Sensitivity of a Process for Heating Thin Metal Film Described by the Dual-Phase Lag Equation with Temperature-Dependent Thermophysical Parameters to Perturbations of Lag Times
Abstract
1. Introduction
2. Materials and Methods
2.1. Mathematical Description of the Process
2.2. Sensitivity Models
2.3. Method of Solution
3. Results of Computations and Their Discussion
4. Conclusions
- -
- taking into account the variability of thermophysical parameters (especially for higher temperatures) causes visible changes in the results of numerical simulations;
- -
- disturbances in the delay-time values clearly change the course of the heating/cooling process in the domain considered;
- -
- the sensitivity of the temperature field with respect to the delay times increases with the increase in laser intensity;
- -
- the sensitivity of the temperature field with respect to the delay times varies depending on the type of material and is greater when the metal has a higher mean conductivity coefficient and a lower mean volumetric specific heat.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Majchrzak, E.; Mochnacki, B. Modelling of thin metal film heating using the dual-phase lag equation with temperature-dependent parameters. Int. J. Heat Mass Transf. 2023, 209, 124088. [Google Scholar] [CrossRef]
- Alexopoulou, V.E.; Markopoulos, A.P. A Markopoulos, A critical assessment regarding two-temperature models: An investigation of the different forms of two-temperature models, the various ultrashort pulsed laser models and computational methods. Arch. Comput. Methods Eng. 2023, 31, 93–123. [Google Scholar] [CrossRef]
- Majchrzak, E.; Dziatkiewicz, J.; Turchan, L. Analysis of thermal processes occuring in the microdomain subjected to the ultrashort laser pulse using the axisymmetric two-temperature model. Int. J. Multiscale Comput. Eng. 2017, 15, 395–411. [Google Scholar] [CrossRef]
- Sobolev, S. Nonlocal two-temperature model: Application to heat transport in metals irradiated by ultrashort laser pulses. Int. J. Heat Mass Transf. 2016, 94, 138–144. [Google Scholar] [CrossRef]
- Majchrzak, E.; Mochnacki, B.; Greer, A.; Suchy, J.S. Numerical modeling of short pulse laser interactions with multi-layered thin metal films. CMES Comput. Model. Eng. Sci. 2009, 41, 131–146. [Google Scholar]
- Smith, A.N.; Norris, P.M. Microscale Heat Transfer. In Heat Transfer Handbook; John Willey & Sons: Hoboken, NJ, USA, 2003; Chapter 18. [Google Scholar]
- Zhang, Z.M. Nano/Microscale Heat Transfer; McGraw-Hill: New York, NY, USA, 2007. [Google Scholar]
- Tzou, D.Y. Macro- to Microscale Heat Transfer: The Lagging Behavior; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Cattaneo, M.C. A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte. Rendus. 1958, 247, 431–433. [Google Scholar]
- Askarizadeh, H.; Baniasadi, E.; Ahmadikia, H. Equilibrium and non-eqilibrium thermodynamic analysis of high-order dual-phase-lag heat conduction. Int. J. Heat Mass Transf. 2017, 104, 301–309. [Google Scholar] [CrossRef]
- Deng, D.; Jiang, Y.; Liang, D. High-order finite difference method for a second order dual-phase-lagging models of microscale heat transfer. Appl. Math. Comput. 2017, 309, 31–48. [Google Scholar] [CrossRef]
- Majchrzak, E.; Mochnacki, B. Second-order dual phase-lag equation. Modeling of melting and resolidification of thin metal film subjected to a laser pulse. Mathematics 2020, 8, 999. [Google Scholar] [CrossRef]
- Chiriţă, S.; Ciarletta, M.; Tibullo, V. On the thermomechanical consistency of the time differential dual-phase-lag models of heat conduction. Int. J. Heat Mass Transf. 2017, 114, 277–285. [Google Scholar] [CrossRef]
- Ciesielski, M.; Mochnacki, B.; Majchrzak, E. Integro-differential form of the first-order dual phase lag heat transfer equation and its numerical solution using the Control Volume Method. Arch. Mech. 2020, 72, 415–444. [Google Scholar]
- Xu, H.-Y.; Jiang, X.-Y. Time fractional dual-phase-lag heat conduction equation. Chin. Phys. B 2015, 24, 034401. [Google Scholar] [CrossRef]
- Kukla, S.; Siedlecka, U.; Ciesielski, M. Fractional order dual-phase-lag model of heat conduction in a composite spherical medium. Materials 2022, 15, 7251. [Google Scholar] [CrossRef]
- Azhdari, M.; Seyedpour, S.M.; Lambers, L.; Tautenhahn, H.-M.; Tautenhahn, F.; Ricken, T.; Rezazadeh, G. Non-local three phase lag bio thermal modeling of skin tissue and experimental evaluation. Int. Commun. Heat Mass Transf. 2023, 149, 107146. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, Y.; Yang, J. Bio-heat response of skin tissue based on three-phase-lag model. Sci. Rep. 2020, 10, 16421. [Google Scholar] [CrossRef]
- Chiriţă, S. High-order effects of thermal lagging in deformable conductors. Int. J. Heat Mass Transf. 2018, 127, 965–974. [Google Scholar] [CrossRef]
- Quintanilla, R.; Racke, R. A note on stability in dual-phase-lag heat conduction. Int. J. Heat Mass Transf. 2006, 49, 1209–1213. [Google Scholar] [CrossRef]
- Arefmanesh, A.; Arani, A.A.A.; Emamifar, A. Semi-analytical solutions for different non-linear models of dual phase lag equation in living tissues. Int. Commun. Heat Mass Transf. 2020, 115, 104596. [Google Scholar] [CrossRef]
- Majchrzak, E.; Stryczyński, M. Numerical analysis of biological tissue heating using the dual-phase lag equation with temperature—Dependent parameters. J. Appl. Math. Comput. Mech. 2022, 21, 85–98. [Google Scholar] [CrossRef]
- Kumar, R.; Vashishth, A.; Ghangas, S. Phase-lag effects in skin tissue during transient heating. Int. J. Appl. Mech. Eng. 2019, 24, 603–623. [Google Scholar] [CrossRef]
- Afrin, N.; Zhou, J.; Zhang, Y.; Tzou, D.Y.; Chen, J.K. Numerical simulation of thermal damage to living biological tissues induced by laser irradiation based on a generalized dual phase lag model. Numer. Heat Transfer Part A Appl. 2012, 61, 483–501. [Google Scholar] [CrossRef]
- Shomali, Z.; Kovács, R.; Ván, P.; Kudinov, I.V.; Ghazanfarian, J. Lagging heat models in thermodynamics and bioheat transfer: A critical review. Contin. Mech. Thermodyn. 2022, 34, 637–679. [Google Scholar] [CrossRef]
- Ramadan, K. Semi-analytical solutions for the dual phase lag heat conduction in multi-layered media. Int. J. Therm. Sci. 2009, 48, 14–25. [Google Scholar] [CrossRef]
- Ciesielski, M. Analytical solution of the dual phase lag equation describing the laser heating of thin metal film. J. Appl. Math. Comput. Mech. 2017, 16, 33–40. [Google Scholar] [CrossRef]
- Mohammadi-Fakhar, V.; Momeni-Masuleh, S. An approximate analytic solution of the heat conduction equation at nanoscale. Phys. Lett. A 2010, 374, 595–604. [Google Scholar] [CrossRef]
- Ma, J.; Sun, Y.; Yang, J. Analytical solution of dual-phase-lag heat conduction in a finite medium subjected to a moving heat source. Int. J. Therm. Sci. 2018, 125, 34–43. [Google Scholar] [CrossRef]
- Kumar, S.; Srivastava, A. Finite integral transform-based analytical solutions of phase lag bio-heat transfer equation. Appl. Math. Model. 2017, 52, 378–403. [Google Scholar] [CrossRef]
- Yang, W.; Pourasghar, A.; Cui, Y.; Wang, L.; Chen, Z. Transient heat transfer analysis of a cracked stip irradiated by ultrafast Gaussian laser beam using dual-phase-lag theory. Int. J. Heat Mass Transf. 2023, 203, 123771. [Google Scholar] [CrossRef]
- Dutta, J.; Biswas, R.; Kundu, B. Analytical solution of dual-phase-lag based heat transfer model in ultrashort pulse laser heating of A6061 and Cu3Zn2 nano film. Opt. Laser Technol. 2020, 128, 106207. [Google Scholar] [CrossRef]
- Wang, H.; Dai, W.; Melnik, R. A finite difference method for studying thermal deformation in a double-layered thin film exposed to ultrashort pulsed lasers. Int. J. Therm. Sci. 2006, 45, 1179–1196. [Google Scholar] [CrossRef]
- Chen, J.K.; Beraun, J.E. Numerical study of ultrashort laser pulse interactions with metal films. Numer. Heat Transfer Part A Appl. 2001, 40, 1–20. [Google Scholar] [CrossRef]
- Saeed, T.; Abbas, I. Finite element analyses of nonlinear DPL bioheat model in spherical tissues using experimental data. Mech. Based Des. Struct. Mach. 2022, 50, 1287–1297. [Google Scholar] [CrossRef]
- Kumar, D.; Rai, K. A study on thermal damage during hyperthermia treatment based on DPL model for multilayer tissues using finite element Legendre wavelet Galerkin approach. J. Therm. Biol. 2016, 62, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak, E.; Turchan, L. Modeling of laser heating of bi-layered microdomain using the general boundary element method. Eng. Anal. Bound. Elements 2019, 108, 438–446. [Google Scholar] [CrossRef]
- Kleiber, M. Parameter Sensitivity in Non-Linear Mechanics; John Willey & Sons Ltd.: London, UK, 1997. [Google Scholar]
- Dems, K.; Rousselet, B. Rousselet, Sensitivity analysis for transient heat conduction in a solid body, Part I. Struct. Optim. 1999, 17, 36–45. [Google Scholar] [CrossRef]
- Majchrzak, E.; Kałuża, G. Sensitivity analysis of temperature in heated soft tissues with respect to time delays. Contin. Mech. Thermodyn. 2022, 34, 587–599. [Google Scholar] [CrossRef]
- Hector, L.G.; Woo-Seung, K.; Özisik, M. Propagation and reflection of thermal waves in a finite medium due to axisymmetric surface sources. Int. J. Heat Mass Transf. 1992, 35, 897–912. [Google Scholar] [CrossRef]
- Grigoropoulos, C.P.; Chimmalgi, A.C.; Hwang, D.J. Nano-Structuring Using Pulsed Laser Irradiation, Laser Ablation and Its Applications; Springer Series in Optical Sciences; Springer: Boston, MA, USA, 2007; Volume 129, pp. 473–504. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Chen, J. Ultrafast solid–liquid–vapor phase change in a thin gold film irradiated by multiple femtosecond laser pulses. Int. J. Heat Mass Transf. 2009, 52, 3091–3100. [Google Scholar] [CrossRef]
- Xu, X.; Chen, G.; Song, K. Experimental and numerical investigation of heat transfer and phase change phenomena during excimer laser interaction with nickel. Int. J. Heat Mass Transf. 1999, 42, 1371–1382. [Google Scholar] [CrossRef]
- Tang, D.; Araki, N. Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses. Int. J. Heat Mass Transf. 1999, 42, 855–860. [Google Scholar] [CrossRef]
Time [ps] | 0.1 | 0.2 | 0.3 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
---|---|---|---|---|---|---|---|---|---|
Experiment | 0.11 | 0.40 | 1.0 | 0.65 | 0.38 | 0.24 | 0.20 | 0.12 | 0.10 |
Model | 0..11 | 0.38 | 1.0 | 0.67 | 0.36 | 0.22 | 0.19 | 0.11 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majchrzak, E.; Mochnacki, B. Sensitivity of a Process for Heating Thin Metal Film Described by the Dual-Phase Lag Equation with Temperature-Dependent Thermophysical Parameters to Perturbations of Lag Times. Energies 2024, 17, 2252. https://doi.org/10.3390/en17102252
Majchrzak E, Mochnacki B. Sensitivity of a Process for Heating Thin Metal Film Described by the Dual-Phase Lag Equation with Temperature-Dependent Thermophysical Parameters to Perturbations of Lag Times. Energies. 2024; 17(10):2252. https://doi.org/10.3390/en17102252
Chicago/Turabian StyleMajchrzak, Ewa, and Bohdan Mochnacki. 2024. "Sensitivity of a Process for Heating Thin Metal Film Described by the Dual-Phase Lag Equation with Temperature-Dependent Thermophysical Parameters to Perturbations of Lag Times" Energies 17, no. 10: 2252. https://doi.org/10.3390/en17102252
APA StyleMajchrzak, E., & Mochnacki, B. (2024). Sensitivity of a Process for Heating Thin Metal Film Described by the Dual-Phase Lag Equation with Temperature-Dependent Thermophysical Parameters to Perturbations of Lag Times. Energies, 17(10), 2252. https://doi.org/10.3390/en17102252