; Yu, Z.; Chen, K.; Deng, C.; Yu, F. Investigation of Temperature Development and Cracking Control Strategies of Mass Concrete: A Field Monitoring Case Study. Case Stud. Constr. Mater. 2023, 18, e02144. [Google Scholar] [CrossRef]
- Meghwar, S.L.; Pilakoutas, K.; Torelli, G.; Guadagnini, M. Numerical Determination of Moisture Diffusivity in Concrete. KSCE J. Civ. Eng. 2022, 26, 3932–3944. [Google Scholar] [CrossRef]
- Alper Yikici, T.; Sezer, H.; Chen, H.-L. Modeling Thermal Behavior of Mass Concrete Structures at Early Age. Transp. Res. Rec. 2022, 2676, 536–548. [Google Scholar] [CrossRef]
- Cheng, P.; Zhu, H.; Zhang, Y.; Jiao, Y.; Fish, J. Coupled Thermo-Hydro-Mechanical-Phase Field Modeling for Fire-Induced Spalling in Concrete. Comput. Methods Appl. Mech. Eng. 2022, 389, 114327. [Google Scholar] [CrossRef]
- Bondareva, N.S.; Sheremet, M.A. Heat Transfer Performance in a Concrete Block Containing a Phase Change Material for Thermal Comfort in Buildings. Energy Build. 2022, 256, 111715. [Google Scholar] [CrossRef]
- Mostafavi, S.A.; Joneidi, Z. Thermal Model of Precast Concrete Curing Process: Minimizing Energy Consumption. Math. Comput. Simul. 2022, 191, 82–94. [Google Scholar] [CrossRef]
- Zhang, Z.; Angst, U.M. Effects of Model Boundary Conditions on Simulated Drying Kinetics and Inversely Determined Liquid Water Permeability for Cement-Based Materials. Dry. Technol. 2022, 40, 2741–2758. [Google Scholar] [CrossRef]
- Smolana, A.; Klemczak, B.; Azenha, M.; Schlicke, D. Thermo-Mechanical Analysis of Mass Concrete Foundation Slabs at Early Age—Essential Aspects and Experiences from the FE Modelling. Materials 2022, 15, 1815. [Google Scholar] [CrossRef] [PubMed]
- Kuryłowicz-Cudowska, A.; Wilde, K. FEM and Experimental Investigations of Concrete Temperature Field in the Massive Stemwall of the Bridge Abutment. Constr. Build. Mater. 2022, 347, 128565. [Google Scholar] [CrossRef]
- Chiniforush, A.A.; Gharehchaei, M.; Akbar Nezhad, A.; Castel, A.; Moghaddam, F.; Keyte, L.; Hocking, D.; Foster, S. Minimising Risk of Early-Age Thermal Cracking and Delayed Ettringite Formation in Concrete—A Hybrid Numerical Simulation and Genetic Algorithm Mix Optimisation Approach. Constr. Build. Mater. 2021, 299, 124280. [Google Scholar] [CrossRef]
- You, W.; Liu, X.; Shang, H.; Yang, G. Evolution of Temperature, Humidity and Deformation in Early-Age Cement-Based Materials Based on a Multi-Field Model. Constr. Build. Mater. 2021, 290, 123277. [Google Scholar] [CrossRef]
- Azenha, M.; Kanavaris, F.; Schlicke, D.; Jędrzejewska, A.; Benboudjema, F.; Honorio, T.; Šmilauer, V.; Serra, C.; Forth, J.; Riding, K.; et al. Recommendations of RILEM TC 287-CCS: Thermo-Chemo-Mechanical Modelling of Massive Concrete Structures towards Cracking Risk Assessment. Mater. Struct. 2021, 54, 135. [Google Scholar] [CrossRef]
- Pohl, C.; Šmilauer, V.; Unger, J.F. A Three-Phase Transport Model for High-Temperature Concrete Simulations Validated with X-Ray CT Data. Materials 2021, 14, 5047. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, Y.; Liu, J.; Zhang, N. Thermo-Mechanical Behavior Simulation and Cracking Risk Evaluation on Steel-Concrete Composite Girders during Hydration Process. Structures 2021, 33, 3912–3928. [Google Scholar] [CrossRef]
- Kanavaris, F.; Ferreira, C.; Sousa, C.; Azenha, M. Thermo-Chemo-Hygro-Mechanical Simulation of the Restrained Shrinkage Ring Test for Cement-Based Materials under Distinct Drying Conditions. Constr. Build. Mater. 2021, 294, 123600. [Google Scholar] [CrossRef]
- Gawin, D.; Pesavento, F.; Schrefler, B.A. Hygro-Thermo-Chemo-Mechanical Modelling of Concrete at Early Ages and beyond. Part II: Shrinkage and Creep of Concrete. Int. J. Numer. Meth. Engng 2006, 67, 332–363. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, X.; Ballarini, R. A Multifield Model for Early-Age Massive Concrete Structures: Hydration, Damage, and Creep. J. Eng. Mech. 2020, 146, 04020115. [Google Scholar] [CrossRef]
- De Schutter, G.; Vuylsteke, M. Minimisation of Early Age Thermal Cracking in a J-Shaped Non-Reinforced Massive Concrete Quay Wall. Eng. Struct. 2004, 26, 801–808. [Google Scholar] [CrossRef]
- Faria, R.; Azenha, M.; Figueiras, J.A. Modelling of Concrete at Early Ages: Application to an Externally Restrained Slab. Cem. Concr. Compos. 2006, 28, 572–585. [Google Scholar] [CrossRef]
- Benboudjema, F.; Torrenti, J.M. Early-Age Behaviour of Concrete Nuclear Containments. Nucl. Eng. Des. 2008, 238, 2495–2506. [Google Scholar] [CrossRef]
- Buffo-Lacarrière, L.; Sellier, A.; Kolani, B. Application of Thermo-Hydro-Chemo-Mechanical Model for Early Age Behaviour of Concrete to Experimental Massive Reinforced Structures with Strain–Restraining System. Eur. J. Environ. Civ. Eng. 2014, 18, 814–827. [Google Scholar] [CrossRef]
- Klemczak, B.; Knoppik-Wróbel, A. Reinforced Concrete Tank Walls and Bridge Abutments: Early-Age Behaviour, Analytic Approaches and Numerical Models. Eng. Struct. 2015, 84, 233–251. [Google Scholar] [CrossRef]
- Bouhjiti, D.E.-M.; Boucher, M.; Briffaut, M.; Dufour, F.; Baroth, J.; Masson, B. Accounting for Realistic Thermo-Hydro-Mechanical Boundary Conditions Whilst Modeling the Ageing of Concrete in Nuclear Containment Buildings: Model Validation and Sensitivity Analysis. Eng. Struct. 2018, 166, 314–338. [Google Scholar] [CrossRef]
- Li, S.; Yang, Y.; Pu, Q.; Wen, W.; Yan, A. Thermo-Hydro-Mechanical Combined Effect Analysis Model for Early-Age Concrete Bridges and Its Application. Adv. Civ. Eng. 2020, 2020, e8864109. [Google Scholar] [CrossRef]
- Zhao, H.; Jiang, K.; Yang, R.; Tang, Y.; Liu, J. Experimental and Theoretical Analysis on Coupled Effect of Hydration, Temperature and Humidity in Early-Age Cement-Based Materials. Int. J. Heat Mass Transf. 2020, 146, 118784. [Google Scholar] [CrossRef]
- Pomaro, B.; Xotta, G.; Salomoni, V.A.; Majorana, C.E. A Thermo-Hydro-Mechanical Numerical Model for Plain Irradiated Concrete in Nuclear Shielding. Mater. Struct. 2022, 55, 14. [Google Scholar] [CrossRef]
- Fourier, J. Theorie Analytique de La Chaleur; CambridgeCore: Paris, France, 1822. [Google Scholar]
- Fick, A. Ueber Diffusion. Ann. Phys. 1855, 170, 59–86. [Google Scholar] [CrossRef]
- Hirschfeld, K. Die Temperaturverteilung im Beton, 1948th ed.; Springer: Berlin/Heidelberg, Germany, 1948; ISBN 978-3-642-49440-6. [Google Scholar]
- Andreasik, M. Napężenia Termiczno–Skurczowe w Masywach Betonowych. Ph.D. Thesis, Cracow University of Technology, Cracow, Poland, 1982. [Google Scholar]
- Černy, R.; Rovnanikova, P. Transport Processes in Concrete; CRC Press: London, UK, 2014; ISBN 978-0-429-18204-4. [Google Scholar]
- Klemczak, B. Prediction of Coupled Heat and Moisture Transfer in Early-Age Massive Concrete Structures. Numer. Heat Transf. Part A Appl. 2011, 60, 212–233. [Google Scholar] [CrossRef]
- Neville, A.M. Properties of Concrete, 5th ed.; Pearson: Longman, UK, 2011; ISBN 978-0-273-75580-7. [Google Scholar]
- van Breugel, I.K. Artificial Cooling of Hardening Concrete; Delft University of Technology: Delft, The Netherlands, 1980. [Google Scholar]
- Tatro, S.B. Thermal Properties. In Significance of Tests and Properties of Concrete and Concrete-Making Materials; ASTM International: West Conshohocken, PA, USA, 2006. [Google Scholar]
- Hancox, N.L. The Diffusion of Water in Concrete; UKAEA: Winfrith, UK, 1966. [Google Scholar]
- Bažant, Z.P.; Najjar, L.J. Nonlinear Water Diffusion in Nonsaturated Concrete. Mater. Constr. 1972, 5, 3–20. [Google Scholar] [CrossRef]
- Wyrwał, J.; Szczęsny, J. Migracja Wilgoci Wywołana Gradientami Temperatury w Płytach Betonowych Poddanych Obróbce Termicznej. Arch. Civ. Eng. 1989, 35, 421–432. [Google Scholar]
- Rastrup, E. Heat of Hydration in Concrete. Mag. Concr. Res. 1954, 6, 79–92. [Google Scholar] [CrossRef]
- Hansen, P.F.; Pedersen, E.J. Maturity Computer for Controlled Curing and Hardening of Concrete; Nordiska Betongfoerbundet: Stockholm, Sweden, 1977. [Google Scholar]
- Bogue, R.H. The Chemistry of Portland Cement; Reinhold Publishing Corporation: New York, NY, USA, 1955; ISBN 978-0-598-89711-4. [Google Scholar]
- Schindler, A.K.; Folliard, K.J. Heat of Hydration Models for Cementitious Materials. ACI Mater. J. 2005, 102, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Ulm, F.-J.; Coussy, O. Couplings in Early-Age Concrete: From Material Modeling to Structural Design. Int. J. Solids Struct. 1998, 35, 4295–4311. [Google Scholar] [CrossRef]
- Cervera, M.; Oliver, J.; Prato, T. Thermo-Chemo-Mechanical Model for Concrete. I: Hydration and Aging. J. Eng. Mech. 1999, 125, 1018–1027. [Google Scholar] [CrossRef]
- Kang, S.-T.; Kim, J.-S.; Lee, Y.; Park, Y.-D.; Kim, J.-K. Moisture Diffusivity of Early Age Concrete Considering Temperature and Porosity. KSCE J. Civ. Eng. 2012, 16, 179–188. [Google Scholar] [CrossRef]
- Azenha, M.; Sousa, C.; Faria, R.; Neves, A. Thermo–Hygro–Mechanical Modelling of Self-Induced Stresses during the Service Life of RC Structures. Eng. Struct. 2011, 33, 3442–3453. [Google Scholar] [CrossRef]
- Wang, C.; Dilger, W.H. Prediction of Temperature Distribution in Hardening Concrete. In Proceedings of the International RILEM Conference on Thermal Cracking in Concrete at Early Ages, London, UK, 10–12 October 1994; pp. 21–28. [Google Scholar]
- Honorio, T.; Bary, B.; Benboudjema, F. Evaluation of the Contribution of Boundary and Initial Conditions in the Chemo-Thermal Analysis of a Massive Concrete Structure. Eng. Struct. 2014, 80, 173–188. [Google Scholar] [CrossRef]
- Gawin, D.; Majorana, C.E.; Schrefler, B.A. Numerical Analysis of Hygro-Thermal Behaviour and Damage of Concrete at High Temperature. Mech. Cohesive-Frict. Mater. 1999, 4, 37–74. [Google Scholar] [CrossRef]
- Reinhardt, H.; Blaauwendraad, J. Temperature Development in Concrete Structures Taking Account of State Dependent Properties. In Proceedings of the RILEM International Conference on Concrete at Early Ages, Paris, France, 6–8 April 1982; pp. 211–218. [Google Scholar]
- Van Breugel, K. Simulation of Hydration and Formation of Structure in Hardening Cement-Based Materials. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1991. [Google Scholar]
- De Schutter, G.; Taerwe, L. Specific Heat and Thermal Diffusivity of Hardening Concrete. Mag. Concr. Res. 1995, 47, 203–208. [Google Scholar] [CrossRef]
- Briffaut, M.; Benboudjema, F.; Torrenti, J.-M.; Nahas, G. Effects of Early-Age Thermal Behaviour on Damage Risks in Massive Concrete Structures. Eur. J. Environ. Civ. Eng. 2012, 16, 589–605. [Google Scholar] [CrossRef]
- Jendele, L.; Šmilauer, V.; Červenka, J. Multiscale Hydro-Thermo-Mechanical Model for Early-Age and Mature Concrete Structures. Adv. Eng. Softw. 2014, 72, 134–146. [Google Scholar] [CrossRef]
- Bentz, D.P. Transient Plane Source Measurements of the Thermal Properties of Hydrating Cement Pastes. Mater. Struct. 2007, 40, 1073–1080. [Google Scholar] [CrossRef]
- Bohm, H.; Nogales, S. Mori–Tanaka Models for the Thermal Conductivity of Composites with Interfacial Resistance and Particle Size Distributions. Compos. Sci. Technol. 2008, 68, 1181–1187. [Google Scholar] [CrossRef]
- Branco, F.A.; Mendes, P.; Mirambell, E. Heat of Hydration Effects in Concrete Structures. MJ 1992, 89, 139–145. [Google Scholar] [CrossRef]
- Kim, K.-H.; Jeon, S.-E.; Kim, J.-K.; Yang, S. An Experimental Study on Thermal Conductivity of Concrete. Cem. Concr. Res. 2003, 33, 363–371. [Google Scholar] [CrossRef]
- Jonasson, J.E. Modelling of Temperature, Moisture and Stress in Young Concrete. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 1994. [Google Scholar]
- Liu, X.; Jiang, W.; De Schutter, G.; Yuan, Y.; Su, Q. Early-Age Behaviour of Precast Concrete Immersed Tunnel Based on Degree of Hydration Concept. Struct. Concr. 2014, 15, 66–80. [Google Scholar] [CrossRef]
- Smolana, A.; Klemczak, B.; Azenha, M.; Schlicke, D. Experiences and Analysis of the Construction Process of Mass Foundation Slabs Aimed at Reducing the Risk of Early Age Cracks. J. Build. Eng. 2021, 44, 102947. [Google Scholar] [CrossRef]
- Smolana, A.; Klemczak, B.; Azenha, M.; Schlicke, D. Early Age Cracking Risk in a Massive Concrete Foundation Slab: Comparison of Analytical and Numerical Prediction Models with on-Site Measurements. Constr. Build. Mater. 2021, 301, 124135. [Google Scholar] [CrossRef]
- Ayano, T.; Wittmann, F.H. Drying, Moisture Distribution, and Shrinkage of Cement-Based Materials. Mater. Struct. 2002, 35, 134–140. [Google Scholar] [CrossRef]
- Mensi, R.; Acker, P.; Attolou, A. Séchage du béton: Analyse et modélisation. Mater. Struct. 1988, 21, 3–12. [Google Scholar] [CrossRef]
- CEB-FIP. Model Code 2010; Ernst&Sohn: Berlin, Germany, 2013. [Google Scholar]
- Abbasnia, R.; Shekarchi, M.; Ahmadi, J. Evaluation of Concrete Drying Shrinkage Related to Moisture Loss. Mater. J. 2013, 110, 269–278. [Google Scholar] [CrossRef]
- Xi, Y.; Bažant, Z.P.; Molina, L.; Jennings, H.M. Moisture Diffusion in Cementitious Materials. Moisture Capacity and Diffusivity. Adv. Cem. Based Mater. 1994, 1, 258–266. [Google Scholar] [CrossRef]
- EN 1992-1-1; European Standard Eurocode 2—Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings, Bridges and Civil Engineering Structures. CEN: Brussels, Belgium, 2023.
- Nielsen, C.V.; Kaasgaard, M. Activation Energy for the Concrete Maturity Model—Part 1: Compressive Strength Tests at Different Curing Temperatures. Nord. Concr. Res. 2020, 62, 87–106. [Google Scholar] [CrossRef]
- Nielsen, C.V. Activation Energy for the Concrete Maturity Model—Part 2: New Model for Temperature Dependent Ea. Nord. Concr. Res. 2020, 62, 107–124. [Google Scholar] [CrossRef]
- Yuan, Y.; Wan, Z.L. Prediction of Cracking within Early-Age Concrete Due to Thermal, Drying and Creep Behavior. Cem. Concr. Res. 2002, 32, 1053–1059. [Google Scholar] [CrossRef]
- Klemczak, B.; Knoppik-Wróbel, A. Analysis of Early-Age Thermal and Shrinkage Stresses in Reinforced Concrete Walls (with Appendix). SJ 2014, 111, 313–322. [Google Scholar] [CrossRef]
- JCI. Guidelines for Control of Cracking of Mass Concrete 2016; Japan Concrete Institute: Tokyo, Japan, 2017. [Google Scholar]
- Phung, Q.T.; Ferreira, E.; Seetharam, S.; Nguyen, V.T.; Govaerts, J.; Valcke, E. Understanding Hydration Heat of Mortars Containing Supplementary Cementitious Materials with Potential to Immobilize Heavy Metal Containing Waste. Cem. Concr. Compos. 2021, 115, 103859. [Google Scholar] [CrossRef]
- da Silva, W.R.L.; Šmilauer, V. Fuzzy Affinity Hydration Model. J. Intell. Fuzzy Syst. 2015, 28, 127–139. [Google Scholar] [CrossRef]
- Mariak, A.; Chróścielewski, J.; Sabik, A.; Meronk, B.; Wilde, K. Monitoring of Concrete Curing in Extradosed Bridge Supported by Numerical Simulation. Adv. Sci. Technol. Res. J. 2016, 10, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.H.; Ramaswamy, A. Experimental and Numerical Modeling of Creep in Different Types of Concrete. Heliyon 2018, 4, e00698. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.C.; Huynh, T.P.; Tang, V.L. Prevention of Crack Formation in Massive Concrete at an Early Age by Cooling Pipe System. Asian J. Civ. Eng. 2019, 20, 1101–1107. [Google Scholar] [CrossRef]
- Tiwari, A.; Deo, S. Pulsatile Flow in a Cylindrical Tube with Porous Walls: Applications to Blood Flow. J. Porous Media 2013, 16, 335–340. [Google Scholar] [CrossRef]
- Mishra, S.C.; Lankadasu, A.; Beronov, K.N. Application of the Lattice Boltzmann Method for Solving the Energy Equation of a 2-D Transient Conduction–Radiation Problem. Int. J. Heat Mass Transf. 2005, 48, 3648–3659. [Google Scholar] [CrossRef]
- Rangel, R.L.; Cornejo, A.; Oñate, E.; Franci, A. Efficient Discrete Element Modeling of Heat Generation and Transfer in Granular Flows: Validation and Application. Powder Technol. 2024, 439, 119719. [Google Scholar] [CrossRef]
- Krzaczek, M.; Nitka, M.; Tejchman, J. A Novel DEM-Based Pore-Scale Thermal-Hydro-Mechanical Model for Fractured Non-Saturated Porous Materials. Acta Geotech. 2023, 18, 2487–2512. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method: Volume 1: The Basis; 5. Aufl.; Butterworth-Heinemann: Oxford, UK, 2002; ISBN 978-0-7506-5049-6. [Google Scholar]
- Ambethkar, V.; Srivastava, M.K. Numerical Solutions of a Steady 2-D Incompressible Flow in a Rectangular Domain with Wall Slip Boundary Conditions Using the Finite Volume Method. J. Appl. Math. Comput. Mech. 2017, 16, 5–16. [Google Scholar] [CrossRef]
- Červenka, V.; Jendele, L.; Červenka, J. ATENA Program Documentation Part 1—Theory; Cervenka Consulting Ltd.: Prague, Czech Republic, 2011. [Google Scholar]
- Knoppik-Wróbel, A.; Klemczak, B. Degree of Restraint Concept in Analysis of Early-Age Stresses in Concrete Walls. Eng. Struct. 2015, 102, 369–386. [Google Scholar] [CrossRef]
- Azenha, M.; Faria, R.; Figueiras, H. Thermography as a Technique for Monitoring Early Age Temperatures of Hardening Concrete. Constr. Build. Mater. 2011, 25, 4232–4240. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Beweja, S. Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures—Model B3. Mater. Struct. 1995, 28, 357–365. [Google Scholar]
- Azenha, M.; Leitão, L.; Granja, J.L.; De Sousa, C.; Faria, R.; Barros, J.A.O. Experimental Validation of a Framework for Hygro-Mechanical Simulation of Self-Induced Stresses in Concrete. Cem. Concr. Compos. 2017, 80, 41–54. [Google Scholar] [CrossRef]
- De Schutter, G. Degree of Hydration Concept for Early Age Concrete Using DIANA. In Proceedings of the Finite Elements in Civil Engineering Applications: Proceedings of the third DIANA World Conference, Tokyo, Japan, 9–11 October 2002; Hendriks, M.A.N., Rots, J.A., Eds.; A.A. Balkema Publishers: Cape Town, South Africa, 2002; pp. 523–526. [Google Scholar]
- De Schutter, G. Degree of Hydration Based Kelvin Model for the Basic Creep of Early Age Concrete. Mater. Struct. 1999, 32, 260–265. [Google Scholar] [CrossRef]
- Lawrence, A. A Finite Element Model for the Prediction of Thermal Stresses in Mass Concrete. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2009. [Google Scholar]
- Diaz, F.; Johansson, R. Early-Age Thermal Cracking in Concrete. A FE-Modelling Approach. Master’s Thesis in the Master’s Programme in Structural Engineering and Building Technology. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2016. [Google Scholar]
- MIDAS Information Technology Co., Ltd. Midas Civil On-Line Manual—Civil Structure Design System. Available online: https://manual.midasuser.com/EN_Common/Civil/945/index.htm (accessed on 30 March 2024).
- Seo, Y. Heat of Hydration Analysis. Available online: https://www.midasstructure.com/blog/en/blog/heat-of-hydration-analysis (accessed on 19 April 2024).
- Huang, Y.; Liu, G.; Huang, S.; Rao, R.; Hu, C. Experimental and Finite Element Investigations on the Temperature Field of a Massive Bridge Pier Caused by the Hydration Heat of Concrete. Constr. Build. Mater. 2018, 192, 240–252. [Google Scholar] [CrossRef]
- Zuo, Y.; Wu, Y. Measurement and Analysis of Hydration Heat for Long-Span PC Box Girder Bridge. In Proceedings of the 2022 IEEE International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Hengyang, China, 26–27 March 2022; pp. 1168–1173. [Google Scholar]
- SIMULIA User Assistance 2024. Available online: https://help.3ds.com/2024/English/DSSIMULIA_Established/SIMACAEANLRefMap/simaanl-c-heattransfer.htm?contextscope=all (accessed on 19 April 2024).
- Piekarska, W.; Kubiak, M.; Saternus, Z. Application of Abaqus to Analysis of the Temperature Field in Elements Heated by Moving Heat Sources. Arch. Foundry Eng. 2010, 10, 177–182. [Google Scholar]
- Krysl, P. Finite Element Modeling with Abaqus and Python for Thermal and Stress Analysis; Pressure Cooker Press: San Diego, CA, USA, 2017. [Google Scholar]
- Sheng, X.; Xiao, S.; Zheng, W.; Sun, H.; Yang, Y.; Ma, K. Experimental and Finite Element Investigations on Hydration Heat and Early Cracks in Massive Concrete Piers. Case Stud. Constr. Mater. 2023, 18, e01926. [Google Scholar] [CrossRef]
- De Amorim Coelho, N.; Pedroso, L.J.; Da Silva Rêgo, J.H.; Nepomuceno, A.A. Use of ANSYS for Thermal Analysis in Mass Concrete. J. Civ. Eng. Archit. 2014, 8, 860–868. [Google Scholar] [CrossRef]
- Mardmomen, S.; Chen, H.-L. Prediction of the Early Age Thermal Behavior of Mass Concrete Containing SCMs Using ANSYS. J. Therm. Anal. Calorim. 2023, 148, 7899–7917. [Google Scholar] [CrossRef]
- Zhang, P.; Xiong, H.; Wang, R. Measurements and Numerical Simulations for Cast Temperature Field and Early-Age Thermal Stress in Zero Blocks of High-Strength Concrete Box Girders. Adv. Mech. Eng. 2022, 14, 168781322210915. [Google Scholar] [CrossRef]
- Hefni Abdel Aziz, Y.; Abdel Zaher, Y. Predicting Thermal Properties and Temperature Rise in Geopolymer Concrete Structures. Ain Shams Eng. J. 2024, 15, 102704. [Google Scholar] [CrossRef]
- Tahersima, M.; Tikalsky, P. Finite Element Modeling of Hydration Heat in a Concrete Slab-on-Grade Floor with Limestone Blended Cement. Constr. Build. Mater. 2017, 154, 44–50. [Google Scholar] [CrossRef]
- Kurian, T. Numerical Analysis of Temperature Distribution across the Cross Section of a Concrete Dam during Early Ages. In Proceedings of the Recent Advances in Structural Engineering, RASE2013, Kochi, India, 13–15 December 2013. [Google Scholar]
- Tasri, A.; Susilawati, A. Effect of Cooling Water Temperature and Space between Cooling Pipes of Post-Cooling System on Temperature and Thermal Stress in Mass Concrete. J. Build. Eng. 2019, 24, 100731. [Google Scholar] [CrossRef]
- Assad, M.; Hawileh, R.A.; Abdalla, J.A.; Abed, F. Heat Transfer Analysis of Reinforced Concrete Walls in ANSYS and ABAQUS: A Comparative Study. In Proceedings of the 2022 IEEE Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 21 February 2022; pp. 1–5. [Google Scholar]
- ConTech Analysis ApS. B4cast Software for Simulation of Temperatures & Stresses in Hardening Concrete, ConTech Analysis ApS: Lillerød, Denmark.
- Kang, Q.; Ding, J.-T.; Bai, Y.; Chen, B. A Simulation Analysis Method for Crack Resistance of Hydraulic Concrete Based on Temperature-Stress Test. Adv. Mater. Res. 2011, 391–392, 100–106. [Google Scholar] [CrossRef]
- Machado, A.M.L.; Babadopulos, L.F.d.A.L.; Cabral, A.E.B. Casting Plan for a Mass Concrete Foundation of a High-Rise Building for Avoiding DEF and Shrinkage Cracking. J. Build. Rehabil. 2023, 8, 49. [Google Scholar] [CrossRef]
- Cervenka, V.; Cervenka, J.; Jendele, L.; Smilauer, V. ATENA Simulation of Crack Propagation in CONCRACK Benchmark. Eur. J. Environ. Civ. Eng. 2014, 18, 828–844. [Google Scholar] [CrossRef]
- Cervenka, J.; Cervenka, V.; Smilauer, V. Modelling of Crack Development in Young Concrete; International Association of Fracture Mechanics forConcrete and Concrete Structures: Toledo, Spain, 2013. [Google Scholar]
Year | Chosen Studies Related to the Subject of Heat and Mass Transfer in Cement-Based Materials | General Scope of the Article |
---|---|---|
2024 | Chen B. et al. [34] | thermal analysis/thermal property prediction model based on the experiments, hydration kinetics, and composite material equivalence theory |
Mirković U. et al. [35] | thermal analysis/FEM/Lusas Academic software (Available online: https://www.lusas.com (accessed on 1 March 2022))/validation | |
Zhang J. et al. [12] | fully coupled hygro-thermo-mechanical model/FEM/validation | |
Sumarno A. et al. [36] | thermal analysis/2D model | |
Zhang S. et al. [37] | thermal fields/numerical simulation/ABAQUS 2021/validation | |
Yu H. et al. [38] | thermal fields/numerical simulation/validation | |
2023 | Mansour D. et al. [13] | thermal analysis/3D-finite difference model/MS Excel |
Van Tran M. et al. [39] | thermal analysis/numerical simulation/Ansys Fluent software/validation | |
Cai Y. et al. [40] | thermal field/3D-FEM simulation/ABAQUS/validation | |
Lajimi N. et al. [41] | hygro-thermal analysis/numerical simulation/DIGITAL Visual FORTRAN 95 | |
Ebid A. M. et al. [14] | State of the art on heat and mass transfer in self-compacting concrete and geopolymer concrete | |
Wasik M. et al. [42] | the prototype of the experimental stand for heat and moisture transfer investigation in building materials | |
Zhu J. et al. [43] | temperature field analysis/mesoscale simulation | |
Prskalo S. et al. [44] | multi-field model/finite element code PANDAS | |
Yin H. et al. [45] | multi-field model/3D flow lattice model (FLM) | |
Rossat D. et al. [46] | thermo-hydro-mechanical model/FE simulation/validation | |
Lyu C. et al. [47] | thermo-hydro-force coupling model/FE simulation/COMSOL Multiphysics/validation | |
Li X. et al. [48] | thermal analysis/FEM/Midas FEA software/validation | |
Meghwar S. L. et al. [49] | moisture diffusion/FE simulation/validation | |
2022 | Yikici A. et al. [50] | thermal analysis/3D numerical model/finite volume method (FVM)/MATLAB/validation |
Cheng P. et al. [51] | coupled thermo-hydro-mechanical–phase field/2D numerical simulation/Fortran/The Intel® oneAPI Math Kernel Library PARDISO | |
Bondareva et al. [52] | mathematical model of the unsteady coupled heat and mass transfer in concrete containing PCM/validation | |
Mostafavi S.A. et al. [53] | thermal model/MATLAB | |
Zhang Z. et al. [54] | moisture transport/2D computational fluid dynamics (CFDs) model | |
Smolana A. et al. [55] | thermo-mechanical analysis/FEM simulation/DIANA FEA 10.2/validation | |
Kuryłowicz-Cudowska A. et al. [56] | 1D finite difference (FD) method/MATLAB/2D-FEM/GiD software/validation | |
2021 | Chiniforush A.A. et al. [57] | coupled 3D thermal–mechanical numerical analysis/MATLAB/COMSOL ABAQUS 6.14 Multiphysics numerical platform/validation |
You W. et al. [58] | multi-field coupling model/3D-FEM simulation | |
Azenha M. et al. [59] | recommendations/state of the art regarding modeling the thermo-chemo-mechanical behavior of massive concrete structures | |
Pohl C. et al. [60] | three-phase transport model/X-ray computer tomography/validation | |
Zhang Z. et al. [61] | thermo-mechanical analysis/3D-FEM simulation/ABAQUS/validation | |
Kanavaris F. et al. [62] | thermo-chemo-hygro-mechanical (TCHM) simulation/MATLAB/DIANA FEA |
Possible Modeling Strategies | Advantages and Scope of Use | Disadvantages and Limitations |
---|---|---|
I. Multi-phase models | Enables accounting for heat and moisture transport intricacies in concrete—a porous medium. Suitable for fundamental research and modeling of laboratory-scale experiments. | Analysis is typically confined to 1-dimensional analysis due to model complexity and numerous associated parameters, necessitating auxiliary testing for determining relevant coefficient values. |
II. Phenomenological models | Simplifying concrete as a homogeneous solid material facilitates its application in modeling heat and mass transfer for large-scale elements and structures. This approach enables 2- and 3-dimensional analyses with a balanced trade-off between computational effort and result accuracy. | Fails to consider all phenomena associated with the porous nature of concrete, particularly concerning the multidimensionality of the moisture diffusion process. |
II.1 Thermal analysis only | Suitable for analyzing massive concrete structures where thermal strains induced by hydration heat are predominant, with drying effects being negligible. | Does not accommodate moisture analysis. |
II.2 Moisture analysis only | Suitable for analyzing thin-walled or small-section elements where drying effects are predominant and hydration heat effects are negligible. | Does not facilitate thermal analysis, including variations in ambient temperature. |
II.3a Uncoupled thermal and moisture analysis | Suitable for the general-purpose analysis of semi-massive concrete structures, accounting for significant variations in both temperature and moisture. | Does not consider the mutual influence of temperature on moisture diffusion or humidity on temperature transfer in the analyzed element. |
II.3b Partially coupled thermal and moisture analysis | Typically, the impact of temperature on moisture diffusion is accounted for, enabling a more realistic modeling of moisture transfer within the analyzed element. | The modeling complexity increases due to both the higher number of model parameters and the numerical solution of coupled equations. |
II.3c Fully coupled thermal and moisture analysis | Enables realistic modeling of both heat and mass transfer in concrete elements. | Among all phenomenological approaches, this method poses the greatest computational challenge due to the multitude of parameters and the numerical solution of interdependent heat and mass transfer equations. |
Publication [Author, Year] | Major Development/Milestone |
---|---|
Fourier, 1822 [74] | Formulation of the law for heat transfer. |
Fick, 1855 [75] | Formulation of the second law of moisture diffusion. |
De Vries, 1958 [18] Luikov, 1964 [15] Harmathy, 1970 [17] | Formulation of equations for heat and mass transfer in porous materials. |
Hirschfeld, 1948 [76] De Vries, 1958 [18] Luikov, 1964 [15] Harmathy, 1970 [17] | Formulation of heat equation with source function from hydration heat for hardening concrete. |
De Vries, 1958 [18] Luikov, 1964 [15] Harmathy, 1970 [17] | Formulation of the equation for moisture diffusion with sink function due to bounding of water during hydration. |
Bažant and Thounguthai, 1978 [19] | Partial coupling of heat and moisture diffusion—definition of the moisture diffusion coefficient as dependent on temperature. |
Andreasik, 1982 [77] | Partial coupling of heat and moisture diffusion—definition of the thermal diffusion coefficient as dependent on humidity. |
Černy and Rovnanikova, 2002 [78] Klemczak, 2011 [79] | Full coupling of thermal and moisture diffusion equations. |
Neville, 1963 [80] | Definition of the thermal diffusion coefficient of hardening concrete as dependent on the degree of hydration, moisture content, and temperature. |
Van Breugel, 1980 [81] | Definition of thermal conductivity of concrete as independent of the temperature for typical temperature ranges during operation. |
Gawin et al., 2006 [31] | Definition of thermal conductivity of concrete as dependent on the moisture content. |
Tatro, 2006 [82] | Definition of the specific heat of concrete as dependent on the temperature. |
Hancox, 1966 [83] Bažant and Najjar, 1972 [84] | Definition of the moisture diffusion coefficient as dependent on the moisture content. |
Gawin, 1993 [30] | Definition of the coefficient for partial coupling of thermal diffusion with moisture content. |
Wyrwał and Szczęsny, 1989 [85] | Definition of the coefficient for partial coupling of moisture diffusion with temperature. |
Faria et al., 2006 [66] | Definition of the combined convection–radiation coefficient of heat exchange. |
Rastrup, 1954 [86] Hansen and Pedersen, 1977 [87] | Formulation of the equivalent age concept for hardening concrete and Arrhenius-based equation of the equivalent age dependent on the activation energy. |
Bogue, 1955 [88] | Definition of the formula for calculation of the cumulative hydration heat of Portland cement-based concrete. |
Schindler and Folliard, 2005 [89] | Definition of the formula for calculation of the cumulative hydration heat of mixed-binder concrete. |
Ulm and Coussy, 1998 [90] | Definition of the Arrhenius-based affinity law for hardening concrete. |
Cervera et al., 1999 [91] | Proposals for the normalized affinity function. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klemczak, B.; Smolana, A.; Jędrzejewska, A. Modeling of Heat and Mass Transfer in Cement-Based Materials during Cement Hydration—A Review. Energies 2024, 17, 2513. https://doi.org/10.3390/en17112513
Klemczak B, Smolana A, Jędrzejewska A. Modeling of Heat and Mass Transfer in Cement-Based Materials during Cement Hydration—A Review. Energies. 2024; 17(11):2513. https://doi.org/10.3390/en17112513
Chicago/Turabian StyleKlemczak, Barbara, Aneta Smolana, and Agnieszka Jędrzejewska. 2024. "Modeling of Heat and Mass Transfer in Cement-Based Materials during Cement Hydration—A Review" Energies 17, no. 11: 2513. https://doi.org/10.3390/en17112513
APA StyleKlemczak, B., Smolana, A., & Jędrzejewska, A. (2024). Modeling of Heat and Mass Transfer in Cement-Based Materials during Cement Hydration—A Review. Energies, 17(11), 2513. https://doi.org/10.3390/en17112513