Energy Load Forecasting Techniques in Smart Grids: A Cross-Country Comparative Analysis
Abstract
:1. Introduction
2. Related Research
- To present a work that provides an extensive comparison between all load forecasting techniques based on artificial intelligence, and highlights the models used in the load forecasting field, in order to guide the readers and facilitate the process of selecting the most appropriate models concerning load forecasting. All the algorithms were implemented by the authors in order to ensure a fair comparison. As far as the authors know, this has not been offered by previous works.
- Evaluation of various AI techniques for load forecasting including Statistical models, Machine learning, Deep Learning, and hybrid models on three cases of data from three countries: USA, Spain, and Germany. In order to identify the best-performing and most appropriate models for various data structures, this was done taking into account the same parameters as the pre-processing techniques, such as sampling.
- Analysis of the effect of some parameters, such as weather variables, temperature, and energy generation characteristics, on the performance of the models to forecast the output.
- Evaluation of the impact of applying data augmentation based on Generative Adversarial Networks (GANs) on the performance of load forecasting models.
3. Load Forecasting Techniques: Background and State of the Art
3.1. Statistical Methods
3.2. Machine Learning Techniques
3.3. Deep Learning Techniques
3.4. Hybrid Techniques
3.5. Analysis and Synthesis
4. Load Forecasting Process
4.1. Data Gathering
4.2. Data Pre-Processing
4.3. Model Building
4.4. Model Optimization
4.5. Model Evaluation
5. Data Augmentation with Generative Adversarial Networks
6. A Comparative Assessment of Various Load Forecasting Techniques: Results and Discussion
6.1. Results
6.1.1. Use Case 1 (Germany Dataset)
6.1.2. Use Case 2 (USA Dataset)
6.1.3. Use Case 3 (Spain Dataset)
6.2. Discussion
6.2.1. Challenges and Future Trends
- Deep Reinforcement learning
- Split Learning and Federated Learning
- Transfer Learning
- Collective intelligence
6.2.2. Open Research Questions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SG | Smart Grid |
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
ARIMA | AutoRegressive Integrated Moving Average |
ARIMAX | Autoregressive Integrated Moving Average with Explanatory Variable |
CNN | Convolutional Neural Network |
DL | Deep Learning |
DRL | Deep Reinforcement Learning |
DT | Decision Tree |
DNN | Deep Neural Network |
GAN | Generative Adversarial Network |
GRU | Gated Recurrent Unit |
KNN | K-Nearest Neighbors |
LR | Linear Regression |
LSTM | Long Short-Term Memory |
MAE | Mean Absolute Error |
ML | Machine Learning |
MLP | Multi-Layer Perceptron |
MLSE | Maximum Likelihood Sequence Estimation |
MSE | Mean Square Error |
RF | Random Forest |
RL | Reinforcement Learning |
RNN | Recurrent Neural Network |
SVM | Support Vector Machine |
SVR | Support Vector Regressor |
RMSE | Root Mean Square Error |
TimeGAN | Time-series Generative Adversarial Network |
References
- Al Mamun, A.; Sohel, M.; Mohammad, N.; Sunny, S.H.; Dipta, D.R.; Hossain, E. A Comprehensive Review of the Load Forecasting Techniques Using Single and Hybrid Predictive Models. IEEE Access 2020, 8, 134911–134939. [Google Scholar] [CrossRef]
- Pham, Q.V.; Liyanage, M.; Deepa, N.; VVSS, M.; Reddy, S.; Maddikunta, P.K.R.; Khare, N.; Gadekallu, T.R.; Hwang, W.J. Deep Learning for Intelligent Demand Response and Smart Grids: A Comprehensive Survey. arXiv 2021, arXiv:2101.08013. [Google Scholar]
- Aslam, S.; Herodotou, H.; Mohsin, S.M.; Javaid, N.; Ashraf, N.; Aslam, S. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renew. Sustain. Energy Rev. 2021, 144, 110992. Available online: https://www.sciencedirect.com/science/article/pii/S1364032121002847 (accessed on 5 August 2023). [CrossRef]
- Omitaomu, O.A.; Niu, H. Artificial Intelligence Techniques in Smart Grid: A Survey. Smart Cities 2021, 4, 548–568. [Google Scholar] [CrossRef]
- Mhlanga, D. Artificial Intelligence and Machine Learning for Energy Consumption and Production in Emerging Markets: A Review. Energies 2023, 16, 745. Available online: https://www.mdpi.com/1996-1073/16/2/745 (accessed on 8 August 2023). [CrossRef]
- Pérez-Gomariz, M.; López-Gómez, A.; Cerdán-Cartagena, F. Artificial Neural Networks as Artificial Intelligence Technique for Energy Saving in Refrigeration Systems—A Review. Clean Technol. 2023, 5, 116–136. [Google Scholar] [CrossRef]
- Olabi, A.; Abdelghafar, A.A.; Maghrabie, H.M.; Sayed, E.T.; Rezk, H.; Al Radi, M.; Obaideen, K.; Abdelkareem, M.A. Application of artificial intelligence for prediction, optimization, and control of thermal energy storage systems. Therm. Sci. Eng. Prog. 2023, 39, 101730. [Google Scholar] [CrossRef]
- Shabbir, N.; Kütt, L.; Raja, H.A.; Ahmadiahangar, R.; Rosin, A.; Husev, O. Machine Learning and Deep Learning Techniques for Residential Load Forecasting: A Comparative Analysis. In Proceedings of the 2021 IEEE 62nd International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 15–17 November 2021; Available online: https://ieeexplore.ieee.org/abstract/document/9711741 (accessed on 10 August 2023).
- Khotsriwong, N.; Boonraksa, P.; Sarapan, W.; Boonraksa, T.; Boonrakchat, N.; Marungsri, B. Short-term Load Demand Forecasting using Supervised Deep Learning Techniques: A Case Study of Suranaree University of Technology. In Proceedings of the 2023 International Electrical Engineering Congress (iEECON); 2023; pp. 417–420. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, S.; Sun, S. A Deep Learning model for day-ahead load forecasting taking advantage of expert knowledge. In Proceedings of the 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 28–30 May 2021; pp. 1–5. [Google Scholar]
- Unlu, A.; Peña, P.; Wang, Z. Comparison of the Combined Deep Learning Methods for Load Forecasting. In Proceedings of the 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16–19 January 2023; Available online: https://ieeexplore.ieee.org/abstract/document/10066449 (accessed on 16 August 2023).
- Xuan, Y.; Si, W.; Zhu, J.; Sun, Z.; Zhao, J.; Xu, M.; Xu, S. Multi-Model Fusion Short-Term Load Forecasting Based on Random Forest Feature Selection and Hybrid Neural Network. IEEE Access 2021, 9, 69002–69009. Available online: https://ieeexplore.ieee.org/abstract/document/9321361 (accessed on 20 August 2023). [CrossRef]
- Wangdi, K.; Singhasivanon, P.; Silawan, T.; Lawpoolsri, S.; White, N.J.; Kaewkungwal, J. Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: A case study in endemic districts of Bhutan. Malar. J. 2010, 9, 251. Available online: https://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-9-251 (accessed on 22 August 2023). [CrossRef]
- Ediger, V.Ş.; Akar, S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007, 35, 1701–1708. [Google Scholar] [CrossRef]
- Fattah, J.; Ezzine, L.; Aman, Z.; Moussami, H.E.; Lachhab, A. Forecasting of demand using ARIMA model. Int. J. Eng. Bus. Manag. 2018, 10, 184797901880867. [Google Scholar] [CrossRef]
- Ma, Z.; Ye, C.; Li, H.; Ma, W. Applying support vector machines to predict building energy consumption in China. Energy Procedia 2018, 152, 780–786. Available online: https://www.sciencedirect.com/science/article/pii/S1876610218307902 (accessed on 24 August 2023). [CrossRef]
- Fan, G.-F.; Guo, Y.-H.; Zheng, J.-M.; Hong, W.-C. Application of the Weighted K-Nearest Neighbor Algorithm for Short-Term Load Forecasting. Energies 2019, 12, 916. [Google Scholar] [CrossRef]
- Atanasovski, M.; Kostov, M.; Arapinoski, B.; Spirovski, M. K-Nearest Neighbor Regression for Forecasting Electricity Demand. In Proceedings of the 2020 55th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST), Nis, Serbia, 10–12 September 2020; Available online: https://ieeexplore.ieee.org/abstract/document/9232768 (accessed on 27 August 2023).
- Hubana, T.; Šemić, E.; Laković, N. Machine Learning Based Electrical Load Forecasting Using Decision Tree Algorithms. In Advanced Technologies, Systems, and Applications V; IAT 2020. Lecture Notes in Networks and Systems; Avdaković, S., Volić, I., Mujčić, A., Uzunović, T., Mujezinović, A., Eds.; Springer: Cham, Switzerland, 2020; Volume 142. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, S.; Chen, X.; Zeng, X.; Kong, Y.; Chen, J.; Guo, Y.; Wang, T. Short-term load forecasting of industrial customers based on SVMD and XGBoost. Int. J. Electr. Power Energy Syst. 2021, 129, 106830. [Google Scholar] [CrossRef]
- Lu, Y.-S.; Lai, K.-Y. Deep-Learning-Based Power Generation Forecasting of Thermal Energy Conversion. Entropy 2020, 22, 1161. [Google Scholar] [CrossRef]
- Amarasinghe, K.; Marino, D.L.; Manic, M. Deep neural networks for energy load forecasting. In Proceedings of the 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 19–21 June 2017; pp. 1483–1488. [Google Scholar] [CrossRef]
- Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network. IEEE Trans. Smart Grid 2019, 10, 841–851. [Google Scholar] [CrossRef]
- Dong, M.; Grumbach, L. A Hybrid Distribution Feeder Long-Term Load Forecasting Method Based on Sequence Prediction. IEEE Trans. Smart Grid 2020, 11, 470–482. [Google Scholar] [CrossRef]
- Syed, D.; Abu-Rub, H.; Ghrayeb, A.; Refaat, S.S.; Houchati, M.; Bouhali, O.; Banales, S. Deep Learning-Based Short-Term Load Forecasting Approach in Smart Grid with Clustering and Consumption Pattern Recognition. IEEE Access 2021, 9, 54992–55008. [Google Scholar] [CrossRef]
- Zor, K.; Buluş, K. A benchmark of GRU and LSTM networks for short-term electric load forecasting. In Proceedings of the 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), Zallaq, Bahrain, 29–30 September 2021; pp. 598–602. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, Y.-M.; Li, D.; Tan, Z.; Zhou, J. Short term electricity load forecasting using a hybrid model. Energy 2018, 158, 774–781. [Google Scholar] [CrossRef]
- Lu, H.; Azimi, M.; Iseley, T. Short-term load forecasting of urban gas using a hybrid model based on improved fruit fly optimization algorithm and support vector machine. Energy Rep. 2019, 5, 666–677. [Google Scholar] [CrossRef]
- Haq, R.; Ni, Z. A New Hybrid Model for Short-Term Electricity Load Forecasting. IEEE Access 2019, 7, 125413–125423. [Google Scholar] [CrossRef]
- Qiu, X.; Ren, Y.; Suganthan, P.N.; Amaratunga, G.A. Empirical Mode Decomposition based ensemble deep learning for load demand time series forecasting. Appl. Soft Comput. 2017, 54, 246–255. Available online: https://www.sciencedirect.com/science/article/pii/S1568494617300273 (accessed on 4 September 2023). [CrossRef]
- Farsi, B.; Amayri, M.; Bouguila, N.; Eicker, U. On Short-Term Load Forecasting Using Machine Learning Techniques and a Novel Parallel Deep LSTM-CNN Approach. IEEE Access 2021, 9, 31191–31212. Available online: https://ieeexplore.ieee.org/abstract/document/9356582 (accessed on 12 September 2023). [CrossRef]
- Agga, A.; Abbou, A.; Labbadi, M.; El Houm, Y.; Ali, I.H.O. CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production. Electr. Power Syst. Res. 2022, 208, 107908. Available online: https://www.sciencedirect.com/science/article/pii/S0378779622001389 (accessed on 3 October 2023). [CrossRef]
- Xiong, J.; Zhang, Y. A Unifying Framework of Attention-Based Neural Load Forecasting. IEEE Access 2023, 11, 51606–51616. Available online: https://ieeexplore.ieee.org/abstract/document/10122506 (accessed on 11 October 2023). [CrossRef]
- Alasadi, S.A.; Bhaya, W.S. Review of Data Preprocessing Techniques in data mining. J. Eng. Appl. Sci. 2017, 12, 4102–4107. [Google Scholar]
- Mishra, P.; Biancolillo, A.; Roger, J.M.; Marini, F.; Rutledge, D.N. New data preprocessing trends based on ensemble of multiple preprocessing techniques. TrAC Trends Anal. Chem. 2020, 132, 116045. [Google Scholar] [CrossRef]
- Andradóttir, A.S. Chapter 20 An overview of simulation optimization via random search. In Handbooks in Operations Research and Management Science; Henderson, S.G., Nelson, B.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 13, pp. 617–631. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Li, L.; Talwalkar, A. Random search and reproducibility for neural architecture search. Uncertain. Artif. Intell. PMLR 2020, 115, 367–377. [Google Scholar]
- Rufino, A.B.S.; Saraiva, F. Use of Augmented Random Search Algorithm for Transmission Line Control in Smart Grids—A Comparative Study with RNA-Based Algorithms; Anais do XX Encontro Nacional de Inteligência Artificial e Computacional. SBC: Belo Horizonte, Brazil, 2023. [Google Scholar]
- Yennimar, Y.; Rasid, A.; Kenedy, S. Implementation of support vector machine algorithm with hyper-tuning randomized search in stroke prediction. J. Sist. Inf. Dan Ilmu Komput. Prima (JUSIKOM PRIMA) 2023, 6, 61–65. [Google Scholar] [CrossRef]
- Fayed, H.A.; Atiya, A.F. Speed up grid-search for parameter selection of support vector machines. Appl. Soft Comput. 2019, 80, 202–210. [Google Scholar] [CrossRef]
- Sun, Y.; Ding, S.; Zhang, Z.; Jia, W. An improved grid search algorithm to optimize SVR for prediction. Soft Comput. 2021, 25, 5633–5644. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27, 588–598. [Google Scholar]
- Le, T.; Vo, M.T.; Vo, B.; Hwang, E.; Rho, S.; Baik, S.W. Improving Electric Energy Consumption Prediction Using CNN and Bi-LSTM. Appl. Sci. 2019, 9, 4237. [Google Scholar] [CrossRef]
- Yoon, J.; Jarrett, D.; Van der Schaar, M. Time-series generative adversarial networks. Adv. Neural Inf. Process. Syst. 2019, 32. Available online: https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf (accessed on 24 August 2023).
- USA Electricity Hourly Power Consumption. Available online: https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption (accessed on 20 August 2023).
- Open Power System Data. Germany Electricity Power for 2006–2017. Available online: https://www.kaggle.com/datasets/mvianna10/germany-electricity-power-for-20062017 (accessed on 18 August 2023).
- Hour Energy Demand Generation and Weather. Available online: https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather (accessed on 24 August 2023).
- Connell, J.H.; Mahadevan, S. ROBOT LEARNING, edited by Jonathan H. Connell and Sridhar Mahadevan, Kluwer, Boston, 1993/1997, xii+240 pp., ISBN 0-7923-9365-1 (Hardback, 218.00 Guilders, $120.00, £89.95). Robotica 1999, 17, 229235. [Google Scholar] [CrossRef]
- Wen, L.; Zhou, K.; Li, J.; Wang, S. Modified deep learning and reinforcement learning for an incentive-based demand response model. Energy 2020, 205, 118019. [Google Scholar] [CrossRef]
- Gupta, O.; Raskar, R. Distributed learning of deep neural network over multiple agents. J. Netw. Comput. Appl. 2018, 116, 1–8. [Google Scholar] [CrossRef]
- Alromih, A.; Clark, J.A.; Gope, P. Privacy-Aware Split Learning Based Energy Theft Detection for Smart Grids. In Information and Communications Security; Alcaraz, C., Chen, L., Li, S., Samarati, P., Eds.; ICICS 2022. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2022; Volume 13407. [Google Scholar] [CrossRef]
- Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Process. Mag. 2020, 37, 50–60. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Z.; Liu, B.; Xu, Y.; Ding, Z. FedForecast: A federated learning framework for short-term probabilistic individual load forecasting in smart grid. Int. J. Electr. Power Energy Syst. 2023, 152, 109172. [Google Scholar] [CrossRef]
- Bukhari, S.M.S.; Moosavi, S.K.R.; Zafar, M.H.; Mansoor, M.; Mohyuddin, H.; Ullah, S.S.; Alroobaea, R.; Sanfilippo, F. Federated transfer learning with orchard-optimized Conv-SGRU: A novel approach to secure and accurate photovoltaic power forecasting. Renew. Energy Focus 2024, 48, 100520. [Google Scholar] [CrossRef]
- Zafar, M.H.; Bukhari, S.M.S.; Houran, M.A.; Moosavi, S.K.R.; Mansoor, M.; Al-Tawalbeh, N.; Sanfilippo, F. Step towards secure and reliable smart grids in Industry 5.0: A federated learning assisted hybrid deep learning model for electricity theft detection using smart meters. Energy Rep. 2023, 10, 3001–3019. [Google Scholar] [CrossRef]
- Himeur, Y.; Elnour, M.; Fadli, F.; Meskin, N.; Petri, I.; Rezgui, Y.; Bensaali, F.; Amira, A. Next-generation energy systems for sustainable smart cities: Roles of transfer learning. Sustain. Cities Soc. 2022, 85, 104059. [Google Scholar] [CrossRef]
- Grubinger, T.; Chasparis, G.C.; Natschläger, T. Generalized online transfer learning for climate control in residential buildings. Energy Build. 2017, 139, 63–71. [Google Scholar] [CrossRef]
- Khan, U.A.; Khan, N.M.; Zafar, M.H. Resource efficient PV power forecasting: Transductive transfer learning based hybrid deep learning model for smart grid in Industry 5.0. Energy Convers. Manag. X 2023, 20, 100486. [Google Scholar] [CrossRef]
Ref | Focus On | Technology Used | Other Techniques | Energy Types | Data Presentation (Size, Granularity, Types of Data) | Data Frequency | Dataset |
---|---|---|---|---|---|---|---|
[8] | Presents a comparative analysis between different machine learning and deep learning-based residential load forecasting models. | ML and DL | No | Residential Load | Forecasting historical data | 1 min | An Estonian household |
[9] | Presents the efficacy and accuracy of supervised deep learning in forecasting short-term load demand on the daily electricity load demand data from the Suranaree University of Technology and the average daily temperature from NASA’s data. | DL | No | Institution (University) | Load demand data, and temperature data | Daily | From the Suranaree University of Technology and NASA’s data |
[10] | Proposed a new convolutional LSTM (ConvLSTM) deep learning model taking advantage of expert knowledge for load forecasting, especially in holidays load forecasting. | DL hybrid model (LSTM-CNN) | Expert knowledge | Load forecasting | Historical data, temperature information and date information | 15 min | Non-specified |
[11] | Comparative study for load forecasting with DL hybrid models to evaluate the best-performing model. | DL hybrid models | No | Electricity | Historical load data, and weather data | Hourly | ISO/New England (NE) for weather data |
[12] | They used the random forest model for feature selection and an integrated multi-model prediction algorithm based on the CNN-BiGRU hybrid neural network. | CNN-BiGRU | Random Forest for feature selection | Electricity | Historical, and weather data | Hourly for the New England data set and 30 min for China’s Zhejiang datasets | Two datasets from New England and China’s Zhejiang datasets |
Our study | Utilizing and comparing three different artificial intelligence techniques such as statistical, machine learning, deep learning, and hybrid to forecast and optimize energy consumption. | Statistical, ML, DL, and Hybrid model | GAN model to augment the dataset | Residential and industrial | Historical and weather data | Hourly, daily | Three public datasets from three countries (USA, Spain, Germany) |
Category | Model | Strengths | Weaknesses |
---|---|---|---|
Statistical models | ARIMA, SARIMA, ARIMAX |
|
|
Machine Learning | SVR |
|
|
KNN |
|
| |
Decision tree |
|
| |
Random forest |
|
| |
XGBoost |
|
| |
Deep Learning | LSTM, RNN, GRU |
|
|
ANN |
|
| |
MLP |
|
| |
CNN |
|
| |
Hybrid models | LSTM-CNN |
|
|
CNN-GRU |
|
| |
Parallel LSTM-CNN |
|
|
Parameter | Checked Values | Optimal Value |
---|---|---|
Learning rate decay (lr) | automatic, manual | automatic |
Batch size | 2, 4, 8, 16, 32, 64 | 64 |
Weight initialization | Normal, Uniform, Glorot, Random | Random |
Adaptive learning rate methods | Stochastic gradient descent (SGD), RMSprop, Adagrad, Adadelta, Adam | Adam |
Number of Epochs | 30, 50, 80, 100, 120 | 100 |
Final activation function | Sigmoid, Tanh, softmax | Sigmoid |
Loss function | binary_crossentropy, mean_ squared_error, mean_squared_logarithmic_error | mean_squared_error |
Case Studies | Category | Model | R2 (%) | MAE | MSE | RMSE |
---|---|---|---|---|---|---|
Case study 1 (Germany) | Statistical Models | ARIMA | 0.56 | 82.29 | 11,163.6 | 105.65 |
SARIMAX | 0.58 | 78.31 | 10,611.83 | 103.01 | ||
Machine Learning | LR | 0.39 | 104.31 | 16,333.5 | 127.8 | |
KNN | 0.84 | 37.23 | 4251.93 | 65.2 | ||
SVR | 0.24 | 94.81 | 20,334.14 | 142.59 | ||
RF | 0.85 | 37.52 | 3919.87 | 62.6 | ||
XGBoost | 0.83 | 42.37 | 4592.93 | 67.77 | ||
DT | 0.75 | 47.54 | 6669.87 | 81.67 | ||
Deep learning | MLP | 0.78 | 47.7 | 5691.83 | 75.44 | |
LSTM | 0.81 | 42.36 | 4013.24 | 63.35 | ||
RNN | 0.85 | 37.46 | 4851.06 | 69.64 | ||
CNN | 0.86 | 37.02 | 3509.72 | 59.24 | ||
Hybrid | Hybrid-LSTM-CNN | 0.92 | 14.01 | 2774.33 | 52.67 | |
Hybrid + TimeGAN | Hybrid + TimeGAN | 0.95 | 13.91 | 2515.82 | 50.15 | |
Case study 2 (USA) | Statistical Models | ARIMA | 0.54 | 22,500.1405 | 925,627,285.7 | 30,424 |
SARIMAX | 0.56 | 27,500.65 | 791,047,125.3 | 28,126 | ||
Machine Learning | LR | 0.71 | 793.97 | 972,738.38 | 986.28 | |
KNN | 0.72 | 736.92 | 933,478.09 | 966.17 | ||
SVR | −0.07 | 1598.79 | 3,678,371.24 | 1917.9 | ||
RF | 0.72 | 748.34 | 943,688.67 | 971.44 | ||
XGBoost | 0.74 | 726.76 | 864,723.51 | 929.91 | ||
DT | 0.57 | 924.66 | 1,456,401.15 | 1206.8 | ||
Deep learning | MLP | 0.75 | 698.91 | 841,169.72 | 917.15 | |
LSTM | 0.94 | 345.56 | 423,578.78 | 650.82 | ||
CNN | 0.94 | 398.85 | 563,940.44 | 750.95 | ||
RNN | 0.95 | 332.22 | 421,324.5 | 649.09 | ||
Hybrid | Hybrid-LSTM-CNN | 0.96 | 324.65 | 411,787.86 | 641.7 | |
Hybrid + TimeGAN | Hybrid + TimeGAN | 0.97 | 298.32 | 402,543.9 | 634.5 | |
Case study 3 (Spain) | Statistical Models | ARIMA | 0.57 | 76.56 | 10,416.09 | 103.07 |
SARIMAX | 0.61 | 72.43 | 10,113.41 | 98.05 | ||
Machine Learning | LR | 0.76 | 1820.71 | 4,935,695.8 | 2221.6 | |
KNN | 0.92 | 951.3 | 1,533,482.81 | 1238.3 | ||
SVR | −0.01 | 3867.49 | 2,100,5426.76 | 4583.2 | ||
RF | 0.85 | 36.41 | 3932.87 | 62.71 | ||
XGBoost | 0.92 | 970.31 | 1,541,083.62 | 1241.4 | ||
DT | 0.86 | 1203.49 | 2,808,959.33 | 1676 | ||
Deep Learning | MLP | 0.91 | 1063.48 | 1,709,986.25 | 1307.7 | |
LSTM | 0.85 | 1145.23 | 2,812,115.38 | 1676.9 | ||
RNN | 0.91 | 1044.6 | 1,576,770.56 | 1255.7 | ||
CNN | 0.76 | 1340.64 | 2,934,756.56 | 1713.1 | ||
Hybrid | Hybrid-LSTM-CNN | 0.94 | 865.47 | 1,465,230.33 | 1210.5 | |
Hybrid + TimeGAN | Hybrid + TimeGAN | 0.98 | 745.03 | 1,324,532.11 | 1151 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hachache, R.; Labrahmi, M.; Grilo, A.; Chaoub, A.; Bennani, R.; Tamtaoui, A.; Lakssir, B. Energy Load Forecasting Techniques in Smart Grids: A Cross-Country Comparative Analysis. Energies 2024, 17, 2251. https://doi.org/10.3390/en17102251
Hachache R, Labrahmi M, Grilo A, Chaoub A, Bennani R, Tamtaoui A, Lakssir B. Energy Load Forecasting Techniques in Smart Grids: A Cross-Country Comparative Analysis. Energies. 2024; 17(10):2251. https://doi.org/10.3390/en17102251
Chicago/Turabian StyleHachache, Rachida, Mourad Labrahmi, António Grilo, Abdelaali Chaoub, Rachid Bennani, Ahmed Tamtaoui, and Brahim Lakssir. 2024. "Energy Load Forecasting Techniques in Smart Grids: A Cross-Country Comparative Analysis" Energies 17, no. 10: 2251. https://doi.org/10.3390/en17102251
APA StyleHachache, R., Labrahmi, M., Grilo, A., Chaoub, A., Bennani, R., Tamtaoui, A., & Lakssir, B. (2024). Energy Load Forecasting Techniques in Smart Grids: A Cross-Country Comparative Analysis. Energies, 17(10), 2251. https://doi.org/10.3390/en17102251