Adaptive Hamiltonian-Based Energy Control with Built-In Integrator for PEMFC Hybrid Power Conversion Architecture
Abstract
:1. Introduction
2. Description of the Studied Power-Conversion Architecture and the Proposed Control Algorithm
2.1. System Description
2.2. Theoretical Preliminaries
2.3. The Proposed Control Design for Each Individual Converter
2.4. Desired Set-Point Generation
3. Performance Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
AHBEC | Adaptive Hamiltonian-Based Energy Control |
PEMFC | Proton-Exchange Membrane Fuel Cell |
AIDA-PBC | Adaptive Interconnection and Damping Assignment Passivity-Based Control |
AHBEC | Adaptive Hamiltonian-Based Energy Control |
PCH | Port-Controlled Hamiltonian |
Hamiltonian function | |
Closed-loop Hamiltonian function | |
, | Interconnection matrix and desired interconnection matrix |
Dissipation matrix and damping matrix | |
Coefficient matrices in the PCH form | |
Input of the PCH form | |
Output of the PCH form | |
, | The state variable and the desired equilibrium point of |
The output voltage of each fuel cell stack, i.e., | |
The output voltage of each fuel cell DC–DC converter, i.e., | |
The output current of each fuel cell stack, i.e., | |
, | The desired current and voltage of |
The equivalent series/parallel resistance of each DC–DC converter |
References
- Huangfu, Y.; Li, P.; Pang, S.; Tian, C.; Quan, S.; Zhang, Y.; Wei, J. An Improved Energy Management Strategy for Fuel Cell Hybrid Vehicles Based on the Pontryagin’s Minimum Principle. IEEE Trans. Ind. Appl. 2022, 58, 4086–4097. [Google Scholar] [CrossRef]
- Pang, S.; Nahid-Mobarakeh, B.; Pierfederici, S.; Huangfu, Y.; Luo, G.; Gao, F. Large-Signal Stable Nonlinear Control of DC/DC Power Converter with Online Estimation of Uncertainties. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 7355–7368. [Google Scholar] [CrossRef]
- Li, M.; Geng, H.; Zhang, X. Optimal Capacity Configuration of VSM-Controlled Grid-Connected Inverters in a Multi-Inverter System Based on Hybrid-Mode Control Under Weak Grids. In Proceedings of the 2021 IEEE Industry Applications Society Annual Meeting (IAS), Vancouver, BC, Canada, 10–14 October 2021; pp. 1–7. [Google Scholar]
- Pang, S.; Bahrami, M.; Martin, J.-P.; Pierfederici, S.; Huangfu, Y.; Nahid-Mobarakeh, B. Hamiltonian Energy Control with Built-in Integral Term for Fuel Cell Hybrid Power System. In Proceedings of the 2022 IEEE Industry Applications Society Annual Meeting (IAS), Detroit, MI, USA, 9–14 October 2022; pp. 1–6. [Google Scholar]
- Turkmen, A.C.; Solmaz, S.; Celik, C. Analysis of fuel cell vehicles with advisor software. Renew. Sustain. Energy Rev. 2017, 70, 1066–1071. [Google Scholar] [CrossRef]
- Bizon, N.; Thounthong, P.; Guilbert, D. Efficient Operation of the Hybrid Power System Using an Optimal Fueling Strategy and Control of the Fuel Cell Power Based on the Required Power Tracking Algorithm. Sustainability 2020, 12, 9690. [Google Scholar] [CrossRef]
- Pang, S.; Nahid-Mobarakeh, B.; Pierfederici, S.; Huangfu, Y.; Luo, G.; Gao, F. Fault-tolerant consideration and active stabilization for floating interleaved boost converter system. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 7947–7952. [Google Scholar]
- Bahrami, M.; Martin, J.-P.; Maranzana, G.; Pierfederici, S.; Weber, M.; Meibody-Tabar, F.; Zandi, M. Multi-Stack Lifetime Improvement through Adapted Power Electronic Architecture in a Fuel Cell Hybrid System. Mathematics 2020, 8, 739. [Google Scholar] [CrossRef]
- Pang, S.; Nahid-Mobarakeh, B.; Pierfederici, S.; Phattanasak, M.; Huangfu, Y.; Luo, G.; Gao, F. Interconnection and Damping Assignment Passivity-Based Control Applied to On-Board DC–DC Power Converter System Supplying Constant Power Load. IEEE Trans. Ind. Appl. 2019, 55, 6476–6485. [Google Scholar] [CrossRef]
- Pang, S.; Nahid-Mobarakeh, B.; Pierfederici, S.; Huangfu, Y.; Luo, G.; Gao, F. Toward Stabilization of Constant Power Loads Using IDA-PBC for Cascaded LC Filter DC/DC Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 9, 1302–1314. [Google Scholar] [CrossRef]
- Yang, Z.; Zha, X. Stabilization Method of Islanded DC Microgrid Based on the Exact Feedback Linearization. In Proceedings of the 2015 4th National Conference on Electrical, Electronics and Computer Engineering, Xi’an, China, 12–13 December 2015; Atlantis Press: Amsterdam, The Netherlands, 2015; pp. 781–787. [Google Scholar]
- Singh, S.; Fulwani, D.; Kumar, V. Robust sliding-mode control of dc/dc boost converter feeding a constant power load. IET Power Electron. 2015, 8, 1230–1237. [Google Scholar] [CrossRef]
- Yuan, C.; Bai, H.; Ma, R.; Huangfu, Y. Large-Signal Stability Analysis and Design of Finite-Time Controller for the Electric Vehicle DC Power System. IEEE Trans. Ind. Appl. 2021, 58, 868–878. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Y.; Wang, Y.; Chau, T.K.; Zhang, X.; Iu, H.H.; Fernando, T. A Novel Adaptive Model Predictive Control for Proton Exchange Membrane Fuel Cell in DC Microgrids. IEEE Trans. Smart Grid 2022, 13, 1801–1812. [Google Scholar] [CrossRef]
- Siffat, S.A.; Ahmad, I.; Rahman, A.U.; Islam, Y. Robust Integral Backstepping Control for Unified Model of Hybrid Electric Vehicles. IEEE Access 2020, 8, 49038–49052. [Google Scholar] [CrossRef]
- Steckler, P.-B.; Gauthier, J.-Y.; Lin-Shi, X.; Wallart, F. Differential Flatness-Based, Full-Order Nonlinear Control of a Modular Multilevel Converter (MMC). IEEE Trans. Control. Syst. Technol. 2021, 30, 547–557. [Google Scholar] [CrossRef]
- Gil-Antonio, L.; Saldivar, B.; Portillo-Rodriguez, O.; Vazquez-Guzman, G.; De Oca-Armeaga, S.M. Trajectory Tracking Control for a Boost Converter Based on the Differential Flatness Property. IEEE Access 2019, 7, 63437–63446. [Google Scholar] [CrossRef]
- Bahrami, M.; Martin, J.-P.; Maranzana, G.; Pierfederici, S.; Weber, M.; Meibody-Tabar, F.; Zandi, M. Design and Modeling of an Equalizer for Fuel Cell Energy Management Systems. IEEE Trans. Power Electron. 2019, 34, 10925–10935. [Google Scholar] [CrossRef]
- Pang, S.; Nahid-Mobarakeh, B.; Hashjin, S.A.; Pierfederici, S.; Martin, J.-P.; Liu, Y.; Huangfu, Y.; Luo, G.; Gao, F. Stability Improvement of Cascaded Power Conversion Systems Based on Hamiltonian Energy Control Theory. IEEE Trans. Ind. Appl. 2021, 57, 1081–1093. [Google Scholar] [CrossRef]
- Thounthong, P.; Mungporn, P.; Pierfederici, S.; Guilbert, D.; Takorabet, N.; Nahid-Mobarakeh, B.; Hu, Y.; Bizon, N.; Huangfu, Y.; Kumam, P.; et al. Robust Hamiltonian Energy Control Based on Lyapunov Function for Four-Phase Parallel Fuel Cell Boost Converter for DC Microgrid Applications. IEEE Trans. Sustain. Energy 2021, 12, 1500–1511. [Google Scholar] [CrossRef]
- Lapique, M.; Pang, S.; Martin, J.-P.; Pierfederici, S.; Weber, M.; Zaim, S. Enhanced IDA-PBC Applied to a Three-Phase PWM Rectifier for Stable Interfacing Between AC and DC Microgrids Embedded in More Electrical Aircraft. IEEE Trans. Ind. Electron. 2022, 70, 995–1004. [Google Scholar] [CrossRef]
- Pang, S.; Mao, Z.; Li, X.; Huangfu, Y.; Bahrami, M.; Martin, J.-P.; Pierfederici, S.; Nahid-Mobarakeh, B. Hamiltonian Energy Control with Energy Management Strategy for Fuel Cell Hybrid Power System. IEEE Trans. Ind. Appl. 2023, 59, 7716–7724. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, Z.; Chen, F.; Wu, W.; Yao, Z.; Blaabjerg, F. Stabilization Design of Three-Phase LCL-Filtered Grid-Connected Inverter Using IDA-PBC Controller. Int. Trans. Electr. Energy Syst. 2022, 2022, 7515321. [Google Scholar] [CrossRef]
- Lin, G.; Liu, J.; Rehtanz, C.; Li, Y.; Zuo, W.; Wang, P. Analysis of instability causes in the bi-dc converter and enhancing its performance by improving the damping in the IDA-PBC control. IET Gener. Transm. Distrib. 2021, 15, 2411–2421. [Google Scholar] [CrossRef]
- Benmouna, A.; Becherif, M.; Boulon, L.; Dépature, C.; Ramadan, H.S. Efficient experimental energy management operating for FC/battery/SC vehicles via hybrid Artificial Neural Networks-Passivity Based Control. Renew. Energy 2021, 178, 1291–1302. [Google Scholar] [CrossRef]
- Pang, S.; Hashjin, S.A.; Nahid-Mobarakeh, B.; Pierfederici, S.; Huangfu, Y.; Luo, G.; Gao, F. Large-Signal Stabilization of Power Converters Cascaded Input Filter Using Adaptive Energy Shaping Control. IEEE Trans. Transp. Electrif. 2020, 7, 838–853. [Google Scholar] [CrossRef]
- Thounthong, P.; Mungporn, P.; Nahid-Mobarakeh, B.; Bizon, N.; Pierfederici, S.; Guilbert, D. Improved Adaptive Hamiltonian Control Law for Constant Power Load Stability Issue in DC Microgrid: Case Study for Multiphase Interleaved Fuel Cell Boost Converter. Sustainability 2021, 13, 8093. [Google Scholar] [CrossRef]
- Wang, M.; Tang, F.; Wu, X.; Niu, J.; Zhang, Y.; Wang, J. A Nonlinear Control Strategy for DC-DC Converter with Unknown Constant Power Load Using Damping and Interconnection Injecting. Energies 2021, 14, 3031. [Google Scholar] [CrossRef]
Symbol | Quantity | Nominal Value |
---|---|---|
vc | Output voltage of each fuel cell converter | 12 V |
L | DC–DC converter inductance | 200 μH |
rL | DC–DC converter inductor resistance | 0.02 Ω |
C | DC–DC converter capacitance | 4700 μF |
rp | DC–DC converter capacitor insulation resistance | 5 MΩ |
Fs | Frequency | 20/40 kHz |
KI | Control parameter | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Cheng, B.; Zhang, K.; Li, X.; Pang, S.; Mao, Z. Adaptive Hamiltonian-Based Energy Control with Built-In Integrator for PEMFC Hybrid Power Conversion Architecture. Energies 2023, 16, 7855. https://doi.org/10.3390/en16237855
Li Y, Cheng B, Zhang K, Li X, Pang S, Mao Z. Adaptive Hamiltonian-Based Energy Control with Built-In Integrator for PEMFC Hybrid Power Conversion Architecture. Energies. 2023; 16(23):7855. https://doi.org/10.3390/en16237855
Chicago/Turabian StyleLi, Yuansheng, Bo Cheng, Kaifu Zhang, Xiao Li, Shengzhao Pang, and Zhaoyong Mao. 2023. "Adaptive Hamiltonian-Based Energy Control with Built-In Integrator for PEMFC Hybrid Power Conversion Architecture" Energies 16, no. 23: 7855. https://doi.org/10.3390/en16237855
APA StyleLi, Y., Cheng, B., Zhang, K., Li, X., Pang, S., & Mao, Z. (2023). Adaptive Hamiltonian-Based Energy Control with Built-In Integrator for PEMFC Hybrid Power Conversion Architecture. Energies, 16(23), 7855. https://doi.org/10.3390/en16237855