Changes in Commercial Dendromass Properties Depending on Type and Acquisition Time
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Object
2.2. Laboratory Analyses
2.3. Statistical Analysis
3. Results and Discussion
3.1. Thermophysical Characteristics
3.2. Elemental Composition
3.3. General Characteristics of Dendromass Solid Biofuels
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistics Poland. Forestry in 2022. Signal Information; Statistics Poland: Warsaw, Poland, 2023; p. 5.
- Statistics Poland. Statistical Yearbook of Forestry 2022. Statistical Publishing Establishment; Statistics Poland: Warsaw, Poland, 2022; p. 440.
- Kozakiewicz, P.; Jankowska, A.; Mamiński, M.; Marciszewska, K.; Ciurzycki, W.; Tulik, M. The Wood of Scots Pine (Pinus sylvestris L.) from Post-Agricultural Lands Has Suitable Properties for the Timber Industry. Forests 2020, 11, 1033. [Google Scholar] [CrossRef]
- Roszyk, E.; Mania, P.; Iwańska, E.; Kusiak, W.; Broda, M. Mechanical Performance of Scots Pine Wood from Northwestern Poland—A Case Study. BioResources 2020, 15, 6781–6794. [Google Scholar] [CrossRef]
- IPCC. Working group III contribution to the sixth assessment report of the intergovernmental panel on climate change. In Climate Change 2022 Mitigation of Climate Change Summary for Policymakers; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2022; p. 63. [Google Scholar]
- Gołos, P.; Hilszczański, J. Social and economic importance of the forestry and wood sector in Poland. In BSR Policy Briefing Series, The Forest Industry around the Baltic Sea Region: Future Challenges and Opportunities, 1st ed.; Liutho, K., Ed.; Centrum Balticum: Turku, Finland, 2020; pp. 36–48. [Google Scholar]
- Statistics Poland. Energy from Renewable Sources in 2021; Statistics Poland: Warsaw, Poland, 2022; p. 96.
- Wzorek, M. Characterization of the Properties of Alternative Fuels Containing Sewage Sludge. Fuel Process. Technol. 2012, 104, 80–89. [Google Scholar] [CrossRef]
- Loeffler, D.; Anderson, N.; Morgan, A.M.; Sorenson, C.B. On-Site Energy Consumption at Softwood Sawmills in Montana. For. Prod. J. 2016, 66, 155–163. [Google Scholar] [CrossRef]
- Mansoori, G.A.; Agyarko, L.B.; Estevez, L.A.; Fallahi, B.; Gladyshev, G.; dos Santos, R.G.; Niaki, S.; Perisic, O.; Sillanpaa, M.; Tumba, K.; et al. Fuels of the Future for Renewable Energy Sources (Ammonia, Biofuels, Hydrogen). arXiv 2021. [Google Scholar] [CrossRef]
- Antwi-Boasiako, C.; Acheampong, B. Strength Properties and Calorific Values of Sawdust-Briquettes as Wood-Residue Energy Generation Source from Tropical Hardwoods of Different Densities. Biomass Bioenergy 2016, 85, 144–152. [Google Scholar] [CrossRef]
- Krigstin, S.; Hayashi, K.; Tchórzewski, J.; Wetzel, S. Current Inventory and Modelling Of Sawmill Residues in Eastern Canada. For. Chron. 2012, 88, 626–635. [Google Scholar] [CrossRef]
- Islam, M.A.; Rahman, M.S.; Bosunia, A.K.M.A.; Lahiry, A.K. Present Status and Potentiality of the Economic Utilization of the Sawmill Residue and Wastage in Bangladesh. In IRG/WP 04-50211 the International Research Group on Wood Preservation, Proceedings of the 35th Annual Meeting, Ljubljana, Slovenia, 6–10 June 2004; IRG Secretariat: Stockholm, Sweden, 2004; pp. 1–13. [Google Scholar]
- Mirski, R.; Dukarska, D.; Derkowski, A.; Czarnecki, R.; Dziurka, D. By-products of Sawmill Industry as Raw Materials for the Manufacture of Chip-Sawdust Boards. J. Build. Eng. 2020, 32, 101460. [Google Scholar] [CrossRef]
- Pedišius, N.; Praspaliauskas, M.; Pedišius, J.; Dzenajavičienė, E.F. Analysis of Wood Chip Characteristics for Energy Production in Lithuania. Energies 2021, 14, 3931. [Google Scholar] [CrossRef]
- Demirbas, A. Reuse of Wood Wastes for Energy Generation. Energy Sources Part A Recovery Util. Environ. Eff. 2009, 31, 1687–1693. [Google Scholar] [CrossRef]
- Irdla, M.; Padari, A.; Kurvits, V.; Muiste, P. The Chipping Cost of Wood Raw Material for Fuel in Estonian Conditions. For. Stud. 2017, 66, 65–74. [Google Scholar] [CrossRef]
- Vusić, D.; Vujanić, F.; Pešić, K.; Šafran, B.; Jurišić, V.; Zečić, Ž. Variability of Normative Properties of Wood Chips and Implications to Quality Control. Energies 2021, 14, 3789. [Google Scholar] [CrossRef]
- Petráš, R.; Mecko, J.; Kukla, J.; Kuklová, M. Calorific Value of Basic Fractions of Above-Ground Biomass for Scots Pine. Acta Reg. Et Environ. 2019, 16, 34–37. [Google Scholar] [CrossRef]
- Nosek, R.; Holubcik, M.; Jandacka, J. The Impact of Bark Content of Wood Biomass on Biofuel Properties. BioResources 2016, 11, 44–53. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Dudziec, P.; Olba-Zięty, E.; Stachowicz, P.; Krzyżaniak, M. Forest Dendromass as Energy Feedstock: Diversity of Properties and Composition Depending on Systematic Genus and Organ. Energies 2022, 15, 1442. [Google Scholar] [CrossRef]
- Stolarski, J.; Wierzbicki, S.; Nitkiewicz, S.; Stolarski, M.J. Wood Chip Production Efficiency Depending on Chipper Type. Energies 2023, 16, 4894. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Stachowicz, P.; Sieniawski, W.; Krzyżaniak, M.; Olba-Zięty, E. Quality and Delivery Costs of Wood Chips by Railway vs. Road Transport. Energies 2021, 14, 6877. [Google Scholar] [CrossRef]
- PN-EN ISO 18134-2; Solid Biofuels–Determination of Moisture Content–Dryer Method–Part 2: Total Moisture–Simplified Method. Polish Standardization Committee: Warsaw, Poland, 2014.
- PN-EN ISO 18122:2016-01; Solid Biofuels—Determination of Ash Content. Polish Standardization Committee: Warsaw, Poland, 2016.
- PN-EN ISO 18123:2016-01; Solid Biofuels—Determination of Volatile Matter Content. Polish Standardization Committee: Warsaw, Poland, 2016.
- PN-EN ISO 16948:2015-07; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. Polish Standardization Committee: Warsaw, Poland, 2015.
- PN-EN ISO 16994:2016-10; Solid Biofuels—Determination of Total Content of Sulfur and Chlorine. Polish Standardization Committee: Warsaw, Poland, 2016.
- PN-EN ISO 18125:2017-07; Solid Biofuels—Determination of Calorific Value. Polish Standardization Committee: Warsaw, Poland, 2017.
- Kask, Ü.; Vares, V.; Saareoks, M. Wood Fuel User Manual, 1st ed.; Tartu Regional Energy Agency: Tartu, Estonia, 2020; pp. 14–43. [Google Scholar]
- Laurila, J.; Havimo, M.; Lauhanen, R. Compression Drying of Energy Wood. Fuel Process. Technol. 2014, 124, 286–289. [Google Scholar] [CrossRef]
- Deboni, T.; Simioni, F.; Brand, M.; Lopes, G. Evolution of the Quality of Forest Biomass for Energy Generation in a Cogeneration Plant. Renew. Energy 2019, 135, 1291–1302. [Google Scholar] [CrossRef]
- Dudziec, P.; Stachowicz, P.; Stolarski, M.J. Diversity of Properties of Sawmill Residues Used as Feedstock for Energy Generation. Renew. Energy 2023, 202, 822–833. [Google Scholar] [CrossRef]
- Anerud, E.; Jirjis, R.; Larsson, G.; Eliasson, L. Fuel Quality of Stored Wood Chips—Influence of Semi-Permeable Covering Material. Appl. Energy 2018, 231, 628–634. [Google Scholar] [CrossRef]
- Kurvits, V.; Ots, K.; Kangur, A.; Korjus, H.; Muiste, P. Assessment of Load and Quality of Logging Residues from Clear-Felling Areas in Järvselja: A Case Study from Southeast Estonia. Cent. Eur. For. J. 2020, 66, 3–11. [Google Scholar] [CrossRef]
- Gasol, C.M.; Brun, F.; Mosso, A.; Rieradevall, J.; Gabarrell, X. Economic Assessment and Comparison of Acacia Energy Crop with Annual Traditional Crops in Southern Europe. Energy Policy 2010, 38, 592–597. [Google Scholar] [CrossRef]
- Sabatti, M.; Fabbrini, F.; Harfouche, A.; Beritognolo, I.; Mareschi, L.; Carlini, M.; Paris, P.; Scarascia-Mugnozza, G. Evaluation of Biomass Production Potential and Heating Value of Hybrid Poplar Genotypes in a Short-Rotation Culture in Italy. Ind. Crops Prod. 2014, 61, 62–73. [Google Scholar] [CrossRef]
- Monedero, E.; Hernández, J.J.; Collado, R. Combustion-Related Properties of Poplar, Willow and Black Locust to be Used as Fuels in Power Plants. Energies 2017, 10, 997. [Google Scholar] [CrossRef]
- Mitsui, Y.; Seto, S.; Nishio, M.; Minato, K.; Ishizawa, K.; Satoh, S. Willow Clones with High Biomass Yield in Short Rotation Coppice in the Southern Region of Tohoku District (Japan). Biomass Bioenergy 2010, 34, 467–473. [Google Scholar] [CrossRef]
- Krutul, D.; Zielenkiewicz, T.; Radomski, A.; Zawadzki, J.; Antczak, A.; Drożdżek, M.; Makowski, T. Metals Accumulation in Scots Pine (Pinus Sylvestris L.) Wood and Bark Affected by Environmental Pollution. Wood Res. 2017, 62, 353–364. [Google Scholar]
- Gendek, A.; Malatak, J.; Velebil, J. Effect of Harvest Method and Composition of Wood Chips on Their Caloric Value and Ash Content. Sylwan 2018, 162, 248–257. [Google Scholar]
- Carrillo-Parra, A.; Contreras-Trejo, J.C.; Pompa-García, M.; Pulgarín-Gámiz, M.Á.; Rutiaga-Quiñones, J.G.; Pámanes-Carrasco, G.; Ngangyo-Heya, M. Agro-Pellets from Oil Palm Residues/Pine Sawdust Mixtures: Relationships of Their Physical, Mechanical and Energetic Properties, with the Raw Material Chemical Structure. Appl. Sci. 2020, 10, 6383. [Google Scholar] [CrossRef]
- Cordero, T.; Marquez, F.; Rodriguez-Mirasol, J.; Rodriguez, J.J. Predicting Heating Values of Lignocellulosic and Carbonaceous Materials from Proximate Analysis. Fuel 2001, 80, 1567–1571. [Google Scholar] [CrossRef]
- Dibdiakova, J.; Wang, L.; Li, H. Characterization of Ashes from Pinus Sylvestris Forest Biomass. Energy Procedia 2015, 75, 186–191. [Google Scholar] [CrossRef]
- Palacka, M.; Vician, P.; Holubčík, M.; Jandačka, J. The Energy Characteristics of Different Parts of the Tree. Procedia Eng. 2017, 192, 654–658. [Google Scholar] [CrossRef]
- Neiva, D.M.; Araújo, S.; Gominho, J.; de Carneiro, A.C.C.; Pereira, H. An Integrated Characterization of Picea Abies Industrial Bark Regarding Chemical Composition, Thermal Properties and Polar Extracts Activity. PLoS ONE 2018, 13, e0208270. [Google Scholar] [CrossRef] [PubMed]
- Ninikas, K.; Ntalos, G.; Mitani, A.; Koutsianitis, D. Calorific Values from Greek Spruce Residues and Bioenergy Potentials via Pellet Production. Pro Ligno 2019, 4, 300–305. [Google Scholar]
- Charis, G.; Danha, G.; Muzenda, E. Characterizations of Biomasses for Subsequent Thermochemical Conversion: A Comparative Study of Pine Sawdust and Acacia Tortilis. Processes 2020, 8, 546. [Google Scholar] [CrossRef]
- Marangwanda, G.T.; Madyira, D.M.; Ndungu, P.G.; Chihobo, C.H. Combustion Characterisation of Bituminous Coal and Pinus Sawdust Blends by Use of Thermo-Gravimetric Analysis. Energies 2021, 14, 7547. [Google Scholar] [CrossRef]
- Čajová Kantová, N.; Holubčík, M.; Čaja, A.; Trnka, J.; Jandačka, J. Analyses of Pellets Produced from Spruce Sawdust, Spruce Bark, and Pine Cones in Different Proportions. Energies 2022, 15, 2725. [Google Scholar] [CrossRef]
- Pretzsch, H. Forest Dynamics, Growth and Yield from Measurement to Model, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 90–93. [Google Scholar]
- Telmo, C.; Lousada, J.; Moreira, N. Proximate Analysis, Backwards Stepwise Regression Between Gross Calorific Value, Ultimate and Chemical Analysis of Wood. Bioresour. Technol. 2010, 101, 3808–3815. [Google Scholar] [CrossRef]
- Feng, S.; Cheng, S.; Yuan, Z.; Leitch, M.; Xu, C.C. Valorization of Bark for Chemicals and Materials: A Review. Renew. Sustain. Energy Rev. 2013, 26, 560–578. [Google Scholar] [CrossRef]
- Stachowicz, P.; Stolarski, M.J. Thermophysical Properties and Elemental Composition of Black Locust, Poplar and Willow Biomass. Energies 2023, 16, 305. [Google Scholar] [CrossRef]
- Chen, T.; Deng, C.; Liu, R. Effect of Selective Condensation on the Characterization of Bio-oil from Pine Sawdust Fast Pyrolysis Using a Fluidized-Bed Reactor. Energy Fuels 2010, 24, 6616–6623. [Google Scholar] [CrossRef]
- Ali, L.; Ahmed Baloch, K.; Palamanit, A.; Raza, S.A.; Laohaprapanon, S.; Techato, K. Physicochemical Characterisation and the Prospects of Biofuel Production from Rubberwood Sawdust and Sewage Sludge. Sustainability 2021, 13, 5942. [Google Scholar] [CrossRef]
- Sarker, S.; Nielsen, H. Preliminary Fixed-Bed Downdraft Gasification of Birch Woodchips. Int. J. Environ. Sci. Technol. 2014, 12, 2119–2126. [Google Scholar] [CrossRef]
- Chew, J.; Doshi, V. Recent Advances in Biomass Pretreatment—Torrefaction Fundamentals and Technology. Renew. Sust. Energ. Rev. 2011, 15, 4212–4222. [Google Scholar] [CrossRef]
- Jin, C.; Sun, J.; Chen, Y.; Guo, Y.; Han, D.; Wang, R.; Zhao, C. Sawdust Wastes-Derived Porous Carbons for CO2 Adsorption. Part 1. Optimization Preparation via Orthogonal Experiment. Sep. Purif. Technol. 2021, 276, 119270. [Google Scholar] [CrossRef]
- He, Y.; Zhao, Y.; Chai, M.; Zhou, Z.; Sarker, M.; Li, C.; Liu, R.; Cai, J.; Liu, X. Comparative Study of Fast Pyrolysis, Hydropyrolysis and Catalytic Hydropyrolysis of Poplar Sawdust and Rice Husk in a Modified Py-GC/MS Microreactor System: Insights into Product Distribution, Quantum Description and Reaction Mechanism. Renew. Sust. Energ. Rev. 2020, 119, 109604. [Google Scholar] [CrossRef]
- Kraszkiewicz, A. Chemical Composition and Selected Energy Properties of Black Locust Bark (Robinia pseudoacacia L.). Agric. Eng. 2016, 20, 117–124. [Google Scholar] [CrossRef]
- Han, K.; Gao, J.; Qi, J. The Study of Sulphur Retention Characteristics of Biomass Briquettes During Combustion. Energy 2019, 186, 115788. [Google Scholar] [CrossRef]
- García, R.; Pizarro, C.; Lavín, A.; Bueno, J. Spanish Biofuels Heating Value Estimation. Part I: Ultimate Analysis Data. Fuel 2014, 117, 1130–1138. [Google Scholar] [CrossRef]
- Filbakk, T.; Jirjis, R.; Nurmi, J.; Høibø, O. The Effect of Bark Content on Quality Parameters of Scots Pine (Pinus Sylvestris L.) Pellets. Biomass Bioenergy 2011, 35, 3342–3349. [Google Scholar] [CrossRef]
- Rosas, J.G.; Gómez, N.; Cara-Jiménez, J.; González-Arias, J.; Olego, M.Á.; Sánchez, M.E. Evaluation of Joint Management of Pine Wood Waste and Residual Microalgae for Agricultural Application. Sustainability 2021, 13, 53. [Google Scholar] [CrossRef]
Solid Biomass Type and Acquisition Time | MC (%) | Ash (% DM) | FC (% DM) | VM (% DM) | HHV (GJ Mg−1 DM) | LHV (GJ Mg−1) |
---|---|---|---|---|---|---|
Pinewood sawdust | 44.50 b (21.50) | 0.47 g (25.21) | 19.74 e (1.58) | 79.80 d (0.50) | 20.20 f (1.36) | 9.48 g (21.42) |
Energy chips I | 38.70 d (23.06) | 1.37 c (35.29) | 20.93 c (4.73) | 77.69 g (1.76) | 20.46 d (1.74) | 10.88 e (18.14) |
Veneer sheets | 29.42 g (38.91) | 0.61 f (28.91) | 18.22 h (3.55) | 81.18 a (0.91) | 19.87 h (1.97) | 12.45 b (19.44) |
Shavings | 36.70 f (45.59) | 0.58 f (49.54) | 19.49 f (0.81) | 79.93 d (0.44) | 19.98 g (1.98) | 11.01 d (32.33) |
Energy chips II | 39.84 c (21.06) | 1.25 d (46.58) | 20.37 d (4.14) | 78.39 f (1.74) | 20.21 f (0.76) | 10.48 f (16.81) |
Birch bark | 40.03 c (16.13) | 2.59 b (21.41) | 24.11 b (7.52) | 73.30 h (2.47) | 21.41 a (0.67) | 11.14 c (12.38) |
Pine bark | 51.56 a (33.39) | 4.46 a (43.98) | 27.87 a (3.51) | 67.66 i (3.94) | 20.72 c (1.68) | 8.33 h (47.52) |
Pulp chips | 26.92 h (33.18) | 0.39 h (33.04) | 19.46 f (1.63) | 80.15 c (0.47) | 20.77 b (1.09) | 13.61 a (15.13) |
Energy chips III | 37.91 e (34.61) | 0.97 e (5.42) | 20.25 d (3.29) | 78.77 e (0.93) | 20.27 e (0.94) | 10.91 de (25.94) |
Veneer chips | 36.97 f (25.82) | 0.45 gh (18.34) | 18.65 g (1.71) | 80.89 ab (0.43) | 19.90 h (1.94) | 10.87 e (17.58) |
August | 37.00 e (12.93) | 1.24 d (89.09) | 20.84 bcd (13.62) | 77.92 b (5.03) | 20.44 b (2.10) | 11.19 b (8.86) |
October | 44.76 b (14.86) | 1.62 b (100.44) | 20.89 bc (13.95) | 77.49 d (5.78) | 20.58 a (2.36) | 9.62 d (13.82) |
December | 47.43 a (24.93) | 0.98 e (80.24) | 20.73 d (13.92) | 78.28 a (4.64) | 20.44 b (2.47) | 8.98 e (28.91) |
February | 43.00 c (15.80) | 1.34 c (92.38) | 20.93 b (13.09) | 77.72 c (5.06) | 19.99 d (2.94) | 9.69 d (16.48) |
April | 37.82 d (39.32) | 1.74 a (129.37) | 21.26 a (15.31) | 77.00 e (6.99) | 20.40 c (2.43) | 11.01 c (28.04) |
June | 19.51 f (38.55) | 0.96 e (77.90) | 20.80 cd (14.41) | 78.24 a (4.76) | 20.43 bc (2.87) | 14.99 a (10.61) |
Feature | MC | HHV | LHV | Ash | FC | VM | C | H | S | N |
---|---|---|---|---|---|---|---|---|---|---|
MC (%) | 1.00 | |||||||||
HHV (MJ kg−1 DM) | 0.03 | 1.00 | ||||||||
LHV (MJ kg−1) | −0.99 * | 0.09 | 1.00 | |||||||
Ash (% DM) | 0.41 * | 0.41 * | −0.36 * | 1.00 | ||||||
FC (% DM) | 0.34 * | 0.54 * | −0.27 * | 0.87 * | 1.00 | |||||
VM (% DM) | −0.38 * | −0.51 * | 0.31 * | −0.94 * | −0.99 * | 1.00 | ||||
C (% DM) | −0.02 | 0.59 * | 0.09 | 0.11 | 0.17 * | −0.16 * | 1.00 | |||
H (% DM) | −0.10 | −0.02 | 0.09 | −0.55 * | −0.59 * | 0.60 * | 0.11 | 1.00 | ||
S (% DM) | 0.24 * | 0.61 * | −0.16 * | 0.78 * | 0.82 * | −0.83 * | 0.16 * | −0.38 * | 1.00 | |
N (% DM) | 0.23 * | 0.62 * | −0.16 * | 0.70 * | 0.78 * | −0.77 * | 0.22 * | −0.35 * | 0.89 * | 1.00 |
Solid Biomass Type and Acquisition Time | C (% DM) | H (% DM) | S (% DM) | N (% DM) |
---|---|---|---|---|
Pinewood sawdust | 54.14 d (1.04) | 6.20 cde (4.39) | 0.011 e (21.75) | 0.14 f (7.31) |
Energy chips I | 54.91 b (1.51) | 6.20 cde (4.87) | 0.017 b (22.45) | 0.27 c (23.13) |
Veneer sheets | 53.44 e (2.02) | 6.22 cde (4.21) | 0.013 cd (29.95) | 0.13 f (17.01) |
Shavings | 54.20 cd (1.08) | 6.19 de (3.47) | 0.012 de (27.35) | 0.14 f (14.08) |
Energy chips II | 54.20 cd (1.04) | 6.15 e (2.21) | 0.016 b (18.56) | 0.24 d (14.06) |
Birch bark | 55.78 a (1.40) | 6.24 bcd (3.94) | 0.033 a (24.01) | 0.55 a (21.56) |
Pine bark | 54.53 c (1.26) | 5.64 f (2.32) | 0.032 a (14.07) | 0.41 b (10.00) |
Pulp chips | 56.09 a (2.02) | 6.40 a (1.12) | 0.011 e (24.72) | 0.11 g (20.76) |
Energy chips III | 54.77 bc (1.99) | 6.32 b (2.59) | 0.014 c (22.05) | 0.20 e (22.54) |
Veneer chips | 53.79 de (1.62) | 6.27 bc (2.32) | 0.013 cd (18.46) | 0.20 e (10.19) |
August | 53.85 d (2.02) | 6.39 a (3.73) | 0.02 a (43.59) | 0.23 c (51.33) |
October | 54.96 a (1.87) | 6.19 c (3.47) | 0.017 c (42.69) | 0.23 c (56.87) |
December | 54.85 ab (1.70) | 6.27 b (3.55) | 0.015 d (40.91) | 0.22 d (52.3) |
February | 54.71 abc (2.35) | 6.21 bc (4.45) | 0.014 d (46.81) | 0.24 b (51.32) |
April | 54.48 c (2.03) | 6.06 d (4.01) | 0.018 b (68.79) | 0.28 a (75.73) |
June | 54.67 bc (2.08) | 5.97 e (4.78) | 0.017 c (55.05) | 0.23 c (61.71) |
Feature | Mean | Median | Minimum Value | Maximum Value | Lower Quartile | Upper Quartile | Standard Deviation | Coefficient of Variation (%) |
---|---|---|---|---|---|---|---|---|
MC (%) | 38.25 | 39.67 | 10.04 | 70.29 | 30.26 | 46.16 | 13.04 | 34.10 |
HHV (MJ kg−1 DM) | 20.38 | 20.32 | 19.29 | 21.65 | 20.00 | 20.67 | 0.54 | 2.66 |
LHV (MJ kg−1) | 10.91 | 10.56 | 4.18 | 17.28 | 9.27 | 12.79 | 2.81 | 25.70 |
Ash (% DM) | 1.31 | 0.89 | 0.19 | 8.13 | 0.47 | 1.73 | 1.41 | 107.02 |
FC (% DM) | 20.91 | 19.69 | 16.41 | 28.78 | 19.25 | 21.53 | 2.91 | 13.90 |
VM (% DM) | 77.78 | 79.50 | 63.08 | 83.13 | 76.79 | 80.31 | 4.19 | 5.38 |
C (% DM) | 54.59 | 54.39 | 51.52 | 57.12 | 53.76 | 55.40 | 1.14 | 2.10 |
H (% DM) | 6.18 | 6.24 | 5.41 | 6.81 | 6.05 | 6.37 | 0.28 | 4.53 |
S (% DM) | 0.017 | 0.014 | 0.006 | 0.046 | 0.011 | 0.019 | 0.009 | 51.96 |
N (% DM) | 0.24 | 0.20 | 0.07 | 0.82 | 0.14 | 0.28 | 0.14 | 60.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stolarski, M.J.; Krzyżaniak, M.; Olba-Zięty, E.; Stolarski, J. Changes in Commercial Dendromass Properties Depending on Type and Acquisition Time. Energies 2023, 16, 7973. https://doi.org/10.3390/en16247973
Stolarski MJ, Krzyżaniak M, Olba-Zięty E, Stolarski J. Changes in Commercial Dendromass Properties Depending on Type and Acquisition Time. Energies. 2023; 16(24):7973. https://doi.org/10.3390/en16247973
Chicago/Turabian StyleStolarski, Mariusz Jerzy, Michał Krzyżaniak, Ewelina Olba-Zięty, and Jakub Stolarski. 2023. "Changes in Commercial Dendromass Properties Depending on Type and Acquisition Time" Energies 16, no. 24: 7973. https://doi.org/10.3390/en16247973
APA StyleStolarski, M. J., Krzyżaniak, M., Olba-Zięty, E., & Stolarski, J. (2023). Changes in Commercial Dendromass Properties Depending on Type and Acquisition Time. Energies, 16(24), 7973. https://doi.org/10.3390/en16247973