Electrochemical Insight into the Use of Microbial Fuel Cells for Bioelectricity Generation and Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. MFC Setup and Operation
2.2. Chemical and Electrochemical Analysis
3. Results
3.1. Chemical Analysis
3.2. Open Circuit Voltage and Polarization Study
3.3. Electrochemical Impedance Spectroscopy (EIS)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajasulochana, P.; Preethy, V. Comparison on Efficiency of Various Techniques in Treatment of Waste and Sewage Water—A Comprehensive Review. Resour. Technol. 2016, 2, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Kehrein, P.; Van Loosdrecht, M.; Osseweijer, P.; Garfí, M.; Dewulf, J.; Posada, J. A Critical Review of Resource Recovery from Municipal Wastewater Treatment Plants-Market Supply Potentials, Technologies and Bottlenecks. Environ. Sci. Water Res. Technol. 2020, 6, 877–910. [Google Scholar] [CrossRef] [Green Version]
- Gude, V.G.; Nirmalakhandan, N.; Deng, S. Sustainable low temperature desalination: A case for renewable energy. J. Renew. Sustain. Energy 2011, 3, 043108. [Google Scholar] [CrossRef]
- Sztekler, K.; Kalawa, W.; Nowak, W.; Mika, L.; Gradziel, S.; Krzywanski, J.; Radomska, E. Experimental Study of Three-Bed Adsorption Chiller with Desalination Function. Energies 2020, 13, 5827. [Google Scholar] [CrossRef]
- Sztekler, K.; Kalawa, W.; Nowak, W.; Mika, Ł.; Krzywański, J.; Grabowska, K.; Sosnowski, M.; Al-Harbi, A.A. Performance Evaluation of a Single-Stage Two-Bed Adsorption Chiller With Desalination Function. J. Energy Resour. Technol. 2021, 143, 082101. [Google Scholar] [CrossRef]
- Qiu, B.; Gorgojo, P.; Fan, X. Adsorption desalination: Advances in porous adsorbents. Chin. J. Chem. Eng. 2022, 42, 151–169. [Google Scholar] [CrossRef]
- Slate, A.J.; Whitehead, K.A.; Brownson, D.A.; Banks, C.E. Microbial fuel cells: An overview of current technology. Renew. Sustain. Energy Rev. 2019, 101, 60–81. [Google Scholar] [CrossRef]
- Choudhury, P.; Uday, U.S.P.; Mahata, N.; Nath Tiwari, O.; Narayan Ray, R.; Kanti Bandyopadhyay, T.; Bhunia, B. Performance Improvement of Microbial Fuel Cells for Waste Water Treatment along with Value Addition: A Review on Past Achievements and Recent Perspectives. Renew. Sustain. Energy Rev. 2017, 79, 372–389. [Google Scholar] [CrossRef]
- Javed, M.M.; Nisar, M.A.; Ahmad, M.U.; Yasmeen, N.; Zahoor, S. Microbial Fuel Cells as an Alternative Energy Source: Current Status. Biotechnol. Genet. Eng. Rev. 2018, 34, 216–242. [Google Scholar] [CrossRef] [PubMed]
- Do, M.H.; Ngo, H.H.; Guo, W.S.; Liu, Y.; Chang, S.W.; Nguyen, D.D.; Nghiem, L.D.; Ni, B.J. Challenges in the Application of Microbial Fuel Cells to Wastewater Treatment and Energy Production: A Mini Review. Sci. Total Environ. 2018, 639, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singh, L.; Zularisam, A.W.; Hai, F.I. Microbial Fuel Cell Is Emerging as a Versatile Technology: A Review on Its Possible Applications, Challenges and Strategies to Improve the Performances. Int. J. Energy Res. 2018, 42, 369–394. [Google Scholar] [CrossRef] [Green Version]
- Sharif, H.M.A.; Farooq, M.; Hussain, I.; Ali, M.; Mujtaba, M.A.; Sultan, M.; Yang, B. Recent Innovations for Scaling up Microbial Fuel Cell Systems: Significance of Physicochemical Factors for Electrodes and Membranes Materials. J. Taiwan Inst. Chem. Eng. 2021, 129, 207–226. [Google Scholar] [CrossRef]
- Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial Fuel Cells: From Fundamentals to Applications. A Review. J. Power Sources 2017, 356, 225–244. [Google Scholar] [CrossRef]
- Li, S.; Cheng, C.; Thomas, A. Carbon-Based Microbial-Fuel-Cell Electrodes: From Conductive Supports to Active Catalysts. Adv. Mater. 2017, 29, 1602547. [Google Scholar] [CrossRef]
- Call, T.P.; Carey, T.; Bombelli, P.; Lea-Smith, D.J.; Hooper, P.; Howe, C.J.; Torrisi, F. Platinum-Free, Graphene Based Anodes and Air Cathodes for Single Chamber Microbial Fuel Cells. J. Mater. Chem. A 2017, 5, 23872–23886. [Google Scholar] [CrossRef] [Green Version]
- Littfinski, T.; Nettmann, E.; Gehring, T.; Krimmler, S.; Heinrichmeier, J.; Murnleitner, E.; Lübken, M.; Pant, D.; Wichern, M. A Comparative Study of Different Electrochemical Methods to Determine Cell Internal Parameters of Microbial Fuel Cells. J. Power Sources 2021, 494, 229707. [Google Scholar] [CrossRef]
- Tabish, A.N.; Patel, H.C.; Aravind, P.V. Electrochemical Oxidation of Syngas on Nickel and Ceria Anodes. Electrochim. Acta 2017, 228, 575–585. [Google Scholar] [CrossRef]
- Sekar, N.; Ramasamy, R.P. Electrochemical Impedance Spectroscopy for Microbial Fuel Cell Characterization. J. Microb. Biochem. Technol. 2013, 5, 215–219. [Google Scholar] [CrossRef] [Green Version]
- Sindhuja, M.; Sudha, V.; Harinipriya, S. Insights on the Resistance, Capacitance and Bioelectricity Generation of Microbial Fuel Cells by Electrochemical Impedance Studies. Int. J. Hydrogen Energy 2019, 44, 5428–5436. [Google Scholar] [CrossRef]
- Sindhuja, M.; Kumar, N.S.; Sudha, V.; Harinipriya, S. Equivalent Circuit Modeling of Microbial Fuel Cells Using Impedance Spectroscopy. J. Energy Storage 2016, 7, 136–146. [Google Scholar] [CrossRef]
- López Zavala, M.Á.; Torres Delenne, P.R.; González Peña, O.I. Improvement of Wastewater Treatment Performance and Power Generation in Microbial Fuel Cells by Enhancing Hydrolysis and Acidogenesis, and by Reducing Internal Losses. Energies 2018, 11, 2309. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.D.; Zhao, Q.L.; Jiao, Y.; Zhang, J.N.; Jiang, J.Q.; Ren, N.; Kim, B.H. Improved Performance of Microbial Fuel Cell Using Combination Biocathode of Graphite Fiber Brush and Graphite Granules. J. Power Sources 2011, 196, 6036–6041. [Google Scholar] [CrossRef]
- Logan, B.; Liu, H.; Oh, S.-E.; Min, B. Electricity From Domestic Wastewater Can Be Harvested in Microbial Fuel Cells. Proc. Water Environ. Fed. 2012, 2004, 581–585. [Google Scholar] [CrossRef]
- Ghangrekar, M.M.; Shinde, V.B. Simultaneous Sewage Treatment and Electricity Generation in Membrane-Less Microbial Fuel Cell. Water Sci. Technol. 2008, 58, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Sathishkumar, K.; Narenkumar, J.; Selvi, A.; Murugan, K.; Babujanarthanam, R.; Rajasekar, A. Treatment of Soak Liquor and Bioelectricity Generation in Dual Chamber Microbial Fuel Cell. Environ. Sci. Pollut. Res. 2018, 25, 11424–11430. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.; Gonçalves, L.; Peixoto, J.M.; Peixoto, L.; Brito, A.G.; Martins, G. Resources Recovery in the Dairy Industry: Bioelectricity Production Using a Continuous Microbial Fuel Cell. J. Clean. Prod. 2017, 140, 971–976. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.; Shinde, V.N.; Deopurkar, R.L.; Kale, S.P.; Patil, S.A.; Pant, D. Recent Advances in the Use of Different Substrates in Microbial Fuel Cells toward Wastewater Treatment and Simultaneous Energy Recovery. Appl. Energy 2016, 168, 706–723. [Google Scholar] [CrossRef]
- Huang, J.; Yang, P.; Guo, Y.; Zhang, K. Electricity Generation during Wastewater Treatment: An Approach Using an AFB-MFC for Alcohol Distillery Wastewater. Desalination 2011, 276, 373–378. [Google Scholar] [CrossRef]
- Tremouli, A.; Antonopoulou, G.; Bebelis, S.; Lyberatos, G. Operation and Characterization of a Microbial Fuel Cell Fed with Pretreated Cheese Whey at Different Organic Loads. Bioresour. Technol. 2013, 131, 380–389. [Google Scholar] [CrossRef]
- Sakdaronnarong, C.K.; Thanosawan, S.; Chaithong, S.; Sinbuathong, N.; Jeraputra, C. Electricity Production from Ethanol Stillage in Two-Compartment MFC. Fuel 2013, 107, 382–386. [Google Scholar] [CrossRef]
- Ma, D.; Jiang, Z.H.; Lay, C.H.; Zhou, D. Electricity Generation from Swine Wastewater in Microbial Fuel Cell: Hydraulic Reaction Time Effect. Int. J. Hydrogen Energy 2016, 41, 21820–21826. [Google Scholar] [CrossRef]
- Fangzhou, D.; Zhenglong, L.; Shaoqiang, Y.; Beizhen, X.; Hong, L. Electricity Generation Directly Using Human Feces Wastewater for Life Support System. Acta Astronaut. 2011, 68, 1537–1547. [Google Scholar] [CrossRef]
- Cercado-Quezada, B.; Delia, M.L.; Bergel, A. Testing Various Food-Industry Wastes for Electricity Production in Microbial Fuel Cell. Bioresour. Technol. 2010, 101, 2748–2754. [Google Scholar] [CrossRef] [Green Version]
- Ramasamy, R.P.; Ren, Z.; Mench, M.M.; Regan, J.M. Impact of Initial Biofilm Growth on the Anode Impedance of Microbial Fuel Cells. Biotechnol. Bioeng. 2008, 101, 101–108. [Google Scholar] [CrossRef]
- Borole, A.P.; Aaron, D.; Hamilton, C.Y.; Tsouris, C. Understanding Long-Term Changes in Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy. Environ. Sci. Technol. 2010, 44, 2740–2745. [Google Scholar] [CrossRef]
- He, Z.; Huang, Y.; Manohar, A.K.; Mansfeld, F. Effect of Electrolyte P.H. on the Rate of the Anodic and Cathodic Reactions in an Air-Cathode Microbial Fuel Cell. Bioelectrochemistry 2008, 74, 78–82. [Google Scholar] [CrossRef]
- Jung, S.; Mench, M.M.; Regan, J.M. Impedance Characteristics and Polarization Behavior of a Microbial Fuel Cell in Response to Short-Term Changes in Medium P.H. Environ. Sci. Technol. 2011, 45, 9069–9074. [Google Scholar] [CrossRef]
- Lepage, G.; Albernaz, F.O.; Perrier, G.; Merlin, G. Characterization of a Microbial Fuel Cell with Reticulated Carbon Foam Electrodes. Bioresour. Technol. 2012, 124, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Huang, X.; Fan, M.Z.; Cao, X.X.; Wang, C. Composition and Distribution of Internal Resistance in Three Types of Microbial Fuel Cells. Appl. Microbiol. Biotechnol. 2007, 77, 551–558. [Google Scholar] [CrossRef]
- You, S.; Zhao, Q.; Zhang, J.; Jiang, J.; Wan, C.; Du, M.; Zhao, S. A Graphite-Granule Membrane-Less Tubular Air-Cathode Microbial Fuel Cell for Power Generation under Continuously Operational Conditions. J. Power Sources 2007, 173, 172–177. [Google Scholar] [CrossRef]
- Krzywanski, J. Heat transfer performance in a superheater of an industrial CFBC using fuzzy logic-based methods. Entropy 2019, 21, 919. [Google Scholar] [CrossRef] [Green Version]
- Krzywanski, J.; Grabowska, K.; Sosnowski, M.; Żyłka, A.; Sztekler, K.; Kalawa, W.; Wojcik, T.; Nowak, W. Modeling of a re-heat two-stage adsorption chiller by AI approach. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 240, p. 05014. [Google Scholar] [CrossRef]
- Krzywanski, J.; Urbaniak, D.; Otwinowski, H.; Wylecial, T.; Sosnowski, M. Fluidized bed jet milling process optimized for mass and particle size with a fuzzy logic approach. Materials 2020, 13, 3303. [Google Scholar] [CrossRef] [PubMed]
Substrate | Anode | Cathode | OCV Max (v) | COD Removal Efficiency (%) | Peak Power Density (mWm−2) | Refs. |
---|---|---|---|---|---|---|
Sewage wastewater (0.4 g COD/L) | Graphite rod | Graphite rod | 0.18 | 82.7 | 6.73 | [24] |
Brewery wastewater (28.4 g COD/L) | Carbon fiber paper | Carbon fiber paper | 0.61 | 88.4 | 124 | [28] |
Cheese whey (6.7 g COD/L) | Carbon paper | Carbon cloth | NA | 94 | 46 | [29] |
Ethanol stillage (37.8 g COD/L) | Graphite rod | Carbon cloth | NA | 81.5 | 93 | [30] |
Swine wastewater (3.3 g COD/L) | Carbon cloth | Carbon cloth | 0.12 | 83 | 13 | [31] |
Human feces wastewater (0.6 g COD/L) | Carbon paper | Pt-coated carbon paper | 0.55 | 71 | 70.8 | [32] |
Yogurt wastewater (8.16 g COD/L) | Graphite felt | Pt mesh | 0.7 | NA | 53.8 | [33] |
Dairy effluent (4.5 g COD/L) | Activate carbon | Activated carbon | 0.396 | 82 | 36.4 | This study |
Time (Day) | Rs (Ω) | R1 (Ω) | R2 (Ω) | CPE (Q1) × 106 | CPE (Q2) × 104 | W (S·s1/2) × 103 |
---|---|---|---|---|---|---|
3 | 199.2 | 139.2 | 281.0 | 5.14 | 3.03 | 5.39 |
5 | 216.4 | 149.7 | 327.8 | 6.11 | 3.53 | 7.15 |
7 | 237.8 | 106.9 | 414.5 | 49.9 | 5.62 | 7.77 |
10 | 404.2 | 91.5 | 784.9 | 108.1 | 7.14 | 10.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabish, A.N.; Farhat, I.; Irshad, M.; Hussain, M.A.; Usman, M.; Chaudhary, T.N.; Fouad, Y.; Raza, S.; Ashraf, W.M.; Krzywanski, J. Electrochemical Insight into the Use of Microbial Fuel Cells for Bioelectricity Generation and Wastewater Treatment. Energies 2023, 16, 2760. https://doi.org/10.3390/en16062760
Tabish AN, Farhat I, Irshad M, Hussain MA, Usman M, Chaudhary TN, Fouad Y, Raza S, Ashraf WM, Krzywanski J. Electrochemical Insight into the Use of Microbial Fuel Cells for Bioelectricity Generation and Wastewater Treatment. Energies. 2023; 16(6):2760. https://doi.org/10.3390/en16062760
Chicago/Turabian StyleTabish, Asif Nadeem, Iqra Farhat, Muneeb Irshad, Muhammad Asif Hussain, Muhammad Usman, Tariq Nawaz Chaudhary, Yasser Fouad, Sohaib Raza, Waqar Muhammad Ashraf, and Jaroslaw Krzywanski. 2023. "Electrochemical Insight into the Use of Microbial Fuel Cells for Bioelectricity Generation and Wastewater Treatment" Energies 16, no. 6: 2760. https://doi.org/10.3390/en16062760
APA StyleTabish, A. N., Farhat, I., Irshad, M., Hussain, M. A., Usman, M., Chaudhary, T. N., Fouad, Y., Raza, S., Ashraf, W. M., & Krzywanski, J. (2023). Electrochemical Insight into the Use of Microbial Fuel Cells for Bioelectricity Generation and Wastewater Treatment. Energies, 16(6), 2760. https://doi.org/10.3390/en16062760