Numerical Study on Combustion-Driven Jet Actuation for Aerodynamic Control of Airfoil Flows
Abstract
:1. Introduction
2. Computational Methodology
3. Computational Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gad-el-Hak, M. Flow Control—Passive, Active, and Reactive Flow Management; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ashill, P.R.; Fulker, J.L.; Hackett, K.C. A review of recent developments in flow control. Aeronaut. J. 2005, 109, 205–232. [Google Scholar] [CrossRef]
- Müller-Vahl, H.F.; Strangfeld, C.; Nayeri, C.N.; Paschereit, C.O.; Greenblatt, D. Control of Thick Airfoil, Deep Dynamic Stall Using Steady Blowing. AIAA J. 2015, 53, 277–295. [Google Scholar] [CrossRef]
- Kim, J.; Park, Y.M.; Lee, J.; Kim, T.; Kim, M.; Lim, J.; Jee, S. Numerical Investigation of Jet Angle Effect on Airfoil Stall Control. Appl. Sci. 2019, 9, 2960. [Google Scholar] [CrossRef]
- Gardner, A.D.; Richter, K.; Mai, H.; Neuhaus, D. Experimental Investigation of Air Jets for the Control of Compressible Dynamic Stall. J. Am. Helicopter Soc. 2013, 58, 1–14. [Google Scholar]
- Gardner, A.D.; Richter, K.; Mai, H.; Neuhaus, D. Experimental investigation of high-pressure pulsed blowing for dynamic stall control. CEAS Aeronaut. J. 2014, 5, 185–198. [Google Scholar] [CrossRef]
- Gardner, A.D.; Richter, K. Effect of the Model-Sidewall Connection for a Dynamic Stall Airfoil Experiment. J. Aircr. 2019, 57, 173–178. [Google Scholar] [CrossRef]
- Feng, L.H.; Li, Z.Y.; Chen, Y.L. Lift enhancement strategy and mechanism for a plunging airfoil based on vortex control. Phys. Fluids 2020, 32, 087116. [Google Scholar] [CrossRef]
- Post, M.L.; Corke, T.C. Separation Control Using Plasma Actuators: Dynamic Stall Vortex Control on Oscillating Airfoil. AIAA J. 2006, 44, 3125–3135. [Google Scholar] [CrossRef]
- Yu, H.; Zheng, J. Numerical investigation of control of dynamic stall over a NACA0015 airfoil using dielectric barrier discharge plasma actuators. Phys. Fluids 2020, 32, 035103. [Google Scholar] [CrossRef]
- Rehman, A.; Kontis, K. Synthetic Jet Control Effectiveness on Stationary and Pitching Airfoils. J. Aircr. 2006, 43, 1782–1789. [Google Scholar] [CrossRef]
- Taylor, K.; Amitay, M. Dynamic stall process on a finite span model and its control via synthetic jet actuators. Phys. Fluids 2015, 27, 077104. [Google Scholar] [CrossRef]
- Crittenden, T.; Glezer, A.; Funk, R.; Parekh, D. Combustion-Driven Jet Actuators for Flow Control. In Proceedings of the 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, USA, 11–14 June 2001. [Google Scholar] [CrossRef]
- Crittenden, T.; Warta, B.; Glezer, A. Characterization of Combustion Powered Actuators for Flow Control. In Proceedings of the 3rd AIAA Flow Control Conference, San Francisco, CA, USA, 5–8 June 2006. [Google Scholar] [CrossRef]
- Crittenden, T.M.; Woo, G.T.K.; Glezer, A. Combustion-Powered Actuation for Transitory Flow Control. AIAA J. 2018, 56, 3414–3435. [Google Scholar] [CrossRef]
- Brzozowski, D.P.; K. Woo, G.T.; Culp, J.R.; Glezer, A. Transient Separation Control Using Pulse-Combustion Actuation. AIAA J. 2010, 48, 2482–2490. [Google Scholar] [CrossRef]
- Woo, G.T.K.; Glezer, A. Controlled transitory stall on a pitching airfoil using pulsed actuation. Exp. Fluids 2013, 54, 1507. [Google Scholar] [CrossRef]
- Woo, G.T.K.; Glezer, A.; Yorish, S.; Crittenden, T.M. Pulsed Actuation Control of Flow Separation on a ROBIN Rotorcraft Fuselage. AIAA J. 2016, 54, 3274–3289. [Google Scholar] [CrossRef]
- Matalanis, C.G.; Min, B.Y.; Bowles, P.O.; Jee, S.; Wake, B.E.; Crittenden, T.M.; Woo, G.; Glezer, A. Combustion-Powered Actuation for Dynamic-Stall Suppression: High-Mach Simulations And Low-Mach Experiments. AIAA J. 2015, 53, 2151–2163. [Google Scholar] [CrossRef]
- Matalanis, C.G.; Bowles, P.O.; Jee, S.; Min, B.Y.; Kuczek, A.E.; Croteau, P.F.; Wake, B.E.; Crittenden, T.; Glezer, A.; Lorber, P.F. Dynamic Stall Suppression Using Combustion-Powered Actuation (COMPACT); Technical Report NASA/CR-2016-219336; NASA Langley Research Center: Hampton, VA, USA, 2016. [Google Scholar]
- Matalanis, C.G.; Bowles, P.O.; Min, B.Y.; Jee, S.; Kuczek, A.E.; Wake, B.E.; Lorber, P.F.; Crittenden, T.M.; Glezer, A.; Schaeffler, N.W. High-Speed Experiments on Combustion-Powered Actuation for Dynamic Stall Suppression. AIAA J. 2017, 55, 3001–3015. [Google Scholar] [CrossRef]
- Tan, Y.; Crittenden, T.M.; Glezer, A. Aerodynamic Control of a Dynamically Pitching Airfoil Using Pulsed Actuation. AIAA J. 2022, 60, 3682–3694. [Google Scholar] [CrossRef]
- Jee, S.; Bowles, P.; Matalanis, C.; Min, B.Y.; Wake, B.; Crittenden, T.; Glezer, A. Computations of Combustion-Powered Actuation for Dynamic Stall Suppression. In Proceedings of the AHS 72nd Annual Forum, West Palm Beach, FL, USA, 17–19 May 2016. [Google Scholar]
- Kim, T.; Kim, J.; Kim, S.; Lee, J.; Jee, S. Unsteady Impulsive Jet Applied to a Stalled Airfoil. In Proceedings of the Tenth International Conference on Computational Fluid Dynamics (ICCFD10), Barcelona, Spain, 9–13 July 2018. [Google Scholar]
- Kim, T.; Kim, J.; Kim, M.; Lee, J.; Jee, S. Dynamic Stall Control with Impulsive Jet. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019. [Google Scholar] [CrossRef]
- Kim, T.; Jee, S. Numerical investigation of impulsively generated high-speed jet for dynamic stall suppression. Comput. Fluids 2023, 251, 105757. [Google Scholar] [CrossRef]
- Kim, T.; Jee, S.; Kim, M.; Sohn, I. Numerical investigation on high-speed jet actuation for transient control of flow separation. Aerosp. Sci. Technol. 2023, 135, 108171. [Google Scholar] [CrossRef]
- Visbal, M.R.; Garmann, D.J. Analysis of Dynamic Stall on a Pitching Airfoil Using High-Fidelity Large-Eddy Simulations. AIAA J. 2018, 56, 46–63. [Google Scholar] [CrossRef]
- Benton, S.I.; Visbal, M.R. The onset of dynamic stall at a high, transitional Reynolds number. J. Fluid Mech. 2019, 861, 860–885. [Google Scholar] [CrossRef]
- Garmann, D.J.; Visbal, M.R.; Orkwis, P.D. Three-dimensional flow structure and aerodynamic loading on a revolving wing. Phys. Fluids 2013, 25, 034101. [Google Scholar] [CrossRef]
- Rosti, M.E.; Omidyeganeh, M.; Pinelli, A. Direct numerical simulation of the flow around an aerofoil in ramp-up motion. Phys. Fluids 2016, 28, 025106. [Google Scholar] [CrossRef]
- Park, J.W.; Ryu, J.; Sung, H.J. Effects of the shape of an inverted flag on its flapping dynamics. Phys. Fluids 2019, 31, 021904. [Google Scholar] [CrossRef]
- Rodríguez, I.; Lehmkuhl, O.; Borrell, R.; Oliva, A. Direct numerical simulation of a NACA0012 in full stall. Int. J. Heat Fluid Flow 2013, 43, 194–203. [Google Scholar] [CrossRef]
- Ekaterinaris, J.A.; Platzer, M.F. Computational prediction of airfoil dynamic stall. Prog. Aerosp. Sci. 1998, 33, 759–846. [Google Scholar] [CrossRef]
- Ekaterinaris, J.A.; Menter, F.R. Computation of oscillating airfoil flows with one- and two-equation turbulence models. AIAA J. 1994, 32, 2359–2365. [Google Scholar] [CrossRef]
- Barakos, G.N.; Drikakis, D. Unsteady separated flows over manoeuvring lifting surfaces. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2000, 358, 3279–3291. [Google Scholar] [CrossRef]
- Antoniadis, A.; Drikakis, D.; Zhong, B.; Barakos, G.; Steijl, R.; Biava, M.; Vigevano, L.; Brocklehurst, A.; Boelens, O.; Dietz, M.; et al. Assessment of CFD methods against experimental flow measurements for helicopter flows. Aerosp. Sci. Technol. 2012, 19, 86–100. [Google Scholar] [CrossRef]
- Srinivasan, G.R.; Ekaterinaris, J.A.; McCroskey, W.J. Evaluation of turbulence models for unsteady flows of an oscillating airfoil. Comput. Fluids 1995, 24, 833–861. [Google Scholar] [CrossRef]
- Geissler, W.; Dietz, G.; Mai, H. Dynamic stall on a supercritical airfoil. Aerosp. Sci. Technol. 2005, 9, 390–399. [Google Scholar] [CrossRef]
- Geissler, W.; Haselmeyer, H. Investigation of dynamic stall onset. Aerosp. Sci. Technol. 2006, 10, 590–600. [Google Scholar] [CrossRef]
- Geissler, W.; van der Wall, B.G. Dynamic stall control on flapping wing airfoils. Aerosp. Sci. Technol. 2017, 62, 1–10. [Google Scholar] [CrossRef]
- Huang, G.; Dai, Y.; Yang, C.; Wu, Y.; Xia, Y. Effect of dielectric barrier discharge plasma actuator on the dynamic moment behavior of pitching airfoil at low Reynolds number. Phys. Fluids 2021, 33, 043603. [Google Scholar] [CrossRef]
- Ladson, C.L. Effects of Independent Variation of Mach and Reynolds Numbers on the Low-Speed Aerodynamic Characteristics of the NACA 0012 Airfoil Section; Technical Report; NASA Langley Research Center: Hampton, VA, USA, 1988. [Google Scholar]
- Ladson, C.L.; Hill, A.S.; Johnson, W.G., Jr. Pressure Distributions from High Reynolds Number Transonic Tests of an NACA 0012 Airfoil in the Langley 0.3-Meter Transonic Cryogenic Tunnel; Technical Report; NASA Langley Research Center: Hampton, VA, USA, 1987. [Google Scholar]
- Anderson, W.K.; Thomas, J.L.; Van Leer, B. Comparison of finite volume flux vector splittings for the Euler equations. AIAA J. 1986, 24, 1453–1460. [Google Scholar] [CrossRef]
- Anderson, W.; Thomas, J.; Rumsey, C. Extension and applications of flux-vector splitting to unsteady calculations on dynamic meshes. In Proceedings of the 8th Computational Fluid Dynamics Conference, Honolulu, HI, USA, 9–11 June 1987. [Google Scholar] [CrossRef]
- Rumsey, C.; Anderson, W. Some numerical and physical aspects of unsteady Navier-Stokes computations over airfoils using dynamic meshes. In Proceedings of the 26th Aerospace Sciences Meeting, Reno, NV, USA, 11–14 January 1988. [Google Scholar] [CrossRef]
- Rumsey, C.L.; Anderson, W.K. Unsteady Navier-Stokes Computations over Airfoils Using Both Fixed and Dynamic Meshes; Technical Report NASA/N-89-19252; NASA Langley Research Center: Hampton, VA, USA, 1989. [Google Scholar]
- Krist, S.L.; Biedron, R.T.; Rumsey, C.L. CFL3D User’s Manual (Version 5.0); Technical Report NASA/TM-1998-208444; NASA: Hampton, VA, USA, 1998. [Google Scholar]
- Sutherland, W. LII. The Viscosity of Gases and Molecular Force. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1893, 36, 507–531. [Google Scholar] [CrossRef]
- Roe, P.L. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. J. Comput. Phys. 1981, 43, 357–372. [Google Scholar] [CrossRef]
- Anderson, W.K. Implicit Multigrid Algorithms for the Three-Dimensional Flux Split Euler Equations. Ph.D. Thesis, Mississippi State University, Starkville, MI, USA, 1986. [Google Scholar]
- Anderson, W.K.; Thomas, J.L.; Whitfield, D.L. Multigrid Acceleration of the Flux-Split Euler Equations. AIAA J. 1988, 26, 649–654. [Google Scholar] [CrossRef]
- Spalart, P.R.; Allmaras, S.R. A One-Equation Turbulence Model for Aerodynamic Flows. In Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, AIAA-1992-439, Reno, NV, USA, 6–9 January 1992. [Google Scholar] [CrossRef]
- Rumsey, C.L. Apparent transition behavior of widely-used turbulence models. Int. J. Heat Fluid Flow 2007, 28, 1460–1471. [Google Scholar] [CrossRef]
- Spalart, P.R.; Rumsey, C.L. Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations. AIAA J. 2007, 45, 2544–2553. [Google Scholar] [CrossRef]
- Jeon, S.E.; Park, S.H.; Kim, S.H.; Byun, Y.H.; Jung, K.J.; Kang, I.M. Low-Speed Aerodynamic Characteristic of Transition Flow Over the NACA0012. J. Comput. Fluids Eng. 2010, 15, 1–8. [Google Scholar]
- Jee, S.; Lopez Mejia, O.D.; Moser, R.D. Numerical Study of Impulse Actuation for Stall Control. In Proceedings of the ASME Fluids Engineering Division Summer Meeting, ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, Hamamatsu, Japan, 24–29 July 2011; Number 44403. pp. 3019–3031. [Google Scholar] [CrossRef]
Grid Resolution | ||||||
---|---|---|---|---|---|---|
Fine | <1 | |||||
Medium | <2 | |||||
Coarse | <4 | |||||
Coarser | <8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Park, S.; Sohn, I. Numerical Study on Combustion-Driven Jet Actuation for Aerodynamic Control of Airfoil Flows. Energies 2023, 16, 8008. https://doi.org/10.3390/en16248008
Kim T, Park S, Sohn I. Numerical Study on Combustion-Driven Jet Actuation for Aerodynamic Control of Airfoil Flows. Energies. 2023; 16(24):8008. https://doi.org/10.3390/en16248008
Chicago/Turabian StyleKim, Taesoon, Suhyeon Park, and Ilyoup Sohn. 2023. "Numerical Study on Combustion-Driven Jet Actuation for Aerodynamic Control of Airfoil Flows" Energies 16, no. 24: 8008. https://doi.org/10.3390/en16248008
APA StyleKim, T., Park, S., & Sohn, I. (2023). Numerical Study on Combustion-Driven Jet Actuation for Aerodynamic Control of Airfoil Flows. Energies, 16(24), 8008. https://doi.org/10.3390/en16248008