Energy Harvesting Opportunities in Geoenvironmental Engineering
Abstract
:1. Introduction
2. Literature Review Methodology
3. Energy Harvesting Basics
- Newton’s second law;
- Maxwell’s displacement current;
- Joule thermal conductivity;
- Strouhal’s number for frequency oscillation;
- The Euler–Lagrange theorem;
- Bernoulli’s fluid mechanics equation;
- Navier–Strokes for incompressible Newtonian fluids;
- Reynolds number for fluids;
- Darcy’s law of flow rate;
- Others unfairly not cited.
3.1. Piezoelectricity
3.2. Pyroelectricity
3.3. Triboelectricity
4. Opportunities for Energy Harvesting
4.1. Solar
4.2. Wind
4.3. Water
4.4. Soil
4.5. Industry Machinery
4.6. Mobility and Transports
4.7. Smart Homes
4.8. Biochemical and Biomechanics
5. Integrated Use of Several Alternative Energy Sources in Portugal
6. Final Analysis
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ekonomou, G.; Menegaki, A. China in the Renewable Energy Era: What has Been Done and What Remains to be Done. Energies 2023, 16, 6696. [Google Scholar] [CrossRef]
- Wang, H.; Jasim, A.; Chen, X. Energy harvesting technologies in roadway and bridge for different applications—A comprehensive review. Appl. Energy 2018, 212, 1083–1094. [Google Scholar] [CrossRef]
- United Nations Parliament and Council. The 2030 Agenda for Sustainable Development. 2020. Available online: https://www.un.org/sustainabledevelopment/ (accessed on 1 July 2023).
- Cao, L.N.; Xu, Z.; Wang, Z. Application of Triboelectric Nanogenerator in Fluid Dynamics Sensing: Past and Future. Nanomaterials 2022, 12, 3261. [Google Scholar] [CrossRef] [PubMed]
- Perez, R.; Perez, M. A fundamental look at energy reserves for the planet. IEA SHS Sol. Update 2009, 50, 2. [Google Scholar]
- Da, H.; Xu, D.; Li, J.; Tang, Z.; Li, J.; Wang, C.; Luan, H.; Zhang, F.; Zeng, Y. Influencing Factors of Carbon Emission from Typical Refining Units: Identification, Analysis, and Mitigation Potential. Energies 2023, 16, 6527. [Google Scholar] [CrossRef]
- Maggiotti, G.; Colangelo, G.; Milanese, M.; Risi, A. Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review. Energies 2023, 16, 6772. [Google Scholar] [CrossRef]
- Kozuch, A.; Cywicka, D.; Adamowicz, K.; Wieruszewski, M.; Wysocka-Fijorek, E.; Kielbasa, P. The Use of Forest Biomass for Energy Purposes in Selected European Countries. Energies 2023, 16, 5776. [Google Scholar] [CrossRef]
- Mo, C.; Davidson, J. Energy harvesting technologies for structural health monitoring applications. In Proceedings of 2013 IEEE Conference on Technologies for Sustainability (Sustech), Portland, OR, USA, 1–2 August 2013. [Google Scholar] [CrossRef]
- Balakrishnan, P.; Shabbir, M.; Siddiqi, A.; Wang, X. Current status and future prospects of renewable energy: A case study. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 42, 2698–2703. [Google Scholar] [CrossRef]
- Nurunnabi, M.; Esquer, J.; Munguia, N.; Zepeda, D.; Perez, R.; Velazquez, L. Reaching the sustainable development goals 2030: Energy efficiency as an approach to corporate social responsibility (CSR). GeoJournal 2020, 85, 363–374. [Google Scholar] [CrossRef]
- Jäger-Waldau, A. Snapshot of Photovoltaics-May 2023. EPJ Photovoltaics 2023, 14, 23. [Google Scholar] [CrossRef]
- Kazem, H.; Chaichan, M.; Ali, H.; Al-Waeli; Gholami, A. A systematic review of solar photovoltaic energy systems design modelling algorithms and software. Energy Sources Part A Recover. Util. Environ. Eff. 2022, 44, 6709–6736. [Google Scholar] [CrossRef]
- Mohamed, M.; Wu, W.; Moniri, M. Power harvesting for smart sensor networks in monitoring water distribution system. In Proceedings of 2011 International Conference on Networking, Sensing and Control, Delft, The Netherlands, 11–13 April 2011. [Google Scholar] [CrossRef]
- Trivedi, A.; Shukla, S. Testing and Technology for Load Carrying Capacity of Deep Foundations. In Proceedings of 2019 International Symposium, Delhi, India, 5–6 December 2019. [Google Scholar]
- Newston, C.; Halter, S.; Hassan, M. Tran-SET 2020. In Proceedings of Tran-SET Conference 2020, Albuquerque, NM, USA, 1–2 September 2020. [Google Scholar]
- Zheng, X.; He, L.; Wang, S.; Liu, X.; Liu, R. A review of piezoelectric energy harvesters for harvesting wind energy. Sens. Actuators A Phys. 2023, 352, 114190. [Google Scholar] [CrossRef]
- Chandrasekharam, D.; Bundschuh, J. Low Enthalpy Geothermal Resources for Power Generation; CRC Press: Bombay, India, 2008. [Google Scholar]
- Wang, Y.; Voskov, D.; Khait, M.; Saeid, S.; Bruhn, D. Influential factors on the development of a low-enthalpy geothermal reservoir: A sensitivity study of a realistic field. Renew. Energy 2021, 179, 641–651. [Google Scholar] [CrossRef]
- Singh, P.; Hussain, C.; Sillanpaa, M. Innovative Bio-Based Technologies for Environmental Remediation; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Fouladi, A.; Arulrajah, A.; Chu, J.; Horpibulsuk, S. Application of Microbially Induced Calcite Precipitation (MICP) technology in construction materials: A comprehensive review of waste stream contributions. Constr. Build. Mater. 2023, 388, 131546. [Google Scholar] [CrossRef]
- Islam, T.; Nabi, M.; Arefin, M.; Mostakim, K.; Rashid, F.; Hassan, N.; Rahman, S.; McIntosh, S.; Mullins, B.; Muyeen, S. Trends and prospects of geothermal energy as an alternative source of power: A comprehensive review. Heliyon 2022, 8, e11836. [Google Scholar] [CrossRef] [PubMed]
- Salazar, S.; Muñoz, Y.; Ospino, A. Analysis of geothermal energy as an alternative source for electricity in Colombia. Geotherm. Energy 2017, 5, 27. [Google Scholar] [CrossRef]
- Trota, A.; Ferreira, P.; Ferreira-Gomes, L.; Cabral, J.; Kallberg, P. Power Production Estimates from Geothermal Resources by Means of Small-Size Compact Climeon Heat Power Converters: Case Studies from Portugal (Sete Cidades, Azores and Longroiva Spa, Mainland). Energies 2019, 12, 2838. [Google Scholar] [CrossRef]
- Vieira, A.; Andrés, B.; Ferreira-Gomes, L.; Kallberg, P. Contribuição Para a Utilização de Energia Geotérmica no Brasil. In Engenharia de Construção Civil e Urbana; Atena Editora: Ponta Grossa, Brazil, 2019; pp. 149–165. [Google Scholar]
- Zhu, J.; Zhu, M.; Shi, Q.; Wen, F.; Liu, L.; Dong, B.; Haroun, A.; Yang, Y.; Vachon, P.; Guo, X.; et al. Progress in TENG technology-A journey from energy harvesting to nanoenergy and nanosystem. EcoMat-Funct. Mater. Green Energy Environ. 2020, 2, e12058. [Google Scholar] [CrossRef]
- Mei, X.; Lu, B.; Yan, C.; Gu, J.; Ren, N.; Ren, Z.; Xing, D. The interplay of active energy harvesting and wastewater organic loading regulates fermentation products and microbiomes in microbial fuel cells. Resour. Conserv. Recycl. 2022, 183, 106366. [Google Scholar] [CrossRef]
- Stilwell, A.; Hoppock, D.; Webber, M. Energy Recovery from Wastewater Treatment Plants in the United States: A Case Study of the Energy-Water Nexus. Sustainability 2010, 2, 945–962. [Google Scholar] [CrossRef]
- Santos, E.; Albuquerque, A.; Lisboa, I.; Murray, P.; Ermis, H. Economic Assessment of Energy Consumption in Wastewater Treatment Plants: Applicability of Alternative Nature-Based Technologies in Portugal. Water 2022, 14, 2042. [Google Scholar] [CrossRef]
- Fan, S.; Li, A.; ter Heijne, A.; Buisman, C.; Chen, W.-S. Heat potential, generation, recovery and utilization from composting: A review. Resour. Conserv. Recycl. 2021, 175, 105850. [Google Scholar] [CrossRef]
- Azizul Moqsud, M. Bioelectricity from Organic Solid Waste. Strategies of Sustainable Solid Waste Management. In Strategies of Sustainable Solid Waste Management; IntechOpen: London, UK, 2021. [Google Scholar]
- Hanson, J.; Onnen, M.; Yeşiller, N.; Kopp, K. Heat energy potential of municipal solid waste landfills: Review of heat generation and assessment of vertical extraction systems. Renew. Sustain. Energy Rev. 2021, 167, 112835. [Google Scholar] [CrossRef]
- Llácer-Iglesias, R.; López-Jiménez, P.; Pérez-Sánchez, M. Hydropower Technology for Sustainable Energy Generation in Wastewater Systems: Learning from the Experience. Water 2021, 13, 3259. [Google Scholar] [CrossRef]
- Sarkar, P.; Sharma, B.; Malik, U. Energy generation from grey water in high raised buildings: The case of India. Renew. Energy 2014, 69, 284–289. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Q.; Li, J.; Wang, Z. Methane in wastewater treatment plants: Status, characteristics, and bioconversion feasibility by methane oxidizing bacteria for high value-added chemicals production and wastewater treatment. Water Res. 2021, 198, 117122. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Zhu, J.-J.; Willis, J.; Moore, D.; Zondlo, M.; Ren, Z. Methane Emissions from Municipal Wastewater Collection and Treatment Systems. Environ. Sci. Technol. 2023, 57, 2248–2261. [Google Scholar] [CrossRef]
- Đurđević, D.; Balić, D.; Franković, B. Wastewater heat utilization through heat pumps: The case study of City of Rijeka. J. Clean. Prod. 2019, 231, 207–213. [Google Scholar] [CrossRef]
- Nagpal, H.; Spriet, J.; Murali, M.; McNabola, A. Heat Recovery from Wastewater—A Review of Available Resource. Water 2021, 13, 1274. [Google Scholar] [CrossRef]
- Zahmatkesh, S.; Amesho, K.; Sillanpaa, M.; Wang, C. Integration of renewable energy in wastewater treatment during COVID-19 pandemic: Challenges, opportunities, and progressive research trends. Clean. Chem. Eng. 2022, 3, 100036. [Google Scholar] [CrossRef]
- Maktabifard, M.; Zaborowska, E.; Makinia, J. Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production. Rev. Environ. Sci. Bio/Technol. 2018, 17, 655–689. [Google Scholar] [CrossRef]
- Kumar, S.; Yasasve, M.; Karthigadevi, G.; Aashabharathi, M.; Subbaiya, R.; Karmegam, K.; Govarthanan, M. Efficiency of microbial fuel cells in the treatment and energy recovery from food wastes: Trends and applications-A review. Chemosphere 2022, 287, 132439. [Google Scholar] [CrossRef] [PubMed]
- Serra, P.; Espírito-Santo, A.; Albuquerque, A. An experimental setup for energy efficiency evaluation of microbial fuel cells. In Proceedings of 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 17–19 March 2015. [Google Scholar] [CrossRef]
- Koffi, N.; Okabe, S. High electrical energy harvesting performance of an integrated microbial fuel cell and low voltage booster-rectifier system treating domestic wastewater. Bioresour. Technol. 2022, 359, 127455. [Google Scholar] [CrossRef] [PubMed]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the world’s free-flowing rivers. Nature 2019, 569, 217–239. [Google Scholar] [CrossRef]
- NASA. NASA Scientific Visualization Studio. NASA, 3 May 2023. Available online: https://svs.gsfc.nasa.gov/3827 (accessed on 30 May 2023).
- Rodrigues, J.; Segundo, D.; Junqueira, H.; Sabino, M.; Prince, R.; Al-Muhtadi, J.; Albuquerque, V. Enabling Technologies for the Internet of Health Things. IEEE Access 2018, 1, 99. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Chen, T.; Wang, H.; Zhu, C.; Yu, H.; Song, L.; Pan, X.; Mi, J.; Lee, C.; et al. An underwater flag-like triboelectric nanogenerator for harvesting ocean current energy under extremely low velocity condition. Nano Energy 2021, 90, 106503. [Google Scholar] [CrossRef]
- Yao, C.-J.; Zhang, H.-L.; Zhang, Q. Recent Progress in Thermoelectric Materials Based on Conjugated Polymers. Polymers 2019, 11, 107. [Google Scholar] [CrossRef]
- Curie, J.; Curie, P.P. Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Bull. Minéral. 1880, 3–4, 90–93. [Google Scholar] [CrossRef]
- Sezer, N.; Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021, 80, 105567. [Google Scholar] [CrossRef]
- Kargar, S.; Hao, G. An Atlas of Piezoelectric Energy Harvesters in Oceanic Applications. Sensors 2022, 22, 1949. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, Q.; Wang, Z.; Li, Z. Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics. AAAS Res. 2020, 2020, 8710686. [Google Scholar] [CrossRef] [PubMed]
- Afroz, A.; Romano, D.; Inglese, F.; Stefanini, C. Towards Bio-Hybrid Energy Harvesting in the Real-World: Pushing the Boundaries of Technologies and Strategies Using Bio-Electrochemical and Bio-Mechanical Processes. Appl. Sci. 2021, 11, 2220. [Google Scholar] [CrossRef]
- Junior, O.; Calderon, N.; Souza, S. Characterization of a thermoelectric generator (TEG) system for waste heat recovery. Energies 2018, 11, 1555. [Google Scholar] [CrossRef]
- Chung, C.-K.; Huang, Y.-J.; Wang, T.; Lo, Y.-L. Fiber-Based Triboelectric Nanogenerator for Mechanical Energy Harvesting and Its Application to a Human–Machine Interface. Sensors 2022, 22, 9632. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhao, Y.; Shen, Y.; Wang, K.; Ma, P.; Wang, F.; Chen, C. 3D Stitching Double Weave Fabric-Based Elastic Triboelectric Nanogenerator for Energy Harvesting and Self- Powered Sensing. Energies 2023, 16, 2284. [Google Scholar] [CrossRef]
- Shi, S.; Jiang, Y.; Xu, Q.; Zhang, Y.; Zhang, J.; Li, J.; Xie, Y.; Cao, Z.-P. A self-powered triboelectric multi-information motion monitoring sensor and its application in wireless real-time control. Nano Energy 2022, 97, 107150. [Google Scholar] [CrossRef]
- Kahn, N.T.H. The Effect of Magnetic Field on Soli-Liquid Contact Electrification for Streaming Flow Energy Harvesting. Energies 2023, 16, 4779. [Google Scholar] [CrossRef]
- Aldamasy, I.Z.M.; Li, G.; Pascual, J.; Alharthi, F.; Abate, A.; Li, M. Challenges in tin perovskite solar cells. Phys. Chem. Chem. Phys. 2021, 23, 23413–23427. [Google Scholar] [CrossRef]
- Ziegler, W. Radiant Heating of Airport Aprons; Airport Operations and Maintenance Challenge: New York, NY, USA, 2009. [Google Scholar]
- Palosaari, J.; Juuti, J.; Jantunen, H. Piezoelectric Energy Harvesting from Rotational Motion to Power Industrial Maintenance Sensors. Sensors 2022, 22, 7449. [Google Scholar] [CrossRef]
- Njiri, J.; Soffker, D. State-of-the-art in wind turbine control: Trends and challenges. Renew. Sustain. Energy Rev. 2016, 60, 377–393. [Google Scholar] [CrossRef]
- GWEC. Global Wind Report 2018; GWEC: Brussels, Belgium, 2019. [Google Scholar]
- Menezes, E.; Araújo, A. Bouchonneau da Silva, N. A review on wind turbine control and its associated methods. J. Clean. Prod. 2018, 174, 945–953. [Google Scholar] [CrossRef]
- Soares-Ramos, E.; Oliveira-Assis, L.; Sarrias-Mena, R.; Fernández Ramírez, L. Current status and future trends of offshore wind power in Europe. Energy 2020, 202, 117787. [Google Scholar] [CrossRef]
- Lakc, J.; Pao, L.; Wright, A. Control of Wind Turbines: Past, Present, and Future. In Proceedings of the 2009 American Control Conference, St. Louis, MO, USA, 10–12 June 2009. [Google Scholar] [CrossRef]
- Kwak, S.; Yoon, H.-J.; Kim, S.-W. Textile-Based Triboelectric Nanogenerators for Self-Powered Wearable Electronics. Adv. Funct. Mater. 2018, 29, 1804533. [Google Scholar] [CrossRef]
- Cha, Y.; Chae, H.; Kim, H.; Walcott, H.; Peterson, S.; Porfiri, M. Energy harvesting from a piezoelectric biomimetic fish tail. Renew. Energy 2016, 86, 449–458. [Google Scholar] [CrossRef]
- Ri, X.; Zeng, Z.; Zhag, Y.; Li, Y.; Feng, H.; Huang, X.; Sha, Z. Design and experimental investigation of a self-tuning piezoelectric energy harvesting system for intelligent vehicle wheels. IEEE Trans. Veh. Technol. 2020, 69, 1440–1451. [Google Scholar] [CrossRef]
- Zhu, H.; Tang, T.; Yang, H.; Wang, J.; Song, J.; Peng, G. The State-of-the-Art Brief Review on Piezoelectric Energy Harvesting from Flow-Induced Vibration. Hindawi Shock. Vib. 2021, 2021, 8861821. [Google Scholar] [CrossRef]
- Kasa, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018; pp. 1–295. [Google Scholar]
- Lee, S.; Kim, S.; Pathak, A.; Tripathi, A.; Qiao, T.; Lee, Y.; Lee, H.; Woo, H. Recent Progress in Organic Thermoelectric Materials and Devices. Macromol. Res. 2020, 28, 531–552. [Google Scholar] [CrossRef]
- Toshima, N. Recent progress of organic and hybrid thermoelectric materials. Synth. Met. 2017, 225, 3–21. [Google Scholar] [CrossRef]
- Fang, R.; Zhang, W.; Zhang, S.; Chen, W. The rising star in photovoltaics-perovskite solar cells: The past, present and future. Sci. China Technol. Ser. 2016, 59, 989–1006. [Google Scholar] [CrossRef]
- Ibrahim, I.; Otvos, T.; Gilmanova, A.; Tocca, E.; Ghanem, C.; Wanat, M. Intergovernmental Organizations. In International Energy Agency; Kluwer Law International B. V.: Alphen aan den Rijn, The Netherlands, 2021. [Google Scholar]
- Sen, S.; Al Nafi Khan, A.; Dutta, S.; Mortuza, A.; Sumaiya, U. Hydropower potentials in Bangladesh in context of current exploitation of energy sources: A comprehensive review. Int. J. Energy Water Resour. 2022, 6, 413–435. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D. Piezoelectric Energy Harvesting; John Wiley & Sons: Chichester, UK, 2011. [Google Scholar]
- Wu, N.; Bao, B.; Wang, Q. Review on engineering structural designs for efficient piezoelectric energy harvesting to obtain high power output. Eng. Struct. 2021, 235, 112068. [Google Scholar] [CrossRef]
- Chen, T.T.; Song, W.-Z.; Zhang, M.; Sun, D.-J.; Zhan, D.-S.; Li, C.-L.; Cui, W.-Y.; Fan, T.-T.; Ramakrishna, S.; Long, Y.-Z. Acid and alkali-resistant fabric-based triboelectric nanogenerator for self-powered intelligent monitoring of protective clothing in highly corrosive environments. RSC Adv. 2023, 13, 11697–11705. [Google Scholar] [CrossRef] [PubMed]
- Min, Z.; Hou, C.; Sui, G.; Shan, X.; Xie, T. Simulation and Experimental Study of a Piezoelectric Stack Energy Harvester for Railway Track Vibrations. Micromachines 2023, 14, 892. [Google Scholar] [CrossRef]
- Guo, H.; Li, T.; Cao, X.; Xiong, J.; Jie, Y.; Willander, M.; Cao, X.; Wang, N.; Wang, Z. Self-Sterilized Flexible Single-Electrode Triboelectric Nanogenerator for Energy Harvesting and Dynamic Force Sensing. ACS Nano 2011, 11, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Laldjebaev, M.; Isaev, R.; Saukhimov, A. Renewable energy in Central Asia: An overview of potentials, deployment, outlook, and barriers. Energy Rep. 2021, 7, 3125–3136. [Google Scholar] [CrossRef]
- Lund, J.; Freeston, D.; Boyd, T. Direct utilization of geothermal energy 2010 worldwide review. Geothermics 2011, 40, 159–180. [Google Scholar] [CrossRef]
- Chandrasekharam, D.; Ranjith Pathegama, G. CO2 emissions from renewables: Solar pv, hydrothermal and EGS sources. Geomech. Geophys. Geo-Energy Geo-Resour. 2021, 6, 13. [Google Scholar] [CrossRef]
- Cisco. Cisco Annual Internet Report (2018–2023); Cisco: San José, CA, USA, 2020; 25p. [Google Scholar]
- Kim, M. Beyond-materials for sustainable power generation. In Proceedings of the IEEE 34th International Conference on Micro Electromechanical Systems (MEMS), Virtual, 25–29 January 2021. [Google Scholar] [CrossRef]
- Abdugapbar, K.; Dautov, K.; Hashmi, M.; Nauryzbayev, G. Design of Performance Enhanced Metamaterial-Enabled Absorber for Low-Power IoT Networks. In Proceedings of the International Conference on Internet of Things as a Service, Virtual, 17–18 November 2022. [Google Scholar] [CrossRef]
- Ramya, M.; Senthil Kumar, P. A review on recent advancements in bioenergy production using microbial fuel cells. Chemosphere 2022, 288, 132512. [Google Scholar] [CrossRef]
- Wang, J.; Ren, X.; Zhu, Y.; Huang, J.; Liu, S. A Review of Recent Advances in Microbial Fuel Cells: Preparation, Operation, and Application. BioTech 2022, 11, 44. [Google Scholar] [CrossRef]
- Rabaey, K.; Angenent, L.; Schroder, U.; Keller, J. Bioelectrochemical Systems; IWA Publishing: London, UK, 2010. [Google Scholar]
- Prathiba, S.; Kumar, P.; Vo, D.-V. Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. Chemosphere 2022, 286, 131856. [Google Scholar] [CrossRef]
- Bizon, N.; Tabatabaei, N.M.; BLaabjerg, F.; Kurt, E. Energy Harvesting and Energy Efficiency-Technology, Methods, and Applications; Lecture Notes in Energy; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Fragaszy, R.J.; Santamarina, J.C.; Amekudzi, A.; Assimaki, D.; Bachus, R.; Burns, S.E.; Cha, M.; Cho, J.C.; Cortes, D.D.; Dai, S.; et al. Sustainable development and energy geotechnology—Potential roles for geotechnical engineering. KSCE J. Civ. Eng. 2011, 15, 611–621. [Google Scholar] [CrossRef]
- Bhowmik, D.; Chetri, S.; Enerijiofi, K.E.; Naha, A.; Kanungo, T.D.; Shah, M.P.; Nath, S. Multitudinous approaches, challenges, and opportunities of bioelectrochemical systems in conversion of waste to energy from wastewater treatment plants. Clean. Circ. Bioecon. 2023, 4, 100040. [Google Scholar] [CrossRef]
- Amorim, F.; Pina, A.; Gerbelová, H.; Pereira da Silva, P.; Vasconcelos, J.; Martins, V. Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling. Energy 2014, 69, 104–112. [Google Scholar] [CrossRef]
- Eurostat. Share of Energy from Renewable Sources, 2021 (% of Gross Final Energy Consumption). Statistics Explained 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics&oldid=623919 (accessed on 1 December 2023).
- European Parliament and Council. Directive 2009/28/CE on 23rd of April 2009 Related to the Promotion of Utilization of Energy from Renewable Sources. European Union Official Journal 2009. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC088009/ (accessed on 9 December 2023).
- APA. Roteiro Para a Neutralidade Carbónica 2050 (RNC2050)-Estratégia de Longo Prazo Para a Neutralidade Carbónica da Economia Portuguesa em 2050. Agência Portuguesa do Ambiente 2019. Available online: https://apambiente.pt/clima/roteiro-para-neutralidade-carbonica-2050 (accessed on 7 December 2023).
- Lowitzsch, J.; Hoicka, C.E.; van Tulder, F.J. Renewable energy communities under the 2019 European Clean Energy Package-Governance model for the energy clusters of the future? Renew. Sustain. Energy Rev. 2020, 122, 109489. [Google Scholar] [CrossRef]
- República Portuguesa. PNEC 2030-Plano Nacional Energia-Clima. 2019. Available online: https://www.portugalenergia.pt/setor-energetico/bloco-3/ (accessed on 10 December 2023).
- Verde, S.F.; Rossetto, N. The Future of Renewable Energy Communities in the EU-An Investigation at the Time of the Clean Energy Package; European University Institute: Fiesole, Italy, 2020. [Google Scholar] [CrossRef]
- Costa, R.M.S.S. The Portuguese Energy System in 2030. Master’s Thesis, Universidade de Lisboa, Lisbon, Portugal, 2022. [Google Scholar]
- Tan, Y.S.; Ng, Y.T.; Low, J.S.C. Internet-of-Things Enabled Real-Time Monitoring of Energy Efficiency on Manufacturing Shop Floors. Procedia CIRP 2017, 61, 376–381. [Google Scholar] [CrossRef]
- Chi, H.; Pedrielli, G.; Ng, S.H.; Kister, T.; Bressan, S. A framework for real-time monitoring of energy efficiency of marine vessels. Energy 2018, 145, 246–260. [Google Scholar] [CrossRef]
Source | EH Techniques | EH Basics | Recent Investigation | Opportunities |
---|---|---|---|---|
Solar [12,13,48,59,60] | Photovoltaics Thermal Solar cells | Piezoelectricity TENG | AI compatibility Stable crystalline structure New materials Photo-reactors | Construction in general |
Wind [61,62,63,64,65,66] | Wind turbines | Piezoelectricity | Smart sensors AI compatibility | Offshore platforms Construction in general |
Hydraulic [14,47,51] | Devices for oceanic and river flow | Piezoelectricity TENG | Smart sensors New materials Durability | Offshore platforms Canals Water distribution systems |
Water turbines | Piezoelectricity | Smart sensors AI compatibility Power storage | Water storage facilities Waste containment | |
Biochemical [7,8,9,20,21,28,29,30,31,35,41,43,53,54,55,56,57,67,68] | Microbial fuel cells Enzyme-based fuel cells | Piezoelectricity | Electrode configurations New materials Biosensors | Wastewater treatment Bioremediation Solid waste processing Biosensing |
Biomechanisms | Piezoelectricity Pyroelectricity TENG | AI compatibility New materials Biosensors | Biosensing Agroindustry | |
Geothermal and geomechanical [2,15,16,17,18,19,22,69,70] | Devices for civil and geotechnical structures | Piezoelectricity TENG | New materials Smart sensors Durability | Construction in general Earthworks in general Highway and roads Railways Machinery in general |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchiori, L.; Morais, M.V.; Studart, A.; Albuquerque, A.; Andrade Pais, L.; Ferreira Gomes, L.; Cavaleiro, V. Energy Harvesting Opportunities in Geoenvironmental Engineering. Energies 2024, 17, 215. https://doi.org/10.3390/en17010215
Marchiori L, Morais MV, Studart A, Albuquerque A, Andrade Pais L, Ferreira Gomes L, Cavaleiro V. Energy Harvesting Opportunities in Geoenvironmental Engineering. Energies. 2024; 17(1):215. https://doi.org/10.3390/en17010215
Chicago/Turabian StyleMarchiori, Leonardo, Maria Vitoria Morais, André Studart, António Albuquerque, Luis Andrade Pais, Luis Ferreira Gomes, and Victor Cavaleiro. 2024. "Energy Harvesting Opportunities in Geoenvironmental Engineering" Energies 17, no. 1: 215. https://doi.org/10.3390/en17010215
APA StyleMarchiori, L., Morais, M. V., Studart, A., Albuquerque, A., Andrade Pais, L., Ferreira Gomes, L., & Cavaleiro, V. (2024). Energy Harvesting Opportunities in Geoenvironmental Engineering. Energies, 17(1), 215. https://doi.org/10.3390/en17010215