Off-Gassing and Oxygen Depletion in Headspaces of Solid Biofuels Produced from Forest Residue Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Gas Concentration Measurement
2.3. Statistical Analysis
3. Results and Discussion
3.1. Gas Concentration Changes
3.2. Mean Gas Concentration Compared with the Limit Values
Pellet | CO (ppm) | CO2 (ppm) | VOC (ppm) | O2 (% v/v) |
---|---|---|---|---|
PI | 1194.2 a | 4650 a | 88.8 a | 17.9 c |
SP | 518.9 b | 2590 b | 28.3 c | 19.9 b |
OA | 63.3 c | 2108 c | 6.2 d | 20.7 a |
BI | 105.2 c | 1279 d | 4.6 d | 20.8 a |
MP1 | 240.3 bc | 1897 c | 21.6 c | 20.6 a |
MP2 | 313.3 bc | 2021 c | 74.4 b | 20.6 a |
Mean | 405.9 | 2424 | 37.3 | 20.1 |
Limit value * | ||||
STEL (15 min) | 100 | 15,000 | ||
TWA (8 h) | 20 | 5000 |
3.3. Correlations between Gas Concentrations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M.; Olba-Zięty, E.; Akincza, M. Bioenergy technologies and biomass potential vary in Northern European countries. Renew. Sustain. Energy Rev. 2020, 133, 110238. [Google Scholar] [CrossRef]
- Statistics Poland. Energy from Renewable Sources in 2021; Statistics Poland: Warsaw, Poland, 2022.
- Malik, B.; Pirzadah, T.; Islam, S.; Tahir, I.; Kumar, M.; Rehman, R. Biomass Pellet Technology: A Green Approach for Sustainable Development. In Agricultural Biomass Based Potential Materials; Hakeem, K.R., Jawaid, M.Y., Alothman, O., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 403–433. [Google Scholar]
- Statistics Poland. Statistical Yearbook of Forestry 2022; Statistics Poland: Warsaw, Poland, 2022.
- Eurostat. Roundwood Removals by Type of Wood and Assortment. Agriculture, Forestry and Fisheries. Available online: https://ec.europa.eu/eurostat/databrowser/view/for_remov/default/table?lang=en (accessed on 13 October 2023).
- Nunes, L.J.R.; Godina, R.; Matias, J.C.O.; Catalão, J.P.S. Evaluation of the utilization of woodchips as fuel for industrial boilers. J. Clean. Prod. 2019, 223, 270–277. [Google Scholar] [CrossRef]
- Moskalik, T.; Gendek, A. Production of chips from logging residues and their quality for energy: A review of european literature. Forests 2019, 10, 262. [Google Scholar] [CrossRef]
- Cardozo, E.; Malmquist, A. Performance comparison between the use of wood and sugarcane bagasse pellets in a Stirling engine micro-CHP system. Appl. Therm. Eng. 2019, 159, 113945. [Google Scholar] [CrossRef]
- Hamzah, N.; Zandi, M.; Tokimatsu, K.; Yoshikawa, K. Wood biomass pellet characterization for solid fuel production in power generation. Int. J. Renew. Energy Sources 2018, 3, 32–40. [Google Scholar]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M.; Olba-Zięty, E.; Stachowicz, P. Energy consumption and heating costs for a detached house over a 12-year period—Renewable fuels versus fossil fuels. Energy 2020, 204, 117952. [Google Scholar] [CrossRef]
- Sandro, N.; Agis, P.; Gojmir, R.; Vlasta, Z.; Müslüm, A. Using pellet fuels for residential heating: A field study on its efficiency and the users’ satisfaction. Energy Build. 2019, 184, 193–204. [Google Scholar] [CrossRef]
- Thomson, H.; Liddell, C. The suitability of wood pellet heating for domestic households: A review of literature. Renew. Sustain. Energy Rev. 2015, 42, 1362–1369. [Google Scholar] [CrossRef]
- Bioenergy Europe. Statistical Report; Pellets: Brussels, Belgium, 2022. [Google Scholar]
- Rahman, M.A.; Rossner, A.; Hopke, P.K. Carbon monoxide off-gassing from bags of wood pellets. Ann. Work Expo. Health 2018, 62, 248–252. [Google Scholar] [CrossRef]
- Alakoski, E.; Jämsén, M.; Agar, D.; Tampio, E.; Wihersaari, M. From wood pellets to wood chips, risks of degradation and emissions from the storage of woody biomass—A short review. Renew. Sustain. Energy Rev. 2016, 54, 376–383. [Google Scholar] [CrossRef]
- Soto-Garcia, L.; Ashley, W.J.; Bregg, S.; Walier, D.; LeBouf, R.; Hopke, P.K.; Rossner, A. VOCs emissions from multiple wood pellet types and concentrations in indoor air. Energy Fuels 2015, 29, 6485–6493. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Rossner, A.; Hopke, P.K. Occupational exposure of aldehydes resulting from the storage of wood pellets. J. Occup. Environ. Hyg. 2017, 14, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Pöllinger-Zierler, B.; Sedlmayer, I.; Reinisch, C.; Hofbauer, H.; Schmidl, C.; Kolb, L.; Wopienka, E.; Leitner, E.; Siegmund, B. Interrelation of volatile organic compounds and sensory properties of alternative and torrefied wood pellets. Energy Fuels 2019, 33, 5270–5281. [Google Scholar] [CrossRef]
- Svedberg, U.R.A.; Högberg, H.-E.; Högberg, J.; Galle, B. Emission of hexanal and carbon monoxide from storage of wood pellets, a potential occupational and domestic health hazard. Ann. Occup. Hyg. 2004, 48, 339–349. [Google Scholar]
- Hedlund, F.H.; Hilduberg, Ø.J. Fatal Accidents During Marine Transport of Wood Pellets Due to Off-Gassing: Experiences from Denmark. In Biomass Volume Estimation and Valorization for Energy; Tumuluru, J.S., Ed.; IntechOpen Limited: London, UK, 2017; pp. 73–97. [Google Scholar]
- Emhofer, W. Emissions from Wood Pellets during Storage. Ph.D. Thesis, Faculty of Mechanical and Industrial Engineering, Vienna University of Technology, Vienna, Austria, 2015. [Google Scholar]
- Meier, F.; Sedlmayer, I.; Emhofer, W.; Wopienka, E.; Schmidl, C.; Haslinger, W.; Hofbauer, H. Influence of oxygen availability on off-gassing rates of emissions from stored wood pellets. Energy Fuels 2016, 55, 132. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hopke, P.K. Mechanistic pathway of carbon monoxide off-gassing from wood pellets. Energy Fuels 2016, 30, 5809–5815. [Google Scholar] [CrossRef]
- Soto-Garcia, L.; Huang, X.; Thimmaiah, D.; Denton, Z.; Rossner, A.; Hopke, P. Measurement and modeling of carbon monoxide emission rates from multiple wood pellet types. Energy Fuels 2015, 29, 3715–3724. [Google Scholar] [CrossRef]
- Siwale, W.; Frodeson, S.; Finell, M.; Arshadi, M.; Jonsson, C.; Henriksson, G.; Berghel, J. Understanding off-gassing of biofuel wood pellets using pellets produced from pure microcrystalline cellulose with different additive oils. Energies 2022, 15, 2281. [Google Scholar] [CrossRef]
- Siwale, W.; Frodeson, S.; Berghel, J.; Henriksson, G.; Finell, M.; Arshadi, M.; Jonsson, C. Influence on off-gassing during storage of Scots pine wood pellets produced from sawdust with different extractive contents. Biomass Bioenergy 2022, 156, 106325. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, X.; Li, C.; Huang, Z.; Leng, L.; Zeng, G.; Li, H. Variation in the physical properties of wood pellets and emission of aldehyde/ketone under different storage conditions. Fuel 2016, 183, 314–321. [Google Scholar] [CrossRef]
- Kuang, X.; Shankar, T.J.; Bi, X.T.; Lim, C.J.; Sokhansanj, S.; Melin, S. Rate and peak concentrations of off-gas emissions in stored wood pellets—Sensitivities to temperature, relative humidity, and headspace volume. Ann. Occup. Hyg. 2009, 53, 789–796. [Google Scholar] [PubMed]
- Kuang, X.; Shankar, T.J.; Sokhansanj, S.; Lim, C.J.; Bi, X.T.; Melin, S. Effects of headspace and oxygen level on off-gas emissions from wood pellets in storage. Ann. Occup. Hyg. 2009, 53, 807–813. [Google Scholar] [PubMed]
- Sedlmayer, I.; Bauer-Emhofer, W.; Haslinger, W.; Hofbauer, H.; Schmidl, C.; Wopienka, E. Off-gassing reduction of stored wood pellets by adding acetylsalicylic acid. Fuel Process. Technol. 2020, 198, 106218. [Google Scholar] [CrossRef]
- Sedlmayer, I.; Arshadi, M.; Haslinger, W.; Hofbauer, H.; Larsson, I.; Lönnermark, A.; Nilsson, C.; Pollex, A.; Schmidl, C.; Stelte, W.; et al. Determination of off-gassing and self-heating potential of wood pellets—Method comparison and correlation analysis. Fuel 2018, 234, 894–903. [Google Scholar] [CrossRef]
- Attard, T.M.; Arshadi, M.; Nilsson, C.; Budarin, V.L.; Valencia-Reyes, E.; Clark, J.H.; Hunt, A.J. Impact of supercritical extraction on solid fuel wood pellet properties and off-gassing during storage. Green Chem. 2016, 18, 2682–2690. [Google Scholar] [CrossRef]
- Tumuluru, J.; Lim, C.; Bi, X.; Kuang, X.; Melin, S.; Yazdanpanah, F.; Sokhansanj, S. Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass. Energies 2015, 8, 1745–1759. [Google Scholar] [CrossRef]
- Emhofer, W.; Lichtenegger, K.; Haslinger, W.; Hofbauer, H.; Schmutzer-Roseneder, I.; Aigenbauer, S.; Lienhard, M. Ventilation of carbon monoxide from a biomass pellet storage tank—A study of the effects of variation of temperature and cross-ventilation on the efficiency of natural ventilation. Ann. Occup. Hyg. 2015, 59, 79–90. [Google Scholar] [PubMed]
- Granström, K.M. Sawdust age affect aldehyde emissions in wood pellets. Fuel 2014, 126, 219–223. [Google Scholar] [CrossRef]
- Arshadi, M.; Gref, R. Emission of volatile organic compounds from softwood pellets during storage. For. Prod. J. 2005, 55, 132–135. [Google Scholar]
- Arranz, J.I.; Miranda, M.T.; Montero, I.; Nogales, S.; Sepúlveda, F.J. Influence factors on carbon monoxide accumulation in biomass pellet storage. Energies 2019, 12, 2323. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Huang, Z.; Yuan, X.; Wang, Z.; He, R.; Xi, Y.; Zhang, X.; Tan, M.; Huang, J.; et al. Effect of hydrothermal carbonization on storage process of woody pellets: Pellets’ properties and aldehydes/ketones emission. Bioresour. Technol. 2018, 260, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shen, J.; Zhu, X.D. Headspace solid-phase microextraction for the determination of volatile organic compounds in Larix gmelini particles. Phys. Procedia 2012, 32, 605–613. [Google Scholar] [CrossRef]
- Arshadi, M.; Tengel, T.; Nilsson, C. Antioxidants as additives in wood pellets as a mean to reduce off-gassing and risk for self-heating during storage. Fuel Process. Technol. 2018, 179, 351–358. [Google Scholar] [CrossRef]
- Yazdanpanah, F.; Sokhansanj, S.; Rezaei, H.; Jim Lim, C.; Lau, A.; Tony, X.; Melin, S.; Shankar, J.; Soo, C. Measurement of off-gases in wood pellet storage. In Advances in Gas Chromatography; Guo, X., Ed.; InTech: London, UK, 2014. [Google Scholar]
- Pohleven, J.; Burnard, M.; Kutnar, A. Volatile organic compounds emitted from untreated and thermally modified wood—A review. Wood Fiber Sci. 2019, 51, 231–254. [Google Scholar] [CrossRef]
- Koppejan, J.; Loennermark, A.; Persson, H.; Larsson, I.; Blomqvist, P.; Arshadi, M.; Valencia-Reyes, E.; Melin, S.; Howes, P.; Wheeler, P.; et al. Health and Safety Aspects of Solid Biomass Storage, Transportation and Feeding; IEA Bioenergy: Utrecht, The Netherlands, 2013. [Google Scholar]
- International Association of Classification Societies (IACS). Confined Space Safe Practice, Recommendation No. 72, Rev.3 Dec 2018; IACS: London, UK, 2018. [Google Scholar]
- European Commission (EC). Commission Directive (EU) 2017/164 of 31 January 2017 establishing a fourth list of indicative occupational exposure limit values pursuant to Council Directive 98/24/EC, and amending Commission Directives 91/322/EEC, 2000/39/EC and 2009/161/EU. Off. J. Eur. Union 2017, 27, 115–120. [Google Scholar]
- Government of the Republic of Poland. Regulation of the Ministry of Family, Labour and Social Policy of 12 June 2018 on the highest permissible concentrations and intensities of agents harmful to human health at a workplace. J. Law Republ. Pol. (Dz. U.) 2018, 1286, 1–40. [Google Scholar]
- Svedberg, U.; Petrini, C.; Johanson, G. Oxygen depletion and formation of toxic gases following sea transportation of logs and wood chips. Ann. Occup. Hyg. 2009, 53, 779–787. [Google Scholar]
Pellet | Material | Diameter (mm) | Particle Density (g cm−3) | Moisture (%) |
---|---|---|---|---|
PI | Pine sawdust | 6.28 ± 0.03 | 1.223 ± 0.025 | 7.81 ± 0.04 |
SP | Spruce sawdust | 6.12 ± 0.08 | 1.309 ± 0.069 | 4.23 ± 0.11 |
OA | Oak sawdust | 6.12 ± 0.10 | 1.204 ± 0.085 | 8.79 ± 0.08 |
BI | Birch sawdust | 6.17 ± 0.06 | 1.261 ± 0.052 | 6.40 ± 0.18 |
MP1 | Sawdust from coniferous species | 6.35 ± 0.08 | 1.208 ± 0.036 | 8.22 ± 0.02 |
MP2 | Sawdust from coniferous and deciduous species | 6.20 ± 0.07 | 1.182 ± 0.043 | 6.25 ± 0.05 |
Mean | 6.21 ± 0.11 | 1.231 ± 0.343 | 6.95 ± 159 |
Gas | Measurement Method | Unit | Measurement Range | Resolution | Response Time (s) |
---|---|---|---|---|---|
CO2 | Non-dispersive infrared (NDIR) | ppm | 0–20,000 | 10 | 60 |
CO | Electrochemical (EC) | ppm | 0–500 | 1 | 20 |
O2 | Electrochemical (EC) | % v/v | 0–30 | 0.1 | 15 |
VOC | Photoionization (PID) | ppm * | 0–200 200–2000 | 0.1 1 | 10 10 |
Source of Variation | CO | CO2 | VOC | O2 | ||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | |
Intercept | 246.80 | <0.0001 | 13,413 | <0.0001 | 1874.26 | <0.0001 | 255,206 | <0.0001 |
Material (M) | 43.84 | 0.00012 | 519.79 | <0.0001 | 287.17 | <0.0001 | 127.63 | <0.0001 |
Time (T) | 63.22 | <0.0001 | 579.75 | <0.0001 | 1581.84 | <0.0001 | 38.08 | <0.0001 |
M x T | 14.20 | <0.0001 | 37.80 | <0.0001 | 246.64 | <0.0001 | 12.70 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warmiński, K.; Jankowska, K.A.; Bęś, A.; Stolarski, M.J. Off-Gassing and Oxygen Depletion in Headspaces of Solid Biofuels Produced from Forest Residue Biomass. Energies 2024, 17, 216. https://doi.org/10.3390/en17010216
Warmiński K, Jankowska KA, Bęś A, Stolarski MJ. Off-Gassing and Oxygen Depletion in Headspaces of Solid Biofuels Produced from Forest Residue Biomass. Energies. 2024; 17(1):216. https://doi.org/10.3390/en17010216
Chicago/Turabian StyleWarmiński, Kazimierz, Klaudia Anna Jankowska, Agnieszka Bęś, and Mariusz Jerzy Stolarski. 2024. "Off-Gassing and Oxygen Depletion in Headspaces of Solid Biofuels Produced from Forest Residue Biomass" Energies 17, no. 1: 216. https://doi.org/10.3390/en17010216
APA StyleWarmiński, K., Jankowska, K. A., Bęś, A., & Stolarski, M. J. (2024). Off-Gassing and Oxygen Depletion in Headspaces of Solid Biofuels Produced from Forest Residue Biomass. Energies, 17(1), 216. https://doi.org/10.3390/en17010216