Performance Evaluation of Aquaponics-Waste-Based Biochar as a Cathode Catalyst in Sediment Microbial Fuel Cells for Integrated Multitrophic Aquaculture Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Fabrication of SMFC
2.2. Aquacultural Biochar Preparation and Activation
2.3. Material and Electrochemical Characterization of Activated Catalyst
2.4. Performance Evaluation of SMFC with and without Catalyst
3. Results and Discussion
3.1. Characterization Studies of Synthesized Activated Aquacultural Biochar Catalyst
3.2. Performance of SMFC
3.3. Comparative Performance Evaluation of SMFC with and without Catalyst
3.4. Design Proposal for SMFC-Assisted Integrated Poultry–Fish Culture
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belal, I.E.H.; Al-Owaifeir, A.; Al-Dosari, M. Replacing fish meal with chicken offal silage in commercial Oreochromis niloticus (L.) feed. Aquac. Res. 1995, 26, 855–858. [Google Scholar] [CrossRef]
- George, F.O.A.; Nwaezeigwe, F.O.; Abdul, W.O.; Jegede, A.V. Development of Organic fish feeds: Case study of poultry droppings and pig feces as replacement for soybean meal in practical diets for Nile tilapia, Oreochromis niloticus (L.). In Ecological and Organic Agriculture Strategies for Viable Continental and National Development in the Context of the African Union’s Agenda 2063. Scientific Track Proceedings of the 4th African Organic Conference, Saly Portudal, Senegal, 5–8 November 2018; ICROFS: Tjele, Denmark, 2018; pp. 122–129. [Google Scholar]
- Das, S.K.; Das, A.; Singh, S.G.; Devi, N.P.; Mahanta, P. Utilization of poultry manure in fish seed rearing under mid-hill condition. Indian J. Anim. Sci. 2020, 90, 824–828. [Google Scholar] [CrossRef]
- Jamal, M.T.; Pugazhendi, A. Treatment of fish market wastewater and energy production using halophiles in air cathode microbial fuel cell. J. Environ. Manag. 2021, 292, 112752. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, K.; Sangeeviraman, V.; Chandrahasan, P.; Chaudhary, B.N.; Ramachandra, S.S. Integration of fish culture and poultry rearing in transplanted rice for nutritional security in smallholder farms. Sci. Rep. 2020, 10, 10566. [Google Scholar] [CrossRef]
- Gajaraj, S.; Hu, Z. Integration of microbial fuel cell techniques into activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production. Chemosphere 2014, 117, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Guan, L.; Taylor, D.P.; Kuhn, D.; He, Z. Nitrogen removal from water of recirculating aquaculture system by a microbial fuel cell. Aquaculture 2018, 497, 74–81. [Google Scholar] [CrossRef]
- Zhao, S.; Yun, H.; Khan, A.; Salama, E.-S.; Redina, M.M.; Liu, P.; Li, X. Two-stage microbial fuel cell (MFC) and membrane bioreactor (MBR) system for enhancing wastewater treatment and resource recovery based on MFC as a biosensor. Environ. Res. 2022, 204, 112089. [Google Scholar] [CrossRef]
- Cui, Y.; Lai, B.; Tang, X. Microbial Fuel Cell-Based Biosensors. Biosensors 2019, 9, 92. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Bai, L.; Zhai, J.; Wang, Y.; Dong, S. Toxicity detection in water containing heavy metal ions with a self-powered microbial fuel cell-based biosensor. Talanta 2017, 168, 210–216. [Google Scholar] [CrossRef]
- Bagchi, S.; Behera, M. Assessment of Heavy Metal Removal in Different Bioelectrochemical Systems: A Review. J. Hazard. Toxic Radioact. Waste 2020, 24, 04020010. [Google Scholar] [CrossRef]
- Kim, B.H.; Chang, I.S.; Gil, G.C.; Park, H.S.; Kim, H.J. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett. 2003, 25, 541–545. [Google Scholar] [CrossRef]
- Ivars-Barceló, F.; Zuliani, A.; Fallah, M.; Mashkour, M.; Rahimnejad, M.; Luque, R. Novel Applications of Microbial Fuel Cells in Sensors and Biosensors. Appl. Sci. 2018, 8, 1184. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Yang, X.; Liang, P.; Liu, P.; Huang, X. Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges. In Renewable and Sustainable Energy Reviews; Elsevier: Amsterdam, The Netherlands, 2018; Volume 81, pp. 292–305. [Google Scholar] [CrossRef]
- Sajana, T.; Ghangrekar, M.; Mitra, A. Application of sediment microbial fuel cell for in situ reclamation of aquaculture pond water quality. Aquac. Eng. 2013, 57, 101–107. [Google Scholar] [CrossRef]
- Jadhav, G.; Ghangrekar, M. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour. Technol. 2009, 100, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, G.D.; Dhar, D.; Ghangrekar, M.M.; Banerjee, R. TiO2-Si- or SrTiO3-Si-impregnated PVA–based low-cost proton exchange membranes for application in microbial fuel cell. Ionics 2020, 26, 6195–6205. [Google Scholar] [CrossRef]
- Bhowmick, G.D.; Kibena-Põldsepp, E.; Matisen, L.; Merisalu, M.; Kook, M.; Käärik, M.; Leis, J.; Sammelselg, V.; Ghangrekar, M.M.; Tammeveski, K. Multi-walled carbon nanotube and carbide-derived carbon supported metal phthalocyanines as cathode catalysts for microbial fuel cell applications. Sustain. Energy Fuels 2019, 3, 3525–3537. [Google Scholar] [CrossRef]
- Bhowmick, G.D.; Ghangrekar, M.M.; Zekker, I.; Kibena-Põldsepp, E.; Tammeveski, K.; Wilhelm, M.; Banerjee, R. Ultrafiltration membrane bio-fuel cell as an energy-efficient advanced wastewater treatment system. Int. J. Energy Res. 2022, 46, 20216–20227. [Google Scholar] [CrossRef]
- Neethu, B.; Bhowmick, G.D.; Ghangrekar, M.M. Enhancement of bioelectricity generation and algal productivity in microbial carbon-capture cell using low cost coconut shell as membrane separator. Biochem. Eng. J. 2018, 133, 205–213. [Google Scholar] [CrossRef]
- Donovan, C.; Dewan, A.; Heo, D.; Beyenal, H. Batteryless, Wireless Sensor Powered by a Sediment Microbial Fuel Cell. Environ. Sci. Technol. 2008, 42, 8591–8596. [Google Scholar] [CrossRef]
- Sajana, T.K.; Ghangrekar, M.M.; Mitra, A. Effect of operating parameters on the performance of sediment microbial fuel cell treating aquaculture water. Aquac. Eng. 2014, 61, 17–26. [Google Scholar] [CrossRef]
- Shabani, F.; Philamore, H.; Matsuno, F. An Energy-Autonomous Chemical Oxygen Demand Sensor Using a Microbial Fuel Cell and Embedded Machine Learning. IEEE Access 2021, 9, 108689–108701. [Google Scholar] [CrossRef]
- Li, J. An Experimental Study of Microbial Fuel Cells for Electricity Generating: Performance Characterization and Capacity Improvement. J. Sustain. Bioenergy Syst. 2013, 3, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Bhowmick, G.D.; Noori, M.T.; Das, I.; Neethu, B.; Ghangrekar, M.M.; Mitra, A. Bismuth doped TiO2 as an excellent photocathode catalyst to enhance the performance of microbial fuel cell. Int. J. Hydrog. Energy 2018, 43, 7501–7510. [Google Scholar] [CrossRef]
- Thomas, Y.R.J.; Picot, M.; Carer, A.; Berder, O.; Sentieys, O.; Barrière, F. A single sediment-microbial fuel cell powering a wireless telecommunication system. J. Power Sources 2013, 241, 703–708. [Google Scholar] [CrossRef] [Green Version]
- Donovan, C.; Dewan, A.; Heo, D.; Lewandowski, Z.; Beyenal, H. Sediment microbial fuel cell powering a submersible ultrasonic receiver: New approach to remote monitoring. J. Power Sources 2013, 233, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Radachowsky, S.E.; Wolf, M.; Nielsen, M.E.; Girguis, P.R.; Reimers, C.E. Benthic Microbial Fuel Cell as Direct Power Source for an Acoustic Modem and Seawater Oxygen/Temperature Sensor System. Environ. Sci. Technol. 2011, 45, 5047–5053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Tian, L.; He, Z. Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes. J. Power Sources 2011, 196, 9568–9573. [Google Scholar] [CrossRef]
- Klevinskas, A.; Kantminienė, K.; Žmuidzinavičienė, N.; Jonuškienė, I.; Griškonis, E. Microbial Fuel Cell as a Bioelectrochemical Sensor of Nitrite Ions. Processes 2021, 9, 1330. [Google Scholar] [CrossRef]
- Chakraborty, I.; Bhowmick, G.D.; Ghosh, D.; Dubey, B.; Pradhan, D.; Ghangrekar, M. Novel low-cost activated algal biochar as a cathode catalyst for improving performance of microbial fuel cell. Sustain. Energy Technol. Assess. 2020, 42, 100808. [Google Scholar] [CrossRef]
- Bhowmick, G.D.; Das, S.; Adhikary, K.; Ghangrekar, M.M.; Mitra, A. Bismuth-Impregnated Ruthenium with Activated Carbon as Photocathode Catalyst to Proliferate the Efficacy of a Microbial Fuel Cell. J. Hazard. Toxic Radioact. Waste 2021, 25, 04020066. [Google Scholar] [CrossRef]
- Oyiwona, G.E.; Ogbonna, J.C.; Anyanwu, C.U.; Okabe, S. Electricity generation potential of poultry droppings wastewater in microbial fuel cell using rice husk charcoal electrodes. Bioresour. Bioprocess. 2018, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Miah, M.R.; Rahman, A.K.M.L.; Akanda, M.R.; Pulak, A.; Rouf, A. Production of biogas from poultry litter mixed with the co-substrate cow dung. J. Taibah Univ. Sci. 2016, 10, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Fadini, P.S.; Jardim, W.F.; Guimarães, J.R. Evaluation of organic load measurement techniques in a sewage and waste stabilisation pond. J. Braz. Chem. Soc. 2004, 15, 131–135. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, T.; Kang, M.; Cai, Z. Microbial Fuel Cell for Renewable Energies Generation from Manure Treatment. E3S Web Conf. 2021, 257, 01008. [Google Scholar] [CrossRef]
- Pugazhendi, A.; Alreeshi, G.G.; Jamal, M.T.; Karuppiah, T.; Jeyakumar, R.B. Bioenergy production and treatment of aquaculture wastewater using saline anode microbial fuel cell under saline condition. Environ. Technol. Innov. 2021, 21, 101331. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayaraj, K.K.; Saravanan, P.; Bhowmick, G.D. Performance Evaluation of Aquaponics-Waste-Based Biochar as a Cathode Catalyst in Sediment Microbial Fuel Cells for Integrated Multitrophic Aquaculture Systems. Energies 2023, 16, 5922. https://doi.org/10.3390/en16165922
Jayaraj KK, Saravanan P, Bhowmick GD. Performance Evaluation of Aquaponics-Waste-Based Biochar as a Cathode Catalyst in Sediment Microbial Fuel Cells for Integrated Multitrophic Aquaculture Systems. Energies. 2023; 16(16):5922. https://doi.org/10.3390/en16165922
Chicago/Turabian StyleJayaraj, Kiran K., Prakash Saravanan, and Gourav Dhar Bhowmick. 2023. "Performance Evaluation of Aquaponics-Waste-Based Biochar as a Cathode Catalyst in Sediment Microbial Fuel Cells for Integrated Multitrophic Aquaculture Systems" Energies 16, no. 16: 5922. https://doi.org/10.3390/en16165922
APA StyleJayaraj, K. K., Saravanan, P., & Bhowmick, G. D. (2023). Performance Evaluation of Aquaponics-Waste-Based Biochar as a Cathode Catalyst in Sediment Microbial Fuel Cells for Integrated Multitrophic Aquaculture Systems. Energies, 16(16), 5922. https://doi.org/10.3390/en16165922