Electrochromic Electrodes with Enhanced Performance: Review of Morphology and Ion Transport Mechanism Modifications
Abstract
1. Introduction
2. Strategies to Modify the Morphology of the Electrochromic Electrodes
2.1. Nanostructured Periodic Arrays
2.2. Nanostructured Porous Surfaces
2.3. Nano/Micro Composite Surfaces
2.4. Hybrid Organic-Inorganic Nanocomposite EC Surfaces with Nanofeature
3. Conclusions
- Texturing the EC electrode surface, the implementation of nano/microstructures or hybrid nanostructures on the surface of the EC electrode led to the increase in the surface-to-volume ratio.
- The incorporation with metallic nanoparticles (e.g., Au or Pt) leads to improving the electrical conduction between the electrochromic electrode and the transparent conductor surface.
- The combination with organic transparent conductors (e.g., PEDOT:PSS or PANI:PSS) results in improving the electrical conduction in addition to decreasing the time between insertion and extraction of ions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells 2010, 94, 87–105. [Google Scholar] [CrossRef]
- Casini, M. Smart windows for energy efficiency of buildings. In Proceedings of the Second International Conference on Advances in Civil, Structural and Environmental Engineering–ACSEE, Zürich, Switzerland, 25–26 October 2014; pp. 273–281. [Google Scholar]
- Granqvist, C.; Azens, A.; Hjelm, A.; Kullman, L.; Niklasson, G.A.; Rönnow, D.; Mattsson, M.S.; Veszelei, M.; Vaivars, G. Recent advances in electrochromics for smart windows applications. Sol. Energy 1998, 63, 199–216. [Google Scholar] [CrossRef]
- Ramadan, R.; Kamal, H.; Hashem, H.; Abdel-Hady, K. Gelatin-based solid electrolyte releasing Li+ for smart window applications. Sol. Energy Mater. Sol. Cells 2014, 127, 147–156. [Google Scholar] [CrossRef]
- Ramadan, R.; Elshorbagy, M.; Kamal, H.; Hashem, H.; Abdelhady, K. Preparation and characterization of protonic solid electrolyte applied to a smart window device with high optical modulation. Optik 2017, 135, 85–97. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Hopmann, E.; Elezzabi, A.Y. Nanostructured inorganic electrochromic materials for light applications. Nanophotonics 2021, 10, 825–850. [Google Scholar] [CrossRef]
- Sonavane, A.; Inamdar, A.; Shinde, P.; Deshmukh, H.; Patil, R.; Patil, P. Efficient electrochromic nickel oxide thin films by electrodeposition. J. Alloys Compd. 2010, 489, 667–673. [Google Scholar] [CrossRef]
- Elshorbagy, M.; Ramadan, R.; Abdelhady, K. Preparation and characterization of spray-deposited efficient Prussian blue electrochromic thin film. Optik 2017, 129, 130–139. [Google Scholar] [CrossRef]
- Bathe, S.R.; Patil, P. Electrochromic characteristics of fibrous reticulated WO3 thin films prepared by pulsed spray pyrolysis technique. Sol. Energy Mater. Sol. Cells 2007, 91, 1097–1101. [Google Scholar] [CrossRef]
- Yoshimura, K.; Miki, T.; Tanemura, S.T.S. Nickel oxide electrochromic thin films prepared by reactive DC magnetron sputtering. Jpn. J. Appl. Phys. 1995, 34, 2440. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Wang, C.-M.; Kao, K.-S.; Chen, Y.-C.; Liu, C.-C. Electrochromic properties of MoO3 thin films derived by a sol–gel process. J. Sol-Gel Sci. Technol. 2010, 53, 51–58. [Google Scholar] [CrossRef]
- Yuan, Y.; Xia, X.; Wu, J.; Chen, Y.; Yang, J.; Guo, S. Enhanced electrochromic properties of ordered porous nickel oxide thin film prepared by self-assembled colloidal crystal template-assisted electrodeposition. Electrochim. Acta 2011, 56, 1208–1212. [Google Scholar] [CrossRef]
- Popov, A.; Brasiunas, B.; Damaskaite, A.; Plikusiene, I.; Ramanavicius, A.; Ramanaviciene, A. Electrodeposited gold nanostructures for the enhancement of electrochromic properties of PANI–PEDOT film deposited on transparent electrode. Polymers 2020, 12, 2778. [Google Scholar] [CrossRef] [PubMed]
- Karaca, G.Y.; Eren, E.; Cogal, G.C.; Uygun, E.; Oksuz, L.; Oksuz, A.U. Enhanced electrochromic characteristics induced by Au/PEDOT/Pt microtubes in WO3 based electrochromic devices. Opt. Mater. 2019, 88, 472–478. [Google Scholar] [CrossRef]
- Rao, T.; Zhou, Y.; Jiang, J.; Yang, P.; Liao, W. Low Dimensional Transition Metal Oxide towards Advanced Electrochromic Devices. Nano Energy 2022, 100, 107479. [Google Scholar] [CrossRef]
- Chang, J.-Y.; Chen, Y.-C.; Wang, C.-M.; Chen, Y.-W. Electrochromic properties of Li-doped NiO films prepared by RF magnetron sputtering. Coatings 2020, 10, 87. [Google Scholar] [CrossRef]
- Kim, K.H.; Kahuku, M.; Abe, Y.; Kawamura, M.; Kiba, T. Improved electrochromic performance in nickel oxide thin film by Zn doping. Int. J. Electrochem. Sci 2020, 15, 4065–4071. [Google Scholar] [CrossRef]
- Kim, K.H.; Takahashi, C.; Abe, Y.; Kawamura, M. Effects of Cu doping on nickel oxide thin film prepared by sol–gel solution process. Optik 2014, 125, 2899–2901. [Google Scholar] [CrossRef]
- Kim, K.H.; Fujii, S.; Abe, Y. Incorporation of Co2+, Cu2+, and Zn2+ ions into nickel oxide thin films and their enhanced electrochemical and electrochromic performances. Int. J. Electrochem. Sci. 2022, 17, 220125. [Google Scholar] [CrossRef]
- Deonikar, V.G.; Puguan, J.M.C.; Kim, H. Ag nanoparticles embedded defective tungsten oxide hydrate thin films for the enhanced electrochromic performance: Insights on the physico-chemical properties and localized surface plasmon resonance mechanism. Acta Mater. 2021, 207, 116693. [Google Scholar] [CrossRef]
- Ezhilmaran, B.; Bhat, S.V. Enhanced charge transfer in TiO2 nanoparticles/MoO3 nanostructures bilayer heterojunction electrode for efficient electrochromism. Mater. Today Commun. 2022, 31, 103497. [Google Scholar] [CrossRef]
- Klein, J.; Hein, A.; Bold, E.; Alarslan, F.; Oesterschulze, E.; Haase, M. Intercalation-free, fast switching of mesoporous antimony doped tin oxide with cathodically coloring electrochromic dyes. Nanoscale Adv. 2022, 4, 2144–2152. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.A.; Shaik, H.; Kumar, K.N.; Shetty, H.D.; Jafri, R.I.; Naik, R.; Gupta, J.; Sattar, S.A.; Doreswamy, B. Synthesis, characterizations, and electrochromic studies of WO3 coated CeO2 nanorod thin films for smart window applications. Phys. B Condens. Matter 2022, 647, 414395. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Han, G.; Zhao, H. Dual-band electrochromic film based on mesoporous h-WO3/o-WO3· H2O/r-TiO2 for high performance smart windows. Sol. Energy Mater. Sol. Cells 2023, 250, 112053. [Google Scholar] [CrossRef]
- Li, H.; McRae, L.; Elezzabi, A.Y. Solution-processed interfacial PEDOT: PSS assembly into porous tungsten molybdenum oxide nanocomposite films for electrochromic applications. ACS Appl. Mater. Interfaces 2018, 10, 10520–10527. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Kim, J.M.; Kim, Y.; Bae, S.; Do, M.; Im, S.; Yoo, S.; Kim, J.H. High-Coloration Efficiency and Low-Power Consumption Electrochromic Film based on Multifunctional Conducting Polymer for Large Scale Smart Windows. ACS Appl. Electron. Mater. 2021, 3, 4781–4792. [Google Scholar] [CrossRef]
- Ergun, E.G.C.; Carbas, B.B. Electrochromic copolymers of 2,5-dithienyl-N-substituted-pyrrole (SNS) derivatives with EDOT: Properties and electrochromic device applications. Mater. Today Commun. 2022, 32, 103888. [Google Scholar] [CrossRef]
- Mallikarjuna, K.; Shinde, M.A.; Kim, H. Electrochromic smart windows using 2D-MoS2 nanostructures protected silver nanowire based flexible transparent electrodes. Mater. Sci. Semicond. Process. 2020, 117, 105176. [Google Scholar] [CrossRef]
- Mendieta-Reyes, N.E.; Díaz-García, A.K.; Gómez, R. Simultaneous electrocatalytic CO2 reduction and enhanced electrochromic effect at WO3 nanostructured electrodes in acetonitrile. ACS Catal. 2018, 8, 1903–1912. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Tang, K.; Song, Y.; Cui, J.; Shu, X.; Wang, Y.; Liu, J.; Wu, Y. In situ growth of PEDOT/graphene oxide nanostructures with enhanced electrochromic performance. RSC Adv. 2018, 8, 13679–13685. [Google Scholar] [CrossRef]
- Runnerstrom, E.L.; Llordés, A.; Lounis, S.D.; Milliron, D.J. Nanostructured electrochromic smart windows: Traditional materials and NIR-selective plasmonic nanocrystals. Chem. Commun. 2014, 50, 10555–10572. [Google Scholar] [CrossRef]
- Dalavi, D.S.; Desai, R.S.; Patil, P.S. Nanostructured materials for electrochromic energy storage systems. J. Mater. Chem. A 2022, 10, 1179–1226. [Google Scholar] [CrossRef]
- Shchegolkov, A.V.; Jang, S.-H.; Shchegolkov, A.V.; Rodionov, Y.V.; Sukhova, A.O.; Lipkin, M.S. A brief overview of electrochromic materials and related devices: A nanostructured materials perspective. Nanomaterials 2021, 11, 2376. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gong, Z.; Zeng, Y.; Zhao, H.; Yang, J. High-Properties electrochromic device based on TiO2@ Graphene/Prussian blue Core-Shell nanostructures. Chem. Eng. J. 2022, 431, 134066. [Google Scholar] [CrossRef]
- Mishra, S.; Lambora, S.; Yogi, P.; Sagdeo, P.R.; Kumar, R. Organic nanostructures on inorganic ones: An efficient electrochromic display by design. ACS Appl. Nano Mater. 2018, 1, 3715–3723. [Google Scholar] [CrossRef]
- Hao, T.; Wang, S.; Xu, H.; Zhang, X.; Xue, J.; Liu, S.; Song, Y.; Li, Y.; Zhao, J. Stretchable electrochromic devices based on embedded WO3@ AgNW Core-Shell nanowire elastic conductors. Chem. Eng. J. 2021, 426, 130840. [Google Scholar] [CrossRef]
- Ahmad, K.; Song, G.; Kim, H. Fabrication of Tungsten Oxide/Graphene Quantum Dot (WO3@ GQD) Thin Films on Indium Tin Oxide-Based Glass and Flexible Substrates for the Construction of Electrochromic Devices for Smart Window Applications. ACS Sustain. Chem. Eng. 2022, 10, 11948–11957. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, S.; Yang, F.; Hu, F.; Yan, B.; Gu, Y.; Jiang, H.; Cao, Y.; Xiang, M. High-performance electrochromic device based on novel polyaniline nanofibers wrapped antimony-doped tin oxide/TiO2 nanorods. Org. Electron. 2019, 65, 341–348. [Google Scholar] [CrossRef]
- Hu, F.; Yan, B.; Ren, E.; Gu, Y.; Lin, S.; Ye, L.; Chen, S.; Zeng, H. Constructing spraying-processed complementary smart windows via electrochromic materials with hierarchical nanostructures. J. Mater. Chem. C 2019, 7, 14855–14860. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, C.; Hao, J.; Jiao, Y.; Xu, Y.; Wang, J. Electrochromic Performance and Capacitor Performance of α-MoO3 Nanorods Fabricated by a One-Step Procedure. Coatings 2021, 11, 783. [Google Scholar] [CrossRef]
- Shinde, M.A.; Kim, H. Highly stable silver nanowire-based transparent conductive electrodes for electrochromic devices. Mater. Today Commun. 2021, 26, 102147. [Google Scholar] [CrossRef]
- Kandpal, S.; Ghosh, T.; Rani, C.; Rani, S.; Pathak, D.K.; Tanwar, M.; Bhatia, R.; Sameera, I.; Kumar, R. MoS2 nano-flower incorporation for improving organic-organic solid state electrochromic device performance. Sol. Energy Mater. Sol. Cells 2022, 236, 111502. [Google Scholar] [CrossRef]
- Xie, H.; Wang, Y.; Liu, H.; Wang, H.; Li, Y.; Qi, X.; Liang, T.; Zeng, J. Electrochromic electrode with high optical contrast and long cyclic life using nest-like porous doped-Sm WO3 films. Ceram. Int. 2023, 49, 8223. [Google Scholar] [CrossRef]
- Wang, J.; Huo, X.; Yan, F.; Wang, H.; Zhang, M.; Guo, M. Lamella self-assembled Cu-doped NiO nanosheet arrays for dual-function devices with balanced electrochromic and energy storage performance. Appl. Surf. Sci. 2022, 604, 154504. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, X.; Gu, Y.; Cheng, X.; Hu, J.; Xiong, K.; Jiang, Y.; Fan, T.; Xu, J. Porous and nanowire-structured NiO/AgNWs composite electrodes for significantly-enhanced supercapacitive and electrochromic performances. Nanotechnology 2021, 32, 275405. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Wang, S.; Zhu, S.; Wang, Q. Morphology and electrochromic properties of nanostructured polyterthiophene films formed by different deposition modes. Sol. Energy Mater. Sol. Cells 2021, 230, 111269. [Google Scholar] [CrossRef]
- Dinh, N.N.; Quyen, N.M.; Zikova, M.; Truong, V.-V. Highly-efficient electrochromic performance of nanostructured TiO2 films made by doctor blade technique. Sol. Energy Mater. Sol. Cells 2011, 95, 618–623. [Google Scholar] [CrossRef]
- Xia, X.; Tu, J.; Zhang, J.; Wang, X.; Zhang, W.; Huang, H. Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition. Sol. Energy Mater. Sol. Cells 2008, 92, 628–633. [Google Scholar] [CrossRef]
- Wu, M.-S.; Yang, C.-H.; Wang, M.-J. Morphological and structural studies of nanoporous nickel oxide films fabricated by anodic electrochemical deposition techniques. Electrochim. Acta 2008, 54, 155–161. [Google Scholar] [CrossRef]
- Bouessay, I.; Rougier, A.; Poizot, P.; Moscovici, J.; Michalowicz, A.; Tarascon, J.-M. Electrochromic degradation in nickel oxide thin film: A self-discharge and dissolution phenomenon. Electrochim. Acta 2005, 50, 3737–3745. [Google Scholar] [CrossRef]
- Sharma, P.K.; Fantini, M.; Gorenstein, A. Synthesis, characterization and electrochromic properties of NiOxHy thin film prepared by a sol–gel method. Solid State Ion. 1998, 113, 457–463. [Google Scholar] [CrossRef]
- Ferreira, F.; Tabacniks, M.; Fantini, M.; Faria, I.; Gorenstein, A. Electrochromic nickel oxide thin films deposited under different sputtering conditions. Solid State Ion. 1996, 86, 971–976. [Google Scholar] [CrossRef]
- Ramadan, R.; Torres-Costa, V.; Martín-Palma, R.J. Fabrication of Zinc Oxide and Nanostructured Porous Silicon Composite Micropatterns on Silicon. Coatings 2020, 10, 529. [Google Scholar] [CrossRef]
- Ramadan, R.; Dadgostar, S.; Manso–Silván, M.; Pérez-Casero, R.; Hernandez-Velez, M.; Jimenez, J.; Sanchez, O. Silver-enriched ZnO: Ag thin films deposited by magnetron co-sputtering: Post annealing effects on structural and physical properties. Mater. Sci. Eng. B 2022, 276, 115558. [Google Scholar] [CrossRef]
- Pan, J.; Zheng, R.; Wang, Y.; Ye, X.; Wan, Z.; Jia, C.; Weng, X.; Xie, J.; Deng, L. A high-performance electrochromic device assembled with hexagonal WO3 and NiO/PB composite nanosheet electrodes towards energy storage smart window. Sol. Energy Mater. Sol. Cells 2020, 207, 110337. [Google Scholar] [CrossRef]
- Prasad, A.K.; Park, J.-Y.; Jung, H.Y.; Kang, J.W.; Kang, S.-H.; Ahn, K.-S. Electrochemical deposition of Ni-WO3 thin-film composites for electrochromic energy storage applications: Novel approach toward quantum-dot-sensitized solar cell-assisted Ni-WO3 electrochromic device. J. Ind. Eng. Chem. 2023, 117, 500–509. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, M.; Goswamy, J. Synthesis and characterization of MoS2/WO3 nanocomposite for electrochromic device application. Int. J. Energy Res. 2022, 46, 22176–22187. [Google Scholar] [CrossRef]
- Margoni, M.M.; Mathuri, S.; Ramamurthi, K.; Babu, R.R.; Ganesh, V.; Sethuraman, K. Hydrothermally grown nano and microstructured V2O5 thin films for electrochromic application. Appl. Surf. Sci. 2018, 449, 193–202. [Google Scholar] [CrossRef]
- Rakibuddin, M.; Kim, H. Synthesis and characterization of facile industrially scalable and cost effective WO3 micro–nanostructures for electrochromic devices and photocatalyst. Ceram. Int. 2018, 44, 16615–16623. [Google Scholar] [CrossRef]
- Lee, K.; Han, M.; Kwon, G.; Jeon, Y.; Kim, J.; You, J. A facile nanoarghitectonics of electrochromic devices with poly (3,4-ethylenedioxythiophene) and bioplastic composite. Appl. Surf. Sci. 2022, 613, 155955. [Google Scholar] [CrossRef]
- Lin, K.; Chen, H.; Liang, H.; Tan, J.; Zhou, D.; Zhang, X.; Liu, F.; Wang, Y. Benzotriazole-EDOT electrochromic conjugated polymers show sub-second response time and 774 cm2 C−1 coloration efficiency. New J. Chem. 2022, 46, 16684–16692. [Google Scholar] [CrossRef]
- Halder, S.; Behere, R.P.; Gupta, N.; Kuila, B.K.; Chakraborty, C. Enhancement of the electrochemical performance of a cathodically coloured organic electrochromic material through the formation of hydrogen bonded supramolecular polymer assembly. Sol. Energy Mater. Sol. Cells 2022, 245, 111858. [Google Scholar] [CrossRef]
- Li, Q.; Wang, B.; Zou, H.; Guo, Q.; Nie, G. High performance multi-color prussian blue/poly (indole-5-carboxylic acid) nanocomposites with multiple layer nanosphere structure for electrochromic supercapacitor application. J. Alloys Compd. 2022, 921, 166140. [Google Scholar] [CrossRef]
- Wang, P.; Sun, Y.; Li, J.; Zhu, G.; Zhang, X.; Yang, H.; Lin, B. A novel p/n-dopable electrochromic electrode material based on P (TPACz)/WO3 coralloid porous nanocomposite. J. Alloys Compd. 2022, 922, 166195. [Google Scholar] [CrossRef]
- Roy, S.; Ganeshan, S.K.; Pal, S.; Chakraborty, C. Targeted enhancement of electrochromic memory in Fe (II) based metallo-supramolecular polymer using molybdenum disulfide quantum dots. Sol. Energy Mater. Sol. Cells 2022, 236, 111487. [Google Scholar] [CrossRef]
- Meng, Y.; Li, Z.; Liu, Z. Enhanced electrochromic properties of inorganic–organic tungsten oxide and Prussian blue core–shell film. J. Mater. Sci. Mater. Electron. 2022, 33, 24995–25005. [Google Scholar] [CrossRef]
- Tang, Y.; Xiao, Y.; Qiao, H.; Qi, X. Enhanced Performance in Electrochromic Devices with High-contrast and Long-term Stability via Synergistic Effect of Cl-/NO3-Dual-anion Electrolyte. J. Electroanal. Chem. 2022, 928, 117040. [Google Scholar] [CrossRef]
- Nad, S.; Jana, R.; Datta, A.; Malik, S. Fully Organic Electroactive Monomers for Electrochromic Behaviors having High Coloration Efficiency and Long Cycle Stability towards Flexible Solid-State Electrochromic Device. J. Electroanal. Chem. 2022, 918, 116484. [Google Scholar] [CrossRef]
Title of the Review Article | The Scope of the Article | Reference |
---|---|---|
Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals | Overview of current state-of-the-art conventional electrochromic materials | [31] |
Nanostructured materials for electrochromic energy storage systems | Description of new active materials, distinct assembly techniques and transparent conductive electrodes used for developing a more efficient smart windows | [32] |
A Brief Overview of Electrochromic Materials and Related Devices: A Nanostructured Materials Perspective | The paper discusses the causes of internal and external size effects in the process of modifying WO3 electrochromic films using nanomaterials | [33] |
Nanostructured inorganic electrochromic materials for light applications | Summarizes the classifications of electrochromic materials, including inorganic materials (e.g., transition metal oxides, Prussian blue, and polyoxometalates), organic materials (e.g., polymers, covalent organic frameworks, and viologens), inorganic-organic hybrids, and plasmonic materials. | [6] |
Electrochromic electrodes with enhanced performance: Review of morphology and ion transport mechanism modifications | Summarize direct ways to increase the ion exchange in EC device due to modifying surface morphology and composition of the EC electrodes. | Current review |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshorbagy, M.H.; Ramadan, R. Electrochromic Electrodes with Enhanced Performance: Review of Morphology and Ion Transport Mechanism Modifications. Energies 2023, 16, 2327. https://doi.org/10.3390/en16052327
Elshorbagy MH, Ramadan R. Electrochromic Electrodes with Enhanced Performance: Review of Morphology and Ion Transport Mechanism Modifications. Energies. 2023; 16(5):2327. https://doi.org/10.3390/en16052327
Chicago/Turabian StyleElshorbagy, Mahmoud H., and Rehab Ramadan. 2023. "Electrochromic Electrodes with Enhanced Performance: Review of Morphology and Ion Transport Mechanism Modifications" Energies 16, no. 5: 2327. https://doi.org/10.3390/en16052327
APA StyleElshorbagy, M. H., & Ramadan, R. (2023). Electrochromic Electrodes with Enhanced Performance: Review of Morphology and Ion Transport Mechanism Modifications. Energies, 16(5), 2327. https://doi.org/10.3390/en16052327