Woodchips from Forest Residues as a Sustainable and Circular Biofuel for Electricity Production: Evidence from an Environmental Life Cycle Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Forest Woodchips Production Case Study
2.2. Life Cycle Assessment
2.3. Comparison with Conventional Fossil Fuels
- A1: electricity production in a conventional natural gas CHP plant,
- A2: electricity production in a conventional oil CHP plant,
2.4. Woodchips Supply Scenarios
- S1: woodchips from Italy supplied by road for a distance of 350 km—considering that forestry are widespread in various geographic area in the Country and, therefore, an indicative mean distance for their availability [14]—woodchips from Europe supplied by road for a distance of 543 km and woodchips from USA and Canada shipped for a distance of 7458 km [51];
2.5. Sensitivity Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
CHP | Combined Heat and Power |
DALY | Disability Adjusted Life Years |
FU | Functional Unit |
GHG | Greenhouse Gases |
LCA | Life Cycle Assessment |
LCI | Life Cycle Inventory |
LCIA | Life Cycle Impact Assessment |
LTS | Long-Term National Strategy |
NECP | National Energy and Climate Plan |
ORC | Organic Rankine Cycle |
PCR | Product Category Rule |
Potentially Disappeared Fraction of species | |
SDGs | Sustainable Development Goals |
References
- United Nations. Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 28 August 2023).
- World Bioenergy Association. Global Bioenergy Statistics 2021. Available online: https://www.worldbioenergy.org/news/640/47/Global-Bioenergy-Statistics-2021/ (accessed on 28 August 2023).
- EUROBSERV’ER. Solid Biofuels Barometer 2022. Available online: https://www.eurobserv-er.org/solid-biomass-barometer-2022/ (accessed on 28 August 2023).
- International Energy Agency. Bioenergy. Available online: https://www.iea.org/fuels-and-technologies/bioenergy (accessed on 28 August 2023).
- IEA Bioenergy 2021 Country Reports. Implementation of Bioenergy in Italy. 2021. Available online: https://www.ieabioenergy.com/blog/publications/2021-country-reports/ (accessed on 7 September 2023).
- International Energy Agency. Italy 2023 Energy Policy Review. Available online: https://iea.blob.core.windows.net/assets/71b328b3-3e5b-4c04-8a22-3ead575b3a9a/Italy_2023_EnergyPolicyReview.pdf (accessed on 7 September 2023).
- Italian Ministry of the Environment and Energetic Safety. National Energy and Climate Plan. Available online: https://www.mase.gov.it/sites/default/files/PNIEC_2023.pdf (accessed on 7 September 2023).
- Italian Ministry of the Environment and Energetic Safety. Plan for the Ecological Transition. Available online: https://www.mase.gov.it/sites/default/files/archivio/allegati/PTE/PTE-definitivo.pdf (accessed on 7 September 2023).
- Italian Ministry of the Environment and Energetic Safety. Long-Term National Strategy on Reducing Greenhouse Gas Emissions. Available online: https://www.mase.gov.it/sites/default/files/lts_gennaio_2021.pdf (accessed on 7 September 2023).
- Scrucca, F.; Barberio, G.; Cutaia, L.; Rinaldi, C. A simplified methodology for estimating the Carbon Footprint of heat generation by forest woodchips as a support tool for sustainability assessment in decision-making. Clean. Environ. Syst. 2023, 9, 100126. [Google Scholar] [CrossRef]
- Urbano, D.G.; Aquino, A.; Scrucca, F. Energy Performance, Environmental Impacts and Costs of a Drying System: Life Cycle Analysis of Conventional and Heat Recovery Scenarios. Energies 2023, 16, 1523. [Google Scholar] [CrossRef]
- Moliner, C.; Arato, E.; Marchelli, F. Current Status of Energy Production from Solid Biomass in Southern Italy. Energies 2021, 14, 2576. [Google Scholar] [CrossRef]
- La Scalia, G.; Adelfio, L.; La Fata, C.M.; Micale, R. Economic and Environmental Assessment of Biomass Power Plants in Southern Italy. Sustainability 2022, 14, 9676. [Google Scholar] [CrossRef]
- González-García, S.; Bacenetti, J. Exploring the production of bio-energy from wood biomass. Italian case study. Sci. Total Environ. 2019, 647, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Murphy, F.; Devlin, G.; McDonnell, K. Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances. Appl. Energy 2014, 116, 1–8. [Google Scholar] [CrossRef]
- De La Fuente, T.; Athanassiadis, D.; González-García, S.; Nordfjell, T. Cradle-togate life cycle assessment of forest supply chains: Comparison of Canadian and Swedish case studies. J. Clean. Prod. 2017, 143, 866–881. [Google Scholar] [CrossRef]
- Weyrens, J.P.; Therasme, O.; Germain, R.H. Quantifying the life cycle greenhouse gas emissions of a mechanized shelterwood harvest producing both sawtimber and woodchips. Forests 2022, 13, 70. [Google Scholar] [CrossRef]
- Laina, R.; Herrero, S.J.; Corona, B.; Tolosana, E.; De La Fuente, T.; San Miguel, G. Economic and environmental assessment of a multifunctional poplar plantation for roundwood and wood chip production in Spain. For. Syst. 2022, 31, e002. [Google Scholar] [CrossRef]
- Perić, M.; Antonijević, D.; Komatina, M.; Bugarski, B.; Rakin, M. Life cycle assessment of wood chips supply chain in Serbia. Renew. Energy 2020, 155, 1302–1311. [Google Scholar] [CrossRef]
- Ferreira, J.V.; Viana, H.; Esteves, B.; Cruz Lopes, L.P.; Domingos, I. Life cycle assessment of residual forestry biomass chips at a power plant: A Portuguese case study. Int. J. Energy Environ. Eng. 2014, 5, 86. [Google Scholar] [CrossRef]
- Rincione, R.; Longo, S.; Cellura, M.; Guarino, F.; Brunetti, A. Life Cycle Assessment of Wood Chips from Residual Biomass: A Case Study. Int. J. Sustain. Dev. Plan. 2023, 18, 2253–2258. [Google Scholar] [CrossRef]
- Neri, E.; Cespi, D.; Setti, L.; Gombi, E.; Bernardi, E.; Vassura, I.; Passarini, F. Biomass residues to renewable energy: A life cycle perspective applied at a local scale. Energies 2016, 9, 922. [Google Scholar] [CrossRef]
- Pelletier, C.; Rogaume, Y.; Dieckhoff, L.; Bardeau, G.; Pons, M.N.; Dufour, A. Effect of combustion technology and biogenic CO2 impact factor on global warming potential of wood-to-heat chains. Appl. Energy 2019, 235, 1381–1388. [Google Scholar] [CrossRef]
- Thakur, A.; Canter, C.E.; Kumar, A. Life-cycle energy and emission analysis of power generation from forest biomass. Appl. Energy 2014, 128, 246–253. [Google Scholar] [CrossRef]
- Tagliaferri, C.; Evangelisti, S.; Clift, R.; Lettieri, P. Life cycle assessment of a biomass CHP plant in UK: The Heathrow energy centre case. Chem. Eng. Res. Des. 2018, 133, 210–221. [Google Scholar] [CrossRef]
- Corona, B.; Shen, L.; Sommersacher, P.; Junginger, M. Consequential Life Cycle Assessment of energy generation from waste wood and forest residues: The effect of resource-efficient additives. J. Clean. Prod. 2020, 259, 120948. [Google Scholar] [CrossRef]
- Balcioglu, G.; Jeswani, H.K.; Azapagic, A. Energy from forest residues in Turkey: An environmental and economic life cycle assessment of different technologies. Sci. Total Environ. 2023, 874, 162316. [Google Scholar] [CrossRef]
- Klavina, K.; Romagnoli, F.; Blumberga, D. Comparative life cycle assessment of woodchip uses in pyrolysis and combined heat and power production in Latvia. Energy Procedia 2017, 113, 201–208. [Google Scholar] [CrossRef]
- Sgarbossa, A.; Boschiero, M.; Pierobon, F.; Cavalli, R.; Zanetti, M. Comparative Life Cycle Assessment of Bioenergy Production from Different Wood Pellet Supply Chains. Forests 2020, 11, 1127. [Google Scholar] [CrossRef]
- Xu, H.; Latta, G.; Lee, U.; Lewandrowski, J.; Wang, M. Regionalized Life Cycle Greenhouse Gas Emissions of Forest Biomass Use for Electricity Generation in the United States. Environ. Sci. Technol. 2021, 55, 14806–14816. [Google Scholar] [CrossRef] [PubMed]
- Stoppato, A.; Benato, A. Life Cycle Assessment of a Commercially Available Organic Rankine Cycle Unit Coupled with a Biomass Boiler. Energies 2020, 13, 1835. [Google Scholar] [CrossRef]
- Gargiulo, A.; Carvalho, M.L.; Girardi, P. Life Cycle Assessment of Italian Electricity Scenarios to 2030. Energies 2020, 13, 3852. [Google Scholar] [CrossRef]
- Bastos, J.; Prina, M.G.; Garcia, R. Life-cycle assessment of current and future electricity supply addressing average and marginal hourly demand: An application to Italy. J. Clean. Prod. 2023, 399, 136563. [Google Scholar] [CrossRef]
- ENEA. ARCADIA Project. Available online: https://www.arcadia.enea.it/ (accessed on 27 September 2023).
- Available online: http://www.pongovernance1420.gov.it/it/progetto/arcadia-approccio-ciclo-di-vita-nei-contratti-pubblici-e-banca-dati-italiana-lca-per-luso-efficiente-delle-risorse/ (accessed on 27 September 2023).
- ISO 17225-4; Solid Biofuels—Fuel Specifications and Classes—Part 4: Graded Wood Chips. ISO: Geneva, Switzerland, 2021.
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- EPD® System. Product Category Rules: Electricity, Steam and Hot/Cold Water Generation and Distribution. Available online: https://www.environdec.com/product-category-rules-pcr/find-your-pcr (accessed on 27 September 2023).
- EPD® System. Product Category Rules: Basic Products from Forestry. Available online: https://www.environdec.com/product-category-rules-pcr/find-your-pcr (accessed on 27 September 2023).
- SCS Global. Product Category Rule Module for Roundwood. Available online: https://cdn.scsglobalservices.com/files/program_documents/pcr_final_wood-products_101816.pdf (accessed on 27 September 2023).
- Đuka, A.; Vusić, D.; Horvat, D.; Šušnjar, M.; Pandur, Z.; Papa, I. LCA studies in forestry—Stagnation or progress? Croat. J. For. Eng. 2017, 38, 2. [Google Scholar]
- Piano di Gestione Forestale Della Proprietà Silvo-Pastorale del Consorzio Boschi Carnici—Validità 2012–2023. Available online: https://www.consorzioboschicarnici.it/il-piano-di-gestione-forestale/ (accessed on 27 September 2023).
- Brun, F.; Giau, B.; Magnani, C. Appunti per la Stesura Della Stima del Prezzo di Macchiatico. Università degli Studi di Torino. 2003. Available online: https://core.ac.uk/download/pdf/301884697.pdf (accessed on 27 September 2023).
- Fonti, P.; Giudici, F. Quantitative and Qualitative Recording of Wood Volume from an Over-Aged Chestnut Coppice Forest. Schweiz. Z. Forstwes. 2001, 152, 417–424. [Google Scholar] [CrossRef]
- Scrucca, F.; Rinaldi, C.; Morara, E.; Argnani, A. Studio di Filiera Cippato Forestale. ARCADIA Project Report. 2021. Available online: https://www.arcadia.enea.it/component/jdownloads/?task=download.send&id=12&catid=16&Itemid=101 (accessed on 27 September 2023).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- PRé Sustainability. SimaPro Software. Available online: https://simapro.com/ (accessed on 27 September 2023).
- Giama, E.; Kyriaki, E.; Papaevaggelou, A.; Papadopoulos, A. Energy and Environmental Analysis of Renewable Energy Systems Focused on Biomass Technologies for Residential Applications: The Life Cycle Energy Analysis Approach. Energies 2023, 16, 4433. [Google Scholar] [CrossRef]
- SimaPro Database Manual—Methods Library. Available online: https://simapro.com/wp-content/uploads/2020/06/DatabaseManualMethods.pdf (accessed on 4 October 2023).
- Fiorentino, G.; Ansanelli, G.; Cerbone, A.; Giocoli, A.; Motola, V.; Zucaro, A. La Filiera delle Biomasse Solide per la Produzione di Energia Elettrica in Italia. ARCADIA Project Report. 2023. Available online: https://www.arcadia.enea.it/component/jdownloads/?task=download.send&id=41&catid=12&Itemid=101 (accessed on 27 September 2023).
- Italian Decree “D.M. 2 marzo 2010” on the Traceability of Biomass for the Production of Electricity. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/13563 (accessed on 4 October 2023).
UPSTREAM | |||
---|---|---|---|
Diesel | 3.44 × 10−3 | kg | Primary data |
Petrol | 9.27 × 10−5 | kg | Primary data |
Lubricating oil | 1.09 × 10−5 | kg | Primary data |
CO2 emissions from forest worksite | 7.57 × 10−3 | kgCO2eq | Secondary data |
Transportation | 1.28 × 10−1 | tkm | Secondary data * |
CORE | |||
Woodchips | 8.41 × 10−1 | kg | Secondary data ** |
Energy conversion process | Background data of the ecoinvent 3.9 dataset “Electricity, high voltage {IT}|heat and power co-generation, wood chips, 6667 kW” |
Damage Category | Unit | Total | UPSTREAM | CORE |
---|---|---|---|---|
Human health | DALY | 3.04 × 10−7 | 8.65 × 10−9 | 2.95 × 10−7 |
Ecosystem quality | PDF·m2·yr | 3.58 × 10−1 | 9.41 × 10−3 | 3.49 × 10−1 |
Climate change | kg CO2 eq | 2.94 × 10−2 | 2.17 × 10−2 | 7.67 × 10−3 |
Resources | MJ primary | 4.28 × 10−1 | 4.00 × 10−1 | 2.84 × 10−2 |
Emitted Substance | Compartment | Pt/FU | % |
---|---|---|---|
Human health | |||
Nitrogen oxides | Air | 1.63 × 10−5 | 38.1% |
Particulates, <2.5 μm | Air | 8.47 × 10−6 | 19.7% |
Zinc (II) | Soil | 6.66 × 10−6 | 15.5% |
Arsenic, ion | Soil | 4.10 × 10−6 | 9.6% |
Ammonia | Air | 3.29 × 10−6 | 7.7% |
Dioxin, 2,3,7,8 Tetrachlorodibenzo-p- | Air | 2.04 × 10−6 | 4.8% |
Others | Air/Soil/Water | 1.98 × 10−6 | 4.6% |
Ecosystem quality | |||
Zinc (II) | Soil | 1.91 × 10−5 | 73.1% |
Zinc (II) | Air | 2.83 × 10−6 | 10.8% |
Copper, ion | Soil | 2.20 × 10−6 | 8.4% |
Nitrogen oxides | Air | 5.42 × 10−7 | 2.1% |
Others | Air/Soil/Water/Resources | 1.46 × 10−6 | 5.6% |
Climate change | |||
Carbon dioxide, fossil | Air | 2.27 × 10−6 | 76.5% |
Dinitrogen monoxide | Air | 5.85 × 10−7 | 19.7% |
Methane, fossil | Air | 9.49 × 10−8 | 3.2% |
Others | Air | 1.70 × 10−8 | 0.6% |
Resources | |||
Oil, crude | Resources | 2.34 × 10−6 | 83.0% |
Gas, natural/m3 | Resources | 2.95 × 10−7 | 10.5% |
Coal, hard | Resources | 1.27 × 10−7 | 4.5% |
Uranium | Resources | 3.89 × 10−8 | 1.4% |
Others | Resources | 1.79 × 10−8 | 0.6% |
Emitted Substance | Compartment | Inventory Output (kg) | DALY | PDF·m2·yr | kg CO2 eq | MJ Primary |
---|---|---|---|---|---|---|
Carbon dioxide, fossil | Air | 2.25 × 10−2 | 2.25 × 10−2 | |||
Nitrogen oxides | Air | 1.30 × 10−3 | 1.16 × 10−7 | 7.42 × 10−3 | ||
Ammonia | Air | 2.74 × 10−5 | 2.34 × 10−8 | 4.29 × 10−3 | ||
Methane, fossil | Air | 9.08 × 10−5 | ||||
Particulates, <2.5 um | Air | 8.58 × 10−5 | 6.00 × 10−8 | |||
Dinitrogen monoxide | Air | 3.72 × 10−5 | 5.80 × 10−3 | |||
Zinc (II) | Air | 4.85 × 10−6 | 1.26 × 10−9 | 3.88 × 10−2 | ||
Dioxin, 2,3,7,8 Tetrachlorodibenzo-p- | Air | 4.96 × 10−13 | 1.45 × 10−8 | |||
Zinc (II) | Soil | 5.59 × 10−6 | 4.72 × 10−8 | 2.62 × 10−1 | ||
Copper, ion | Soil | 5.41 × 10−7 | 9.22 × 10−11 | 3.02 × 10−2 | ||
Arsenic, ion | Soil | 2.22 × 10−8 | 2.91 × 10−8 | 4.28 × 10−4 | ||
Oil, crude | Resources | 7.76 × 10−3 | 3.55 × 10−1 | |||
Coal, hard | Resources | 1.01 × 10−3 | 1.93 × 10−2 | |||
Uranium | Resources | 1.06 × 10−8 | 5.91 × 10−3 |
Damage Category | Unit | Baseline (Efficiency 22.6%) | Alternative Scenario (Efficiency 27.8%) |
---|---|---|---|
Human health | DALY | 3.04 × 10−7 | 2.52 × 10−7 |
Ecosystem quality | PDF·m2·yr | 3.58 × 10−1 | 2.92 × 10−1 |
Climate change | kg CO2 eq | 2.94 × 10−2 | 2.73 × 10−2 |
Resources | MJ primary | 4.28 × 10−1 | 3.92 × 10−1 |
Previous Literature | Unit | Literature Results and Comments | Case Study Results * | |
---|---|---|---|---|
Balcioglu et al. [27] | kgCO2eq/MWh | 40 | combined heat and power, direct combustion | 29.4 |
Xu et al. [30] | gCO2eq/kWh | 48.9 | mean value of GHG emissions for the logging residues-to-electricity pathway | |
Stoppato and Benato [31] | kgCO2eq/kWh | 8.53 × 10−2 | ORC with an electric efficiency from 8.6% (CHP mode) to 13.5% (full electric mode) | 2.94 × 10−2 |
Rincione et al. [21] | kgCO2eq/kWh | 2.71 × 10−2 | woodchips production | 2.17 × 10−2 |
Sgarbossa et al. [29] | gCO2eq/MJth | 196 | 1 MJ thermal energy produced by 50 kW boiler | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scrucca, F.; Barberio, G.; Cutaia, L.; Rinaldi, C. Woodchips from Forest Residues as a Sustainable and Circular Biofuel for Electricity Production: Evidence from an Environmental Life Cycle Assessment. Energies 2024, 17, 105. https://doi.org/10.3390/en17010105
Scrucca F, Barberio G, Cutaia L, Rinaldi C. Woodchips from Forest Residues as a Sustainable and Circular Biofuel for Electricity Production: Evidence from an Environmental Life Cycle Assessment. Energies. 2024; 17(1):105. https://doi.org/10.3390/en17010105
Chicago/Turabian StyleScrucca, Flavio, Grazia Barberio, Laura Cutaia, and Caterina Rinaldi. 2024. "Woodchips from Forest Residues as a Sustainable and Circular Biofuel for Electricity Production: Evidence from an Environmental Life Cycle Assessment" Energies 17, no. 1: 105. https://doi.org/10.3390/en17010105
APA StyleScrucca, F., Barberio, G., Cutaia, L., & Rinaldi, C. (2024). Woodchips from Forest Residues as a Sustainable and Circular Biofuel for Electricity Production: Evidence from an Environmental Life Cycle Assessment. Energies, 17(1), 105. https://doi.org/10.3390/en17010105