Analysis of Feasibility of Producing and Using Biogas in Large Cities, Based on the Example of Krakow and Its Surrounding Municipalities
Abstract
:1. Introduction
2. Methods and Research
2.1. Biowaste Management in Poland
2.2. The Use of Municipal Biowaste for the Production of Biogas
2.3. Research Object
2.4. Potential for Biogas Production in Krakow and the Communes of the Krakow Metropolis
2.5. Possibilities of Generating Energy from Biodegradable Municipal Waste
- Biodegradable green waste (code 20 02 01),
- Biodegradable kitchen waste (code 20 01 08).
- green waste, in the amount of 15,000 tons/year,
- kitchen waste in the amount of about 5000 tons/year,
- Silage from green waste (without woody parts) in the amount of 15,000 tons/year,
- Kitchen waste in the amount of 5000 tons/year.
- Variant 3—green waste (code 20 02 01) in the amount of 20,000 tons,
- Variant 4—silage from green waste in the amount of 20,000 tons,
- Variant 5—kitchen waste (20 01 08) in the amount of 20,000 tons.
3. Results
3.1. Calculation Results for Substrates Mixed in the Optimal Proportion
3.2. Comparative Calculation Results for Homogeneous and Mixed Substrates in the Optimal Proportion
- A balanced organic composition results from mixing kitchen waste and green waste, which results in a more balanced nutrient mix. Kitchen waste provides easily digestible organic substances, while green waste introduces plant fibers. This supplementation of nutrients promotes better growth of microorganisms and increases biogas production.
- Increasing the efficiency of the biogas plant can be obtained by mixing kitchen waste and green waste, which allows for better use of various organic components and increases the efficiency of the fermentation process. Different types of substrates have different decomposition rates and energy values, and mixing allows creating good conditions for microorganisms that decompose organic substances.
- The availability of the raw material results from the fact that kitchen and green waste often occur in large quantities in cities and surrounding municipalities. Mixing them allows for efficient use of these biomass sources and reduces waste.
3.3. The Use of Biogas Produced from Municipal Biowaste for Energy Purposes
4. Discussion
5. Conclusions
- airtight household containers for kitchen biowaste, which will make it easier to collect even in small apartments and throw into airtight containers in a garbage bin,
- introduction of a new waste code, which will cover biodegradable kitchen waste with the code 20 01 08 and kitchen waste of animal origin (without bones), i.e., meat, sausages, fat, dairy products,
- collection of biodegradable waste from households at least once a week, because collecting waste every two and sometimes three weeks allows excessive decomposition of organic matter, which is most troublesome in the summer at high ambient temperatures,
- equalizing (increasing) the price of share certificates for electricity from all types of biogas to the price of agricultural biogas plant certificates.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arora, N.K. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef]
- Zheng, X.; Streimikiene, D.; Balezentis, T.; Mardani, A.; Cavallaro, F.; Liao, H. A review of greenhouse gas emission profiles, dynamics, and climate change mitigation efforts across the key climate change players. J. Clean. Prod. 2019, 234, 1113–1133. [Google Scholar] [CrossRef]
- Santana, J.C.C.; Miranda, A.C.; Yamamura, C.L.K.; Silva Filho, S.C.D.; Tambourgi, E.B.; Lee Ho, L.; Berssaneti, F.T. Effects of air pollution on human health and costs: Current situation in São Paulo, Brazil. Sustainability 2020, 12, 4875. [Google Scholar] [CrossRef]
- Daellenbach, K.R.; Uzu, G.; Jiang, J.; Cassagnes, L.-E.; Leni, Z.; Vlachou, A.; Stefenelli, G.; Canonaco, F.; Weber, S.; Segers, A.; et al. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 2020, 587, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Polish Smog Alarm. Available online: https://polskialarmsmogowy.pl/2021/10/wiecej-wnioskow-o-dofinansowanie-na-wymiane-kopciuchow-wokol-krakowa/ (accessed on 18 July 2023).
- Act of 19 July 2019 Amending the Act on Renewable Energy Sources and Certain Other Acts. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001524 (accessed on 12 November 2023).
- Gotlibowska, K. A proposal for a Smart City model based on the use of information and communication technologies in its development [Propozycja modelu miasta inteligentnego (Smart City) opartego na zastosowaniu technologii informacyjno-komunikacyjnych w jego rozwoju]. Rozw. Reg. I Polityka Reg. 2018, 42, 67–80. [Google Scholar]
- Łaźniewska, E. The essence of the smart city concept. The activity of the city of Poznań on the way to a smart city [Istota koncepcji smart city. Aktywność miasta Poznania na drodze do smart city]. Rozw. Reg. i Polityka Regionalna. 2019, 48, 105–117. [Google Scholar] [CrossRef]
- Jacyno, M.; Korkosz-Gębska, J.; Krasuska, E.; Milewski, J.; Oniszk-Popławska, A.; Trębacz, D.; Wójcik, G. The concept of a biogas plant using municipal waste [Koncepcja bio-gazowni wykorzystującej odpady komunalne]. Rynek Energii 2013, 2, 69–77. [Google Scholar]
- Setyobudi, R.H.; Yandri, E.; Mousa Atoum, M.F.; Nur, S.M.; Zekker, I.; Idroes, R.; Tallei, T.E.; Adinurani, P.G.; Vincēviča-Gaile, Z.; Widodo, W.; et al. Healthy-Smart Concept as Standard Design of Kitchen Waste Biogas Digester for Urban Households. Jordan J. Biol. Sci. 2021, 14, 613–620. [Google Scholar]
- Vrabie, C. Converting municipal waste to energy through the biomass chain, a key technology for environmental issues in (Smart) cities. Sustainability 2021, 13, 4633. [Google Scholar] [CrossRef]
- Regulation of the Minister of the Environment of 9 December 2014 on the Catalog of Waste. 2014. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20200000010 (accessed on 12 November 2023).
- Stępień, M. Selected problems of managing the segregation and recycling of municipal waste in Poland [Wybrane problemy zarządzania segregacją i recyklingiem odpadów komunalnych w Polsce]. Zesz. Nauk. Politech. Częstochowskiej Zarządzanie 2019, 33, 261–270. [Google Scholar] [CrossRef]
- Szyba, M.; Muweis, J. The Importance of Biodegradable Waste in Transforming the Economy into a Circular Model in Poland. Pol. J. Environ. Stud. 2022, 31, 2245–2253. [Google Scholar] [CrossRef] [PubMed]
- Wąsowicz, K.; Famielec, S.; Chełkowski, M. Municipal Waste Management in Modern Cities [Gospodarka Odpadami Komunalnymi we Współczesnych Miastach]; Foundation of the Krakow University of Economics (Fundacja Uniwersytetu Ekonomicznego w Krakowie): Krakow, Poland, 2018. [Google Scholar]
- Pandyaswargo, A.H.; Jagath Dickella Gamaralalage, P.; Liu, C.; Knaus, M.; Onoda, H.; Mahichi, F.; Guo, Y. Challenges and an implementation framework for sustainable municipal organic waste management using biogas technology in emerging Asian Countries. Sustainability 2019, 11, 6331. [Google Scholar] [CrossRef]
- Gostomczyk, W. The state and prospects for the development of the biogas market in the EU and Poland—Economic approach [Stan i perspektywy rozwoju rynku biogazu w UE i Polsce-ujęcie ekonomiczne]. Probl. Rol. Swiat. 2017, 17, 48. [Google Scholar] [CrossRef]
- Rejman-Burzyńska, A.; Maksymiak-Lach, H.; Jędrysik, E. Energy potential of biogas—Assessment of raw material resources for biogas production in Poland [Potencjał energetyczny biogazu–ocena zasobów surowcowych do produkcji biogazu w Polsce]. Chemik 2013, 67, 446–453. [Google Scholar]
- Jarząb, M.; Masłoń, A. Selected aspects of biogas production and use [Wybrane aspekty wytwarzania i wykorzystania biogazu]. Gaz Woda i Tech. Sanit. 2021, 4, 10–17. [Google Scholar]
- Szyba, M. Spatial planning and the development of renewable energy sources in Poland. Acta Innov. 2021, 39, 5–14. [Google Scholar] [CrossRef]
- Piwowar, A.; Dzikuć, M.; Adamczyk, J. Agricultural biogas plants in Poland–selected technological, market and environmental aspects. Renew. Sustain. Energy Rev. 2016, 58, 69–74. [Google Scholar] [CrossRef]
- Igliński, B.; Buczkowski, R.; Iglińska, A.; Cichosz, M.; Piechota, G.; Kujawski, W. Agricultural biogas plants in Poland: Investment process, economical and environmental aspects, biogas potential. Renew. Sustain. Energy Rev. 2012, 16, 4890–4900. [Google Scholar] [CrossRef]
- Sikora, J.; Stawowski, W.; Wozniak, A.; Zemanek, J. Determination of the amount of biogas from various organic waste of municipal origin [Określenie ilości biogazu z różnych odpadów organicznych pochodzenia komunalnego]. Infrastrukt. i Ekol. Teren. Wiejskich. 2008, 8, 169–178. [Google Scholar]
- Jędrczak, A. Biological Waste Processing [Biologiczne Przetwarzanie Odpadów]; Państwowe Wydawnictwo Naukowe PWN: Warszawa, Poland, 2007. [Google Scholar]
- Podkówka, W. (Ed.) Agricultural Biogas. Renewable Energy Source, Theory and Practice [Biogaz Rolniczy. Odnawialne Źródło Energii, Teoria i Praktyka]; Powszechne Wydawnictwo Rolnicze i Lesne: Warsaw, Poland, 2012. [Google Scholar]
- Act of 20 February 2015 on Renewable Energy Sources (Journal Laws of 2015, Item 478). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20150000478 (accessed on 12 November 2023).
- DIRECTIVE (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2008/98/EC on Waste. Off. J. Eur. Union 2018, L 150, 109–140.
- Holewa-Rataj, J.; Kukulska-Zając, E. Agricultural biogas in Poland—production and possibilities of use. Biogaz rolniczy w Polsce–produkcja i możliwości wykorzystania. Nafta-Gaz. 2022, 78, 872–877. [Google Scholar] [CrossRef]
- Szyba, M.; Mikulik, J. Energy Production from Biodegradable Waste as an Example of the Circular Economy. Energies 2022, 15, 1269. [Google Scholar] [CrossRef]
- Lewicki, A.; Dach, J. Biogas cogeneration: Potential and good examples. Kogeneracja biogazowa: Potencjał i dobre przykłady. Nowa Energ. 2021, 1, 52–54. [Google Scholar]
- Piskowska-Wasiak, J. Biogas upgrading to high-methane gas parameters. Uzdatnianie biogazu do parametrów gazu wysokometanowego. Nafta-Gaz 2014, 94–105. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-4d60dbd4-10a4-4f86-a770-9e5f226dd4d3 (accessed on 12 November 2023).
- Bartoluzzi, G.; Gatti, M.; Sogni, A.; Consonno, S. Biomethane production from agricultural resources in the Italian scenario: Techno-Economic analysis of water wash. Artic. Chem. Eng. Trans. 2014, 37, 259. [Google Scholar] [CrossRef]
- Wojtowicz, R. Analysis of the possibility of powering certified gas devices with treated agricultural biogas [Analiza możliwości zasilania certyfikowanych urządzeń gazowych uzdatnionym biogazem rolniczym]. Nafta-Gaz 2022, 78, 608–617. [Google Scholar] [CrossRef]
- Singhal, S.; Agarwal, S.; Arora, S.; Sharma, P.; Singhal, N. Upgrading techniques for transformation of biogas to bio-CNG: A review. Int. J. Energy Res. 2017, 41, 1657–1669. [Google Scholar] [CrossRef]
- Daniel-Gromke, J.; Rensberg, N.; Denysenko, V.; Stinner, W.; Schmalfuß, T.; Scheftelowitz, M.; Nelles, M.; Liebetrau, J. Current developments in production and utilization of biogas and biomethane in Germany. Chem. Ing. Tech. 2018, 90, 17–35. [Google Scholar] [CrossRef]
- Beltrami, D.; Iora, P.; Uberti, S. The Potential Role of Natural Gas Vehicles in the Reduction of GHG Emissions in the Italian Private Transportation Framework; SAE Technical Paper No. 2022-24-0033; SAE International: Warrendale, PA, USA, 2022. [Google Scholar]
- Prati, M.V.; Costagliola, M.A.; Unich, A.; Mariani, A. Emission factors and fuel consumption of CNG buses in real driving conditions. Transp. Res. Part D Transp. Environ. 2022, 113, 103534. [Google Scholar] [CrossRef]
- Sandhu, G.S.; Frey, H.C.; Bartelt-Hunt, S.; Jones, E. Real-world activity, fuel use, and emissions of heavy-duty compressed natural gas refuse trucks. Sci. Total Environ. 2021, 761, 143323. [Google Scholar] [CrossRef]
- Lokal Bank Data GUS. 2022. Available online: https://bdl.stat.gov.pl/bdl/dane/podgrup/temat (accessed on 12 July 2023).
- Krakow Metropoly. Available online: https://businessinmalopolska.pl/images/publikacje/MK_wersja_do_internetu_pl.pdf (accessed on 26 July 2023).
- MPO Krakow. 2023. Available online: https://mpo.krakow.pl/pl/mieszkancy/selekcja (accessed on 15 July 2023).
- EkoWieliczka. Available online: https://eko.wieliczka.eu/pl/ (accessed on 15 July 2023).
- Marshal’s Office of the Małopolska Voivodeship. Municipal Waste (Waste Codes: 20 02 01, 20 01 08) in the Krakow and Communes of the Krakow Metropoly the Malopolska Voivodeship; Data for 2022; Marshal’s Office of the Małopolska Voivodeship: Kraków, Poland, 2023; (materials unpublished in the possession of the authors). [Google Scholar]
- Biogas. Production, Use. Available online: https://www.ieo.pl/dokumenty/obszary_badan/Biogaz%20-%20Produkcja%20Wykorzystywanie.pdf (accessed on 18 September 2023).
- Czop, M.; Królikowska, D.; Kubik, M.; Siudra, P. Determining of basic fertilizing properties of household waste. Arch. Waste Manag. Environ. Prot. 2012, 14, 56–61. [Google Scholar]
- Biogas Production in Fermentation and Co-Fermentation Processes. 2023. Available online: https://www.imp.gda.pl/bf2020/BF2012/prezentacje/p111.pdf (accessed on 18 September 2023).
- Szyba, M.; Mikulik, J. Management of Biodegradable Waste Intended for Biogas Production in a Large City. Energies 2023, 16, 4039. [Google Scholar] [CrossRef]
- Kasprzycka, A. Causes of disturbances in the methane fermentation process [Przyczyny zakłóceń procesu fermentacji metanowej]. Autobusy Tech. Eksploat. Syst. Transp. 2011, 12, 224–228. [Google Scholar]
- Król, A. Silage: A valuable substrate for biogas production. Autobusy Tech. Eksploat. Syst. Transp. 2011, 12, 249–254. [Google Scholar]
- Czerwińska, E.; Kalinowska, K. Conditions for conducting the methane fermentation process in a biogas plant [Warunki prowadzenia procesu fermentacji metanowej w biogazowni]. Tech. Rol. Ogrod. Leśna. 2014, 2, 12–14. [Google Scholar]
- Ahmed, G.M.; Hussien, F.M.; Hamad, A.J. Codigestion of Food Waste with Used Lipids as Substrate Material to Produce Biogas. IOP Conf. Ser. Mater. Sci. Eng. 2020, 928, 22042. [Google Scholar] [CrossRef]
- Chen, X.; Yan, W.; Sheng, K.; Sanati, M. Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste. Bioresour. Technol. 2014, 154, 215–221. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, R.; El-Mashad, H.M.; Dong, R. Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresour. Technol. 2009, 100, 5103–5108. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, R.; Jiang, Q.; Sun, T.; Li, M.; Shi, J.; Chai, H.; Gu, L.; Ai, H.; He, Q. Effects of green waste participation on the co-digestion of residual sludge and kitchen waste: A preliminary study. Sci. Total Environ. 2019, 671, 838–849. [Google Scholar] [CrossRef]
- Kruk, P.; Błaszczyk, N.; Stankowska, P.; Kruk, K. Construction of an Agricultural Biogas Plant with a Capacity of 1 MW with Accompanying Infrastructure in the Town of Nowy Świat on Plot 30/24 of the Nowy Świat District, Kielce. 2019. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiDu4mz7cOCAxWvRPEDHZ5CBBQQFnoECA8QAQ&url=https%3A%2F%2Fbip.lubsza.ug.gov.pl%2Fdownload%2Fattachment%2F13946%2Fraport-scalony-biogazownia-nowy-swiat_uzupelniony_2019-05-20-002.pdf&usg=AOvVaw1BpE3PrFCkAEoD5jXpBUfd&opi=89978449 (accessed on 12 November 2023).
- Fugol, M.; Prask, H. Comparison of biogas yield from three types of silage: Corn, alfalfa and grass [Porównanie uzysku biogazu z trzech rodzajów kiszonek: Z kukurydzy, lucerny i trawy]. Inżynieria Rol. 2011, 15, 31–39. [Google Scholar]
- Zarebski, P. Uwarunkowania przestrzenne lokalizacji biogazowni w Polsce. Rocz. Nauk. Stowarzyszenia Ekon. Rol. i Agrobiznesu 2014, 16, 331–336. [Google Scholar]
- A Road Connecting Economic Zones in Wieliczka and Niepołomice. Available online: https://dziennikpolski24.pl/powstanie-lacznik-stref-przemyslowych-wieliczki-i-niepolomic-ciezarowki-maja-zniknac-z-lokalnych-drog/ar/c3-17006411 (accessed on 10 September 2023).
- Niepołomice’s Business Card. 2023. Available online: https://www.niepolomice.eu/informator-categories/wizytowka-gospodarcza (accessed on 10 September 2023).
- Al-Wahaibi, A.; Osman, A.I.; Al-Muhtaseb, A.A.H.; Alqaisi, O.; Baawain, M.; Fawzy, S.; Rooney, D.W. Techno-economic evaluation of biogas production from food waste via anaerobic digestion. Sci. Rep. 2020, 10, 15719. [Google Scholar] [CrossRef] [PubMed]
- Emissions Trading Systems. Available online: https://op.europa.eu/webpub/eca/special-reports/emissions-trading-system-18-2020/pl (accessed on 11 September 2023).
- Polish Energy Policy Until 2040. Available online: https://www.gov.pl/web/climate/energy-policy-of-poland-until-2040-epp2040 (accessed on 12 November 2022).
- Gwarda, K.; Klopott, M. Selective Bio-Waste Collection System in Gdynia from the Perspective of Residents of Multi-Family Households. Eur. Res. Stud. J. 2021, 24, 590–600. [Google Scholar] [CrossRef] [PubMed]
Community | Amount of Biowaste [tons] | |||
---|---|---|---|---|
2021 | 2022 | |||
Code 20 02 01 | Code 20 01 08 | Code 20 02 01 | Code 20 01 08 | |
Świątniki Górne | 492.2 | 0 | 521.08 | 0 |
Mogilany | 185.0 | 969.56 | 32.88 | 1170.93 |
Skawina | 1005.2 | 84.12 | 589.12 | 709.76 |
Czernichów | 679.5 | 0 | 567.15 | 0 |
Liszki | 129.2 | 594.78 | 126.46 | 595.84 |
Zabierzów | 3049.3 | 3.16 | 1696.87 | 542.24 |
Wielka Wieś | 1090.7 | 0 | 1090.7 | 0 |
Zielonki | 38.0 | 1226.77 | 41.98 | 1497.54 |
Michałowice | 451.5 | 0 | 536.2 | 0 |
Kocmyrzów-Luborzyca | 1484.2 | 0 | 1096.34 | 0 |
Igołomia-Wawrzeńczyce | 0 | 0 | 0 | 0 |
Niepołomice | 4169.1 | 0 | 3755.29 | 245.70 |
Biskupice | 480.9 | 0 | 402.12 | 0 |
Wieliczka | 1080.0 | 0 | 369.69 | 331.14 |
Total communes surrounding Krakow | 1433.7 | 2878.4 | 10,843.02 | 5093.15 |
Krakow | 49,826.0 | 19,003.3 | 51,659.07 | 22,116.72 |
Waste collected in Krakow and communes | 64,160.7 | 21,881.7 | 62,502.09 | 27,209.87 |
Quantity | Symbol | Unit | Substrates | ||
---|---|---|---|---|---|
Green Biowaste | Silage from Green Biowaste | Kitchen Biowaste | |||
Amount of biogas | m3/t | 175 | 190 | 250 | |
Biomethane content in biogas | % | 60 | 55 | 60 | |
Calorific value | kWh/Nm3 | 9.3 | 9.3 | 9.3 | |
Electricity yield | % | 35 | 35 | 35 | |
Heat energy yield | % | 55 | 55 | 55 | |
Generator runtime * | h/year | 8000 | 8000 | 8000 |
Item | Substrates | Total | |||
---|---|---|---|---|---|
Symbol | Unit | Green Biowaste | Kitchen Biowaste | ||
Amount of substrate | - | tons/year | 15,000 | 5000 | 20,000 |
Amount of biogas | m3/ton/year | 2,625,000 | 1,250,000 | 3,875,000 | |
Biomethane content in biogas | - | % | 55 | 60 | - |
Amount of biomethane | m3/year | 1,443,750 | 750,000 | 2,193,750 | |
Total energy | MWh/year | 13,426.87 | 6975 | 20,401.87 | |
Power electricity of the generator set | MW | 0.7 | 0.3 | 1.0 | |
Heat energy from cogeneration | MWh | 7385 | 3836 | 11,221 | |
Heat energy for fermentation | MWh | 2215 | 1151 | 3366 | |
Heat energy for sale | MWh | 5169 | 2685 | 7854 | |
Power heat of the generator set | MW | 0.9 | 0.5 | 1.4 |
Item | Substrates | Total | |||
---|---|---|---|---|---|
Symbol | Unit | Silage from Green Waste | Kitchen Biowaste | ||
Amount of substrate | - | tons/year | 15,000 | 5000 | 20,000 |
Amount of biogas | m3/ton/year | 2,850,000 | 1,250,000 | 4,100,000 | |
Biomethane content in biogas | - | % | 55 | 60 | - |
Amount of biomethane | m3/year | 1,567,500 | 750,000 | 2,317,500 | |
Total energy | MWh/year | 14,577.7 | 6975 | 21,552.7 | |
Electricity | MWh | 5102 | 2441 | 7543 | |
Power electricity of the generator set | MW | 0.7 | 0.3 | 1.0 | |
Heat energy from cogeneration | MWh | 8018 | 3836 | 11,854 | |
Heat energy for fermentation | MWh | 2405 | 1150 | 3556 | |
Heat energy for sale | MWh | 5612 | 2685 | 8298 | |
Power heat of the generator set | MW | 1.0 | 0.5 | 0.9 |
Item | Symbol | Unit | Substrates | ||||
---|---|---|---|---|---|---|---|
Variant 1 | Variant 2 | Variant 3 | Variant 4 | Variant 5 | |||
Amount of substrate | - | tons/year | 20,000 | 20,000 | 20,000 | 20,000 | 20,000 |
Amount of biogas | - | m3/ton/year | 3,875,000 | 4,100,000 | 3,500,000 | 3,800,000 | 5,000,000 |
Biomethane content in biogas | - | % | 57 | 57 | 55 | 55 | 60 |
Amount of biogas | m3/year | 2,193,750 | 2,317,500 | 1,925,000 | 2,090,000 | 3,000,000 | |
Total energy | MWh/year | 20,401.8 | 21,552.7 | 17,902.5 | 19,437.0 | 27,900.0 | |
Electricity | MWh | 7140 | 7543 | 6266 | 6803 | 9765 | |
Power electricity of the generator set | MW | 1.0 | 1.0 | 0.8 | 0.8 | 1.2 | |
Heat energy from cogeneration | MWh | 11,221 | 11,854 | 9846 | 10,690 | 15,345 | |
Heat energy for fermentation | MWh | 3366 | 3556 | 2954 | 3207 | 4603 | |
Heat energy for sale | MWh | 7854 | 8298 | 6892 | 7483 | 10,741 | |
Power heat of the generator set | MW | 1.4 | 1.5 | 1.2 | 1.3 | 1.9 |
Details | Symbol | Variant 1 | Variant 2 | Variant 3 | Variant 4 | Variant 5 |
---|---|---|---|---|---|---|
Number of houses powered with electricity | Ne | 2380 | 2514 | 2088 | 2267 | 3255 |
Number of houses powered with heat energy | Nt | 1047 | 1106 | 918 | 997 | 1432 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szyba, M.; Mikulik, J. Analysis of Feasibility of Producing and Using Biogas in Large Cities, Based on the Example of Krakow and Its Surrounding Municipalities. Energies 2023, 16, 7588. https://doi.org/10.3390/en16227588
Szyba M, Mikulik J. Analysis of Feasibility of Producing and Using Biogas in Large Cities, Based on the Example of Krakow and Its Surrounding Municipalities. Energies. 2023; 16(22):7588. https://doi.org/10.3390/en16227588
Chicago/Turabian StyleSzyba, Marta, and Jerzy Mikulik. 2023. "Analysis of Feasibility of Producing and Using Biogas in Large Cities, Based on the Example of Krakow and Its Surrounding Municipalities" Energies 16, no. 22: 7588. https://doi.org/10.3390/en16227588
APA StyleSzyba, M., & Mikulik, J. (2023). Analysis of Feasibility of Producing and Using Biogas in Large Cities, Based on the Example of Krakow and Its Surrounding Municipalities. Energies, 16(22), 7588. https://doi.org/10.3390/en16227588