Optimizing Generation Maintenance Scheduling Considering Emission Factors
Abstract
:1. Introduction
- While recent works have formulated the GMS model by considering the emission output, operation and maintenance costs, and the ANRV, this paper, based on carbon taxation policies forced on GenCos, proposes GMS models focusing on operation, maintenance, and emission costs. These models aim to minimize the sum of operation, maintenance, and emission costs simultaneously and to minimize operation, maintenance, and emission costs at each stage by adapting the lexicographic method. This work aims to support GenCos by lowering their total costs, reducing emissions, and increasing the reliability of the system.
- From the DRP that was used in the GMS problems without consideration of emission costs, the authors adapt the DRP to the GMS model mentioned above (i).
- While the PnF and ANRV are separately shown in previous works, this paper demonstrates both the PnF and ANRV simultaneously to support the decision making of GenCos in terms of system reliability, with and without considering the GU’s FR. The emission output is also depicted to demonstrate the correlation between the total costs, system reliability, and environmental concerns. The emissions cost coefficients are varied to increase the robustness of the results.
2. GMS Indices and Constraints
2.1. GMS Indices
2.2. Constraints of GMS
3. The Multi-Objective Optimization Method
4. The Hierarchy of the Proposed GMS Models
5. Numerical Results
5.1. Preliminary Verification of the Results
5.2. The Results of Models A, B, and C
5.3. The Results of Models C and D
5.4. The Results of Models C and E
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Indices | |
F | Set of objective functions |
I | Set of generation units |
T | Set of time intervals |
B | Set of buses |
Parameters | |
Maximum demand of bus b (MW) | |
Demand of bus b at interval t (MW) | |
Maintenance duration of generation unit i (interval) | |
Demand ratio at interval t | |
Emission cost coefficient of generation unit i ($/ton) | |
Emission output coefficient of generation unit i (ton/MWh) | |
Failure rate of generation unit i | |
Duration of each time interval (h) | |
Incentive to consumer in bus b for 1 MWh reduction ($/MWh) | |
Maintenance cost of generation unit i ($) | |
Market price of bus b before implementing a demand response program at interval t ($/MWh) | |
Market price of bus b after implementing a demand response program at interval t ($/MWh) | |
Intervals between when generation unit i was placed back after previous maintenance and the 51st interval of the previous maintenance scheduling window (interval) | |
Nominal potential of responsive demand (%) | |
Generation capacity of the largest generation unit (MW) | |
Maximum capacity of generation unit i (MW) | |
Minimum power output of generation unit i (MW) | |
Variable production cost of generation unit i ($/MWh) | |
Coefficient of search space for the lexicographic method | |
Variables | |
ANRV | Average net reserve value (MW) |
Demand of bus b occurring after implementing a demand response program at interval t (MW) | |
Cost of a demand response program ($) | |
Emission cost ($) | |
Emission output of generation unit i (ton) | |
Initial maintenance state of generation unit i (1 when generation unit i is started to maintain and 0 otherwise) | |
The tth interval that generation unit i is maintained in the present scheduling window | |
Operation and maintenance costs ($) | |
Optimal value of objective function f | |
Binary variable of maintenance state of generation unit i occurring at interval t (1 when generation unit i is in maintenance and 0 otherwise) | |
Power supplied by generation unit i at interval t (MW) | |
Representation of PnF, which is calculated from the linearized model | |
Binary variable of the operation state of generation unit i occurring at interval t (1 when generation unit i is in operation and 0 otherwise) | |
Reserve margin value at interval t |
References
- Endrenyi, J.; Aboresheid, S.; Allan, R.N.; Anders, G.J.; Asgarpoor, S.; Billinton, R.; Chowdhury, N.; Dialynas, E.N.; Fipper, M.; Fletcher, R.H.; et al. The present status of maintenance strategies and the impact of maintenance on reliability. IEEE Trans. Power Syst. 2001, 16, 638–646. [Google Scholar] [CrossRef]
- Endrenyi, J.; Anders, G.J.; Leite da Silva, A.M. Probabilistic evaluation of the effect of maintenance on reliability—An application. IEEE Trans. Power Syst. 1998, 13, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Resources for the Future. Carbon Pricing 201: Pricing Carbon in the Electricity Sector. Available online: https://www.rff.org/publications/explainers/carbon-pricing-201-pricing-carbon-electricity-sector/ (accessed on 15 August 2022).
- International Energy Agency. The Potential Role of Carbon Pricing in Thailand’s Power Sector. Thailand, 2021. Available online: https://www.iea.org/reports/the-potential-role-of-carbon-pricing-in-thailands-power-sector (accessed on 15 August 2022).
- Parry, I. Putting a Price on Pollution. Available online: https://www.imf.org/Publications/fandd/issues/2019/12/the-case-for-carbon-taxation-and-putting-a-price-on-pollution-parry (accessed on 15 August 2022).
- Leroutier, M. Carbon pricing and power sector decarbonization: Evidence from the UK. J. Environ. Econ. Manag 2022, 111, 102580. [Google Scholar] [CrossRef]
- Lovcha, Y.; Perez-Laborda, A.; Sikora, I. The determinants of CO2 prices in the EU emission trading system. Appl. Energy 2022, 305, 117903. [Google Scholar] [CrossRef]
- Handayani, K.; Anugrah, P.; Goembira, F.; Overland, I.; Suryadi, B.; Swandaru, A. Moving beyond the NDCs: ASEAN pathways to a net-zero emissions power sector in 2050. Appl. Energy 2022, 311, 118580. [Google Scholar] [CrossRef]
- Olmstead, E.H.; Yatchew, A. Carbon pricing and Alberta’s energy-only electricity market. Electr. J. 2022, 35, 107112. [Google Scholar] [CrossRef]
- Wong, J.B.; Zhang, Q. Impact of carbon tax on electricity prices and behaviour. Finance. Res. Lett. 2022, 44, 102098. [Google Scholar] [CrossRef]
- Köppl, A.; Schratzenstaller, M. Carbon taxation: A review of the empirical literature. J. Econ. Surv. 2023, 37, 1353–1388. [Google Scholar] [CrossRef]
- Hasnu, F.N.M.; Muhammad, I. Environmental issues in Malaysia: Suggestion to impose carbon tax. Asia Pac. Manag. Account. J. 2022, 17, 65–95. [Google Scholar]
- Muhammad, I. Carbon tax as the most appropriate carbon pricing mechanism for developing countries and strategies to design an effective policy. AIMS Environ. Sci. 2022, 9, 145–168. [Google Scholar] [CrossRef]
- Chien, F.S.; Vu, T.L.; Phan, T.T.H.; Van Nguyen, S.; Anh, N.H.V.; Ngo, T.Q. Zero-carbon energy transition in ASEAN countries: The role of carbon finance, carbon taxes, and sustainable energy technologies. Renew. Energy 2023, 212, 561–569. [Google Scholar] [CrossRef]
- Sadeghian, O.; Shotorbani, A.M.; Mohammadi-Ivatloo, B. Generation maintenance scheduling in virtual power plants. IET Gener. Transm. Distrib. 2019, 13, 2584–2596. [Google Scholar] [CrossRef]
- Bagheri, B.; Amjady, N.; Dehghan, S. Multiscale multiresolution generation maintenance scheduling: A stochastic affinely adjustable robust approach. IEEE Sys. J. 2021, 15, 893–904. [Google Scholar] [CrossRef]
- Lou, X.; Feng, C.; Chen, W.; Guo, C. Risk-based coordination of maintenance scheduling and unit commitment in power systems. IEEE Access 2020, 8, 58788–58799. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, M.; Xie, M.; Dong, P. A mathematical programming–based heuristic for coordinated hydrothermal generator maintenance scheduling and long-term unit commitment. J. Electr. Power. Energy Syst. 2023, 147, 108833. [Google Scholar] [CrossRef]
- Sadeghian, O.; Shotorbani, A.M.; Mohammadi-Ivatloo, B. Risk-based stochastic short-term maintenance scheduling of GenCos in an oligopolistic electricity market considering the long-term plan. Electr. Power Syst. Res. 2019, 175, 105908. [Google Scholar] [CrossRef]
- Hassanpour, A.; Roghanian, E. A two-stage stochastic programming approach for non-cooperative. J. Electr. Power Energy Syst. 2021, 126, 106584. [Google Scholar] [CrossRef]
- Rokhforoz, P.; Gjorgiev, B.; Sansavini, G.; Fink, O. Multi-agent maintenance scheduling based on the coordination between central operator and decentralized producers in an electricity market. Reliab. Eng. Syst. Saf. 2021, 210, 107495. [Google Scholar] [CrossRef]
- Eygelaar, J.; Lötter, D.P.; Vuuren, J.H. Generator maintenance scheduling based on the risk of power generating unit failure. J. Electr. Power Energy Syst. 2018, 95, 83–95. [Google Scholar] [CrossRef]
- Mollahassani-Pour, M.; Rashidinejad, M.; Pourakbari-Kasmaei, M. Environmentally constrained reliability-based generation maintenance scheduling considering demand-side management. IET Gener. Transm. Distrib. 2019, 13, 1153–1163. [Google Scholar] [CrossRef]
- Lindner, B.G.; Brits, R.; Vuuren, J.H.; Bekker, J. Tradeoffs between levelling the reserve margin and minimising production cost in generator maintenance scheduling for regulated power systems. J. Electr. Power Energy Syst. 2018, 101, 458–471. [Google Scholar] [CrossRef]
- Sadeghian, O.; Oshnoei, A.; Nikkhah, S.; Mohammadi-Ivatloo1, B. Multi-objective optimisation of generation maintenance scheduling in restructured power systems based on global criterion method. IET Gener. Transm. Distrib. 2019, 2, 203–213. [Google Scholar] [CrossRef]
- Moghbeli, M.; Sharifi, V.; Abdollahi, A.; Rashidinejad, M. Evaluating the impact of energy efficiency programs on generation maintenance scheduling. J. Electr. Power Energy Syst. 2020, 119, 105909. [Google Scholar] [CrossRef]
- Assis, F.A.; Silva, A.M.; Resende, L.C. Generation maintenance scheduling with renewable sources based on production and reliability costs. Int. J. Electr. Power Energy Syst. 2022, 134, 107370. [Google Scholar] [CrossRef]
- Martin, L.S.; Yang, J.; Liu, Y. Hybrid NSGA III/dual simplex approach to generation and transmission maintenance scheduling. J. Electr. Power Energy Syst. 2022, 135, 107498. [Google Scholar] [CrossRef]
- Sharifi, V.; Abdollahi, A.; Rashidinejad, M. Flexibility-based generation maintenance scheduling in presence of uncertain wind power plants forecasted by deep learning considering demand response programs portfolio. J. Electr. Power Energy Syst. 2022, 141, 108225. [Google Scholar] [CrossRef]
- Salarkheili, S.; Nazar, M.S.; Wozabal, D.; Jabari, F. Capacity withholding of GenCos in electricity markets using security-constrained generation maintenance scheduling. J. Electr. Power Energy Syst. 2023, 146, 108771. [Google Scholar] [CrossRef]
- Rokhforoz, P.; Montazeri, M.; Fink, O. Safe multi-agent deep reinforcement learning for joint bidding and maintenance scheduling of generation units. Reliab. Eng. Syst. Saf. 2023, 232, 109081. [Google Scholar] [CrossRef]
- Mollahassani-pour, M.; Rashidinejad, M.; Abdollahi, A. Appraisal of eco-friendly preventive maintenance scheduling strategy impacts on GHG emissions mitigation in smart grids. J. Clean Prod. 2017, 43, 212–223. [Google Scholar] [CrossRef]
- Sharifi, V.; Abdollahi, A.; Rashidinejad, M.; Heydarian-Forushani, E.; Alhelou, H.H. Integrated electricity and natural gas demand response in flexibility-based generation maintenance scheduling. IEEE Access 2022, 10, 76021–76030. [Google Scholar] [CrossRef]
- Prukpanit, P.; Kaewprapha, P.; Leeprechanon, N. Optimal generation maintenance scheduling considering financial return and unexpected failure of distributed generation. IET Gener. Transm. Distrib. 2021, 15, 1787–1797. [Google Scholar] [CrossRef]
- Hemmati, R.; Saboori, H.; Jirdehi, A.M. Multistage generation expansion planning incorporating large scale energy storage systems and environmental pollution. Renew. Energy 2016, 97, 636–645. [Google Scholar] [CrossRef]
- Abdollahi, A.; Moghaddam, M.P.; Rashidinejad, M.; Sheikh-El-Eslami, M.K. Investigation of economic and environmental-driven demand response measures incorporating UC. IEEE Trans. Smart Grid. 2012, 3, 12–25. [Google Scholar] [CrossRef]
- Marler, R.T.; Arora, J.S. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 2004, 26, 369–395. [Google Scholar] [CrossRef]
- Subcommittee, P.M. IEEE reliability test system. IEEE Trans. Power Appar. Syst. 1979, 98, 2047–2054. [Google Scholar] [CrossRef]
- Schlunz, E.B. Decision Support for Generator Maintenance Scheduling in the Energy Sector; Master of Science, Department of Logistics, Stellenbosch University: Stellenbosch, South Africa, 2011. [Google Scholar]
- Lakshminarayanan, S.; Kaur, D. Optimal maintenance scheduling of generator units using discrete integer cuckoo search optimization algorithm. Swarm. Evol. Comput. 2018, 42, 89–98. [Google Scholar] [CrossRef]
- Mansouri, S.A.; Maroufi, S.; Ahmarinejad, A. A tri-layer stochastic framework to manage electricity market within a smart community in the presence of energy storage systems. J. Energy Storage 2023, 71, 108130. [Google Scholar] [CrossRef]
- Fatemi, S.; Ketabi, A.; Mansouri, S.A. A multi-level multi-objective strategy for eco-environmental management of electricity market among micro-grids under high penetration of smart homes, plug-in electric vehicles and energy storage devices. J. Energy Storage 2023, 67, 107632. [Google Scholar] [CrossRef]
- Xu, H.; Chang, Y.; Zhao, Y.; Wang, F. A new multi-timescale optimal scheduling model considering wind power uncertainty and demand response. J. Electr. Power Energy Syst. 2023, 147, 108832. [Google Scholar] [CrossRef]
- Mansouri, S.A.; Jordehi, A.R.; Marzband, M.; Tostado-V´eliz, M.; Jurado, F.; Aguado, J.A. An IoT-enabled hierarchical decentralized framework for multi-energy microgrids market management in the presence of smart prosumers using a deep learning-based forecaster. Appl. Energy 2023, 333, 120560. [Google Scholar] [CrossRef]
Ref. | Objective Function and Model | Emission | DRP | Other Indices | Solution Method |
---|---|---|---|---|---|
[15] |
| × | ✓ | × | MINLP using GAMS |
[20] |
| × | × |
| MINLP using CPLEX |
[22] |
| × | × | × | MINLP using CPLEX |
[23] |
| ✓ | ✓ | × | Lexicographic method |
[25] |
| × | × | × | Global criterion |
[26] |
| ✓ | × | × | Nash equilibrium |
[27] |
| × | × |
| Non-sequential Monte Carlo simulation and cross-entropy methods |
[28] |
| × | × | × | Hybrid NSGA III/DS model |
[29] |
| × | ✓ | × | Augmented Epsilon constraint method |
[32] |
| ✓ | ✓ | × | Entropy method |
[33] |
| ✓ | ✓ | × | Augmented Epsilon constraint method |
[34] |
| × | × | × | Global criterion method |
This work |
| ✓ | ✓ |
| Lexicographic method |
Case | Model | Total Cost (Million USD) | Emission Output (Million ton) | PnF’ | ANRV (MW) |
---|---|---|---|---|---|
1 | A | 1309.622 | 9.622 | 67.30 | 1704 |
B | 1317.550 | 9.426 | 56.82 | 1733 | |
C | 1309.697 | 9.615 | 57.34 | 1740 | |
2 | A | 1319.884 | 9.615 | 68.51 | 1673 |
B | 1326.977 | 9.426 | 59.23 | 1733 | |
C | 1319.308 | 9.616 | 57.34 | 1740 | |
3 | A | 1329.855 | 9.624 | 67.50 | 1655 |
B | 1336.403 | 9.426 | 59.24 | 1808 | |
C | 1328.921 | 9.616 | 57.34 | 1740 | |
4 | A | 1340.802 | 9.620 | 60.64 | 1657 |
B | 1345.830 | 9.426 | 64.71 | 1770 | |
C | 1338.537 | 9.616 | 57.34 | 1740 | |
5 | A | 1347.141 | 9.618 | 62.64 | 1757 |
B | 1355.256 | 9.426 | 55.29 | 1742 | |
C | 1348.155 | 9.616 | 57.34 | 1740 | |
6 | A | 1357.269 | 9.622 | 63.01 | 1699 |
B | 1364.682 | 9.426 | 60.75 | 1683 | |
C | 1357.774 | 9.616 | 57.34 | 1740 | |
7 | A | 1367.794 | 9.619 | 63.25 | 1699 |
B | 1374.317 | 9.433 | 63.23 | 1614 | |
C | 1367.391 | 9.615 | 57.34 | 1740 | |
8 | A | 1376.883 | 9.632 | 69.31 | 1717 |
B | 1383.535 | 9.426 | 65.93 | 1751 | |
C | 1377.002 | 9.616 | 57.34 | 1740 | |
9 | A | 1384.011 | 9.636 | 60.69 | 1768 |
B | 1392.962 | 9.426 | 59.59 | 1718 | |
C | 1386.626 | 9.616 | 57.34 | 1740 | |
10 | A | 1397.675 | 9.616 | 58.15 | 1675 |
B | 1402.388 | 9.426 | 56.26 | 1716 | |
C | 1396.234 | 9.616 | 57.34 | 1740 | |
11 | A | 1403.410 | 9.580 | 69.72 | 1673 |
B | 1411.815 | 9.426 | 60.27 | 1712 | |
C | 1405.855 | 9.616 | 57.34 | 1740 | |
12 | A | 1415.777 | 9.635 | 63.01 | 1614 |
B | 1421.241 | 9.426 | 60.88 | 1663 | |
C | 1415.466 | 9.615 | 57.34 | 1740 | |
13 | A | 1427.110 | 9.602 | 68.74 | 1615 |
B | 1430.667 | 9.426 | 61.62 | 1740 | |
C | 1425.084 | 9.615 | 57.34 | 1740 |
Case | Model | Total Cost (Million $) | Emission Output (Million ton) | PnF’ | ANRV (MW) |
---|---|---|---|---|---|
1 | C | 1309.697 | 9.615 | 57.34 | 1740 |
D | 1310.591 | 9.812 | 74.35 | 1907 | |
2 | C | 1319.308 | 9.616 | 57.34 | 1740 |
D | 1320.404 | 9.812 | 74.35 | 1907 | |
3 | C | 1328.921 | 9.616 | 57.34 | 1740 |
D | 1330.216 | 9.812 | 74.35 | 1907 | |
4 | C | 1338.537 | 9.616 | 57.34 | 1740 |
D | 1340.028 | 9.812 | 74.35 | 1907 | |
5 | C | 1348.155 | 9.616 | 57.34 | 1740 |
D | 1349.840 | 9.812 | 74.35 | 1907 | |
6 | C | 1357.774 | 9.616 | 57.34 | 1740 |
D | 1359.652 | 9.812 | 74.35 | 1907 | |
7 | C | 1367.391 | 9.615 | 57.34 | 1740 |
D | 1369.464 | 9.812 | 74.35 | 1907 | |
8 | C | 1377.002 | 9.616 | 57.34 | 1740 |
D | 1379.276 | 9.812 | 74.35 | 1907 | |
9 | C | 1386.626 | 9.616 | 57.34 | 1740 |
D | 1389.088 | 9.812 | 74.35 | 1907 | |
10 | C | 1396.234 | 9.616 | 57.34 | 1740 |
D | 1398.900 | 9.812 | 74.35 | 1907 | |
11 | C | 1405.855 | 9.616 | 57.34 | 1740 |
D | 1408.712 | 9.812 | 74.35 | 1907 | |
12 | C | 1415.466 | 9.615 | 57.34 | 1740 |
D | 1418.524 | 9.812 | 74.35 | 1907 | |
13 | C | 1425.084 | 9.615 | 57.34 | 1740 |
D | 1428.336 | 9.812 | 74.35 | 1907 |
Case | Model | Total Cost (Million USD) | Emission Output (Million tons) | PnF’ | ANRV (MW) |
---|---|---|---|---|---|
1 | C | 1309.697 | 9.615 | 57.34 | 1740 |
E | 1247.733 | 8.665 | 68.88 | 1681 | |
2 | C | 1319.308 | 9.616 | 57.34 | 1740 |
E | 1256.398 | 8.665 | 68.88 | 1681 | |
3 | C | 1328.921 | 9.616 | 57.34 | 1740 |
E | 1265.045 | 8.638 | 64.94 | 1727 | |
4 | C | 1338.537 | 9.616 | 57.34 | 1740 |
E | 1273.683 | 8.638 | 64.94 | 1727 | |
5 | C | 1348.155 | 9.616 | 57.34 | 1740 |
E | 1282.321 | 8.638 | 64.94 | 1727 | |
6 | C | 1357.774 | 9.616 | 57.34 | 1740 |
E | 1290.960 | 8.638 | 64.94 | 1727 | |
7 | C | 1367.391 | 9.615 | 57.34 | 1740 |
E | 1299.598 | 8.638 | 64.94 | 1727 | |
8 | C | 1377.002 | 9.616 | 57.34 | 1740 |
E | 1308.236 | 8.638 | 64.94 | 1727 | |
9 | C | 1386.626 | 9.616 | 57.34 | 1740 |
E | 1316.875 | 8.638 | 64.94 | 1727 | |
10 | C | 1396.234 | 9.616 | 57.34 | 1740 |
E | 1325.513 | 8.638 | 68.88 | 1681 | |
11 | C | 1405.855 | 9.616 | 57.34 | 1740 |
E | 1334.151 | 8.638 | 68.88 | 1681 | |
12 | C | 1415.466 | 9.615 | 57.34 | 1740 |
E | 1342.789 | 8.638 | 64.94 | 1727 | |
13 | C | 1425.084 | 9.615 | 57.34 | 1740 |
E | 1351.428 | 8.638 | 64.94 | 1727 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prukpanit, P.; Kaewprapha, P.; Leeprechanon, N. Optimizing Generation Maintenance Scheduling Considering Emission Factors. Energies 2023, 16, 7775. https://doi.org/10.3390/en16237775
Prukpanit P, Kaewprapha P, Leeprechanon N. Optimizing Generation Maintenance Scheduling Considering Emission Factors. Energies. 2023; 16(23):7775. https://doi.org/10.3390/en16237775
Chicago/Turabian StylePrukpanit, Panit, Phisan Kaewprapha, and Nopbhorn Leeprechanon. 2023. "Optimizing Generation Maintenance Scheduling Considering Emission Factors" Energies 16, no. 23: 7775. https://doi.org/10.3390/en16237775
APA StylePrukpanit, P., Kaewprapha, P., & Leeprechanon, N. (2023). Optimizing Generation Maintenance Scheduling Considering Emission Factors. Energies, 16(23), 7775. https://doi.org/10.3390/en16237775