Municipal Solid Waste Generation Trend and Bioenergy Recovery Potential: A Review
Abstract
:1. Introduction
2. Municipal Solid Waste (MSW)
MSW Generation in Selected Urban Cities
3. Current Bioenergy Technologies and Waste Management Practices
3.1. Thermal Conversion Technologies
3.1.1. Incineration/Combustion
3.1.2. Gasification
3.1.3. Pyrolysis
3.2. Biological Conversion Technology
3.2.1. Anaerobic Digestion (AD)
3.2.2. Landfill Gas Recovery
3.2.3. Composting
Vermicomposting
3.3. Ways of Implementing Bioenergy in Ghana
4. Energy Potential of MSW in Ghana
4.1. Potential Electricity Production from MSW in Ghana under Different Bioenergy Technologies
4.1.1. Potential Electricity Production from MSW under Anaerobic Digestion Technology
- = energy recovery potential from anaerobic digestion (MWh/day);
- P = population residing at a specific place;
- = annual waste generation per capita (T/day);
- f = organic matter fraction in solid waste (%);
- = generation of methane per ton of OFMSW (Nm3/T);
- Q = lower calorific value of biogas due to methane (MJ/m3).
4.1.2. Potential Electricity Production from MSW under Incineration Technology
- = energy recovery potential from incineration (MWh/day);
- M = total mass of dry solid waste (Kg/day);
- = lower calorific value of the waste (kWh/Kg);
- ŋ = total process efficiency.
4.1.3. Potential Electricity Production from MSW under Landfill Gas Technology
- Q = maximum methane generation flow rate expected;
- I = 1-year time increment;
- n = (year of the calculation) − (initial year of waste acceptance);
- j = 0.1-year time increment;
- k = methane production rate (yr−1).
- m = mass flow rate of methane (m3/h);
- ;
- R = recovery rate of methane = 75%;
- .
4.1.4. Comparison of Installed Electricity Capacity Potentials
4.2. Future Research Scope
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thomas, P.; Soren, N. An overview of municipal solid waste-to-energy application in Indian scenario. Environ. Dev. Sustain. 2020, 22, 575–592. [Google Scholar] [CrossRef]
- Tozlu, A.; Özahi, E.; Abuşoğlu, A. Waste to energy technologies for municipal solid waste management in Gaziantep. Renew. Sustain. Energy Rev. 2016, 54, 809–815. [Google Scholar] [CrossRef]
- Darmey, J.; Ahiekpor, J.C.; Achaw, O.W.; Narra, S.; Mensah, I. Bioenergy: Physicochemical Properties and Energy Potential of Selected Wastes in Kumasi, Ghana. In Proceedings of the 38th International Conference on Advances in “Chemical, Biological and Environmental Sciences”, Porto, Portugal, 16 January 2023. [Google Scholar] [CrossRef]
- Ofori-Boateng, C.; Lee, K.T.; Mensah, M. The prospects of electricity generation from municipal solid waste (MSW) in Ghana: A better waste management option. Fuel Process. Technol. 2013, 110, 94–102. [Google Scholar] [CrossRef]
- Brauer, H.B.; Khan, J. Diffusion of biogas for freight transport in Sweden: A user perspective. J. Clean. Prod. 2021, 312, 127738. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Saravanan, A.; Varjani, S.; Ramamurthy, R. Bioconversion of municipal solid waste into bio-based products: A review on valorisation and sustainable approach for circular bioeconomy. Sci. Total Environ. 2020, 748, 141312. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, P.; Varjani, S.; Singhania, R.R.; Patel, A.K.; Awasthi, M.K.; Sindhu, R.; Zhang, Z.; Binod, P.; Awasthi, S.K.; Chaturvedi, P. Critical review on technological advancements for effective waste management of municipal solid waste—Updates and way forward. Environ. Technol. Innov. 2021, 23, 101749. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar] [CrossRef]
- Noor, T.; Javid, A.; Hussain, A.; Bukhari, S.M.; Ali, W.; Akmal, M.; Hussain, S.M. Types, sources and management of urban wastes. In Urban Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 239–263. [Google Scholar] [CrossRef]
- Tsui, T.H.; Wong, J.W. A critical review: Emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. Waste Dispos. Sustain. Energy. 2019, 1, 151–167. [Google Scholar] [CrossRef]
- Mishra, B.; Varjani, S.; Agrawal, D.C.; Mandal, S.K.; Ngo, H.H.; Taherzadeh, M.J.; Chang, J.S.; You, S.; Guo, W. Engineering biocatalytic material for the remediation of pollutants: A comprehensive review. Environ. Technol. Innov. 2020, 20, 101063. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- Moya, D.; Aldás, C.; Jaramillo, D.; Játiva, E.; Kaparaju, P. Waste-To-Energy Technologies: An opportunity of energy recovery from Municipal Solid Waste, using Quito-Ecuador as case study. Energy Procedia 2017, 134, 327–336. [Google Scholar] [CrossRef]
- Douti, N.; Abanyie, S.; Ampofo, S.; Nyarko, S. Solid Waste Management Challenges in Urban Areas of Ghana: A Case Study of Bawku Municipality. Int. J. Geosci. 2017, 8, 494–513. [Google Scholar] [CrossRef]
- Oteng-Ababio, M.; Arguello, J.E.; Gabbay, O. Solid waste management in African cities: Sorting the facts from the fads in Accra, Ghana. Habitat Int. 2013, 39, 96–104. [Google Scholar] [CrossRef]
- Akrami, F. Waste to Energy Management in Ghana. Master’s Thesis, Vamk University of Applied Sciences, Vaasa, Finland, 24 May 2021. [Google Scholar]
- Zamri, M.F.; Hasmady, S.; Akhiar, A.; Ideris, F.; Shamsuddin, A.H.; Mofijur, M.; Fattah, I.R.; Mahlia, T.M. A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renew. Sustain. Energy Rev. 2021, 137, 110637. [Google Scholar] [CrossRef]
- Miezah, K.; Obiri-Danso, K.; Kádár, Z.; Fei-Baffoe, B.; Mensah, M.Y. Municipal solid waste characterization and quantification as a measure towards effective waste management in Ghana. Waste Manag. 2015, 46, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, V.K.; Fdez-Güelfo, L.A.; Zhou, Y.; Álvarez-Gallego, C.J.; Garcia, L.R.; Ng, W.J. Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renew. Sustain. Energy Rev. 2018, 93, 380–399. [Google Scholar] [CrossRef]
- Fobil, J.N.; Armah, N.A.; Hogarh, J.N.; Carboo, D. The influence of institutions and organizations on urban waste collection systems: An analysis of waste collection system in Accra, Ghana (1985–2000). J. Environ. Manag. 2008, 86, 262–271. [Google Scholar] [CrossRef]
- Tulashie, S.K.; Boadu, E.K.; Kotoka, F.; Mensah, D. Plastic wastes to pavement blocks: A significant alternative way to reducing plastic wastes generation and accumulation in Ghana. Constr. Build. Mater. 2020, 241, 118044. [Google Scholar] [CrossRef]
- Tulashie, S.K.; Boadu, E.K.; Dapaah, S. Plastic waste to fuel via pyrolysis: A key way to solving the severe plastic waste problem in Ghana. Therm. Sci. Eng. Prog. 2019, 11, 417–424. [Google Scholar] [CrossRef]
- Martin, O.A. Governance crisis or attitudinal challenges? Generation, collection, storage and transportation of solid waste in Ghana. In Integrated Waste Management, 1st ed.; Kumar, S., Ed.; Intech Open Limited: London, UK, 2011; Volume 1, pp. 1–22. [Google Scholar] [CrossRef]
- Oduro-Appiah, K.; Afful, A. Sustainable pathway for closing solid waste data gaps: Implications for modernization strategies and resilient cities in developing countries. In Strategies of Sustainable Solid Waste Management, 1st ed.; Saleh, H.M., Ed.; Intech Open Limited: London, UK, 2020; Volume 1. [Google Scholar] [CrossRef]
- Seshie, V.I.; Obiri-Danso, K.; Miezah, K. Municipal solid waste characterisation and quantification as a measure towards effective waste management in the Takoradi Sub-Metro, Ghana. Ghana Min. J. 2020, 20, 86–98. [Google Scholar] [CrossRef]
- Buor, D. Perspectives on Solid Waste Management Practices in Urban Ghana: A Review. J. Waste Manag. 2020, 2, 1–8. [Google Scholar]
- Rick, T.C.; Kirch, P.V.; Erlandson, J.M.; Fitzpatrick, S.M. Archeology, deep history, and the human transformation of island ecosystems. Anthropocene 2013, 4, 33–45. [Google Scholar] [CrossRef]
- Arancon, R.A.; Lin, C.S.; Chan, K.M.; Kwan, T.H.; Luque, R. Advances on waste valorization: New horizons for a more sustainable society. Energy Sci. Eng. 2013, 1, 53–71. [Google Scholar] [CrossRef]
- Tan, S.T.; Ho, W.S.; Hashim, H.; Lee, C.T.; Taib, M.R.; Ho, C.S. Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia. Energy Convers. Manag. 2015, 102, 111–120. [Google Scholar] [CrossRef]
- Murphy, J.D.; McKeogh, E. The benefits of integrated treatment of wastes for the production of energy. Energy 2006, 31, 294–310. [Google Scholar] [CrossRef]
- Tan, S.T.; Hashim, H.; Lim, J.S.; Ho, W.S.; Lee, C.T.; Yan, J. Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia. Appl. Energy 2014, 136, 797–804. [Google Scholar] [CrossRef]
- Komilis, D.; Kissas, K.; Symeonidis, A. Effect of organic matter and moisture on the calorific value of solid wastes: An update of the Tanner diagram. J. Waste Manag. 2014, 34, 249–255. [Google Scholar] [CrossRef]
- Kumar, A.; Samadder, S.R. A review on technological options of waste to energy for effective management of municipal solid waste. J. Waste Manag. 2017, 69, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, L.; Carnevale, E.; Corti, A. A review of technologies and performances of thermal treatment systems for energy recovery from waste. J. Waste Manag. 2015, 37, 26–44. [Google Scholar] [CrossRef]
- Munir, M.T.; Mohaddespour, A.; Nasr, A.T.; Carter, S. Municipal solid waste-to-energy processing for a circular economy in New Zealand. Renew. Sustain. Energy Rev. 2021, 145, 111080. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, Z.; Fang, Z.; Qian, Y.; Zhong, P.; Yan, J. Review of harmless treatment of municipal solid waste incineration fly ash. Waste Dispos. Sustain. Energy 2020, 2, 1–25. [Google Scholar] [CrossRef]
- Arena, U. Process and technological aspects of municipal solid waste gasification. A review. J. Waste Manag. 2012, 32, 625–639. [Google Scholar] [CrossRef]
- Ouda, O.K.; Raza, S.A.; Nizami, A.S.; Rehan, M.; Al-Waked, R.; Korres, N.E. Waste to energy potential: A case study of Saudi Arabia. Renew. Sustain. Energy Rev. 2016, 61, 328–340. [Google Scholar] [CrossRef]
- Sittisun, P.; Tippayawong, N.; Shimpalee, S. Gasification of pelletized corn residues with oxygen enriched air and steam. Int. J. Renew. Energy Dev. 2019, 8, 215. [Google Scholar] [CrossRef]
- Fuentes-Cano, D.; Parrillo, F.; Ruoppolo, G.; Gómez-Barea, A.; Arena, U. The influence of the char internal structure and composition on heterogeneous conversion of naphthalene. Fuel Process. Technol. 2018, 172, 125–132. [Google Scholar] [CrossRef]
- Vaish, B.; Sharma, B.; Srivastava, V.; Singh, P.; Ibrahim, M.H.; Singh, R.P. Energy recovery potential and environmental impact of gasification for municipal solid waste. Biofuels 2019, 10, 87–100. [Google Scholar] [CrossRef]
- Mukherjee, C.; Denney, J.; Mbonimpa, E.G.; Slagley, J.; Bhowmik, R. A review on municipal solid waste-to-energy trends in the USA. Renew. Sustain. Energy Rev. 2020, 119, 109512. [Google Scholar] [CrossRef]
- Duku, M.H.; Gu, S.; Hagan, E.B. A comprehensive review of biomass resources and biofuels potential in Ghana. Renew. Sustain. Energy Rev. 2011, 15, 404–415. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rasul, M.G.; Khan, M.M.; Ashwath, N.; Jahirul, M.I. Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments. Renew. Sustain. Energy Rev. 2021, 145, 111073. [Google Scholar] [CrossRef]
- Agarwal, M.; Tardio, J.; Mohan, S.V. Critical analysis of pyrolysis process with cellulosic based municipal waste as renewable source in energy and technical perspective. Bioresour. Technol. 2013, 147, 361–368. [Google Scholar] [CrossRef]
- Malav, L.C.; Yadav, K.K.; Gupta, N.; Kumar, S.; Sharma, G.K.; Krishnan, S.; Rezania, S.; Kamyab, H.; Pham, Q.B.; Yadav, S.; et al. A review on municipal solid waste as a renewable source for waste-to-energy project in India: Current practices, challenges, and future opportunities. J. Clean. Prod. 2020, 277, 123227. [Google Scholar] [CrossRef]
- Venderbosch, R.; Prins, W. Fast pyrolysis technology development. Biofuel Bioprod. Biorefin. 2010, 4, 178–208. [Google Scholar] [CrossRef]
- Rago, Y.P.; Mohee, R.; Surroop, D. A review of thermochemical technologies for the conversion of waste biomass to biofuel and energy in developing countries. In The Nexus: Energy, Environment, and Climate Change, 1st ed.; Filho, W.L., Surroop, D., Eds.; Springer International Publishing: New York, NY, USA, 2018; Volume 1, pp. 127–143. [Google Scholar]
- Gopu, C.; Gao, L.; Volpe, M.; Fiori, L.; Goldfarb, J.L. Valorizing municipal solid waste: Waste to energy and activated carbons for water treatment via pyrolysis. J. Anal. Appl. Pyrolysis 2018, 133, 48–58. [Google Scholar] [CrossRef]
- Singh, J.; Gu, S. Biomass conversion to energy in India—A critique. Renew. Sustain. Energy Rev. 2010, 14, 1367–1378. [Google Scholar] [CrossRef]
- Chua, H.S.; Bashir, M.J.; Tan, K.T.; Chua, H.S. A sustainable pyrolysis technology for the treatment of municipal solid waste in Malaysia. In Proceedings of the 6th International Conference on Environment (ICENV2018): Empowering Environment and Sustainable Engineering Nexus through Green Technology, Batu Ferringhi, Malaysia, 11–13 December 2018. [Google Scholar] [CrossRef]
- Lu, Q.; Zhou, M.X.; Li, W.T.; Wang, X.; Cui, M.S.; Yang, Y.P. Catalytic fast pyrolysis of biomass with noble metal-like catalysts to produce high-grade bio-oil: Analytical Py-GC/MS study. Catal. Today 2018, 302, 169–179. [Google Scholar] [CrossRef]
- Navarro, R.M.; Guil-Lopez, R.; Fierro, J.L.; Mota, N.; Jiménez, S.; Pizarro, P.; Coronado, J.M.; Serrano, D.P. Catalytic fast pyrolysis of biomass over Mg-Al mixed oxides derived from hydrotalcite-like precursors: Influence of Mg/Al ratio. J. Anal. Appl. Pyrolysis 2018, 134, 362–370. [Google Scholar] [CrossRef]
- Sulaiman, F.; Abdullah, N. Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches. Energy J. 2011, 36, 2352–2359. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Ahiekpor, J.C.; Kuye, A.O.; Achaw, O.W. Optimization of the pyrolysis of hardwood sawdust in a fixed bed reactor using surface response methodology. Lignocellulose 2017, 6, 98–108. [Google Scholar]
- Ahiekpor, J.C.; Mensah, I.; Bensah, E.C.; Narra, S.; Amponsem, B.; Antwi, E. Modeling the behavior of Celtis mildbraedii sawdust and polyethylene terephthalate co-pyrolysis for syngas production. Sci. Afr. 2023, 19, e01450. [Google Scholar] [CrossRef]
- Singh, R.P.; Tyagi, V.V.; Allen, T.; Ibrahim, M.H.; Kothari, R. An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renew. Sustain. Energy Rev. 2011, 15, 4797–4808. [Google Scholar] [CrossRef]
- Mensah, I.; Ahiekpor, J.C.; Herold, N.; Bensah, E.C.; Pfriem, A.; Antwi, E.; Amponsem, B. Biomass and plastic co-pyrolysis for syngas production: Characterisation of Celtis mildbraedii sawdust as a potential feedstock. Sci. Afr. 2022, 16, e01208. [Google Scholar] [CrossRef]
- Luning, L.; Van Zundert, E.H.; Brinkmann, A.J. Comparison of dry and wet digestion for solid waste. Water Sci. Technol. 2003, 48, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Saxena, R.C.; Adhikari, D.K.; Goyal, H.B. Biomass-based energy fuel through biochemical routes: A review. Renew. Sustain. Energy 2009, 13, 167–178. [Google Scholar] [CrossRef]
- Scarlat, N.; Motola, V.; Dallemand, J.F.; Monforti-Ferrario, F.; Mofor, L. Evaluation of energy potential of municipal solid waste from African urban areas. Renew. Sustain. Energy 2015, 50, 1269–1286. [Google Scholar] [CrossRef]
- Wiśniewski, D.; Gołaszewski, J.; Białowiec, A. The pyrolysis and gasification of digestate from agricultural biogas plant. Arch. Environ. Prot. 2015, 41, 70–75. [Google Scholar] [CrossRef]
- Duan, Z.; Scheutz, C.; Kjeldsen, P. Trace gas emissions from municipal solid waste landfills: A review. J. Waste Manag. 2021, 119, 39–62. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Geng, L. Carbon emissions calculation from municipal solid waste and the influencing factors analysis in China. J. Clean. Prod. 2015, 104, 177–184. [Google Scholar] [CrossRef]
- Themelis, N.J.; Ulloa, P.A. Methane generation in landfills. J. Renew. Energy 2007, 32, 1243–1257. [Google Scholar] [CrossRef]
- Osra, F.A.; Ozcan, H.K.; Alzahrani, J.S.; Alsoufi, M.S. Municipal solid waste characterization and landfill gas generation in kakia landfill, makkah. Sustain. Sci. 2021, 13, 1462. [Google Scholar] [CrossRef]
- Odom, F.; Gikunoo, E.; Arthur, E.K.; Agyemang, F.O.; Mensah-Darkwa, K. Stabilization of heavy metals in soil and leachate at Dompoase landfill site in Ghana. Environ. Chall. 2021, 5, 100308. [Google Scholar] [CrossRef]
- Bohacz, J. Microbial strategies and biochemical activity during lignocellulosic waste composting in relation to the occurring biothermal phases. J. Environ. Manag. 2018, 206, 1052–1062. [Google Scholar] [CrossRef]
- Manu, M.K.; Li, D.; Liwen, L.; Jun, Z.; Varjani, S.; Wong, J.W. A review on nitrogen dynamics and mitigation strategies of food waste digestate composting. Bioresour. Technol. 2021, 334, 125032. [Google Scholar] [CrossRef] [PubMed]
- Scherzinger, M.; Kaltschmitt, M. Thermal pre-treatment options to enhance anaerobic digestibility–A review. Renew. Sustain. Energy Rev. 2021, 137, 110627. [Google Scholar] [CrossRef]
- Mengistu, T.; Gebrekidan, H.; Kibret, K.; Woldetsadik, K.; Shimelis, B.; Yadav, H. Comparative effectiveness of different composting methods on the stabilization, maturation and sanitization of municipal organic solid wastes and dried faecal sludge mixtures. Environ. Syst. Res. 2018, 6, 5. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, S.Q.; Zhang, W.D.; Chen, Y.B.; Yin, F. Overview on the treatment technology of municipal solid wastes in China. Adv. Mat. Res. 2012, 518, 3236–3241. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Opuni, S.C.; Fosu, M.; Drechsel, P. Municipal organic waste management: Challenges and opportunities in Tamale, Ghana. In Proceedings of the 36th WEDC International Conference, Nakuru, Kenya, 1–5 July 2013. [Google Scholar]
- Hannan, M.A.; Lipu, M.H.; Akhtar, M.; Begum, R.A.; Al Mamun, M.A.; Hussain, A.; Mia, M.S.; Basri, H. Solid waste collection optimization objectives, constraints, modeling approaches, and their challenges toward achieving sustainable development goals. J. Clean. Prod. 2020, 277, 123557. [Google Scholar] [CrossRef]
- Masnadi, M.S.; Grace, J.R.; Bi, X.T.; Lim, C.J.; Ellis, N.; Li, Y.H.; Watkinson, A.P. From coal towards renewables: Catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed. J. Renew. Energy 2015, 83, 918–930. [Google Scholar] [CrossRef]
- Zziwa, A.; Jjagwe, J.; Kizito, S.; Kabenge, I.; Komakech, A.J.; Kayondo, H. Nutrient recovery from pineapple waste through controlled batch and continuous vermicomposting systems. J. Environ. Manag. 2021, 279, 111784. [Google Scholar] [CrossRef]
- Bhat, R.A.; Dar, S.A.; Dar, D.A.; Dar, G.H. Municipal solid waste generation and current scenario of its management in India. Int. J. Adv. Res. Sci. Eng. 2018, 7, 419–431. [Google Scholar]
- Gupta, N.; Yadav, K.K.; Kumar, V. A review on current status of municipal solid waste management in India. J. Environ. Sci. 2015, 37, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Coarita Fernandez, H.; Teixeira Franco, R.; Bayard, R.; Buffiere, P. Mechanical pre-treatments evaluation of cattle manure before anaerobic digestion. Waste Biomass Valori. 2020, 11, 5175–5184. [Google Scholar] [CrossRef]
- Nogales, R.; Fernández-Gómez, M.J.; Delgado-Moreno, L.; Castillo-Díaz, J.M.; Romero, E. Eco-friendly vermitechnological winery waste management: A pilot-scale study. SN Appl. Sci. 2020, 2, 653. [Google Scholar] [CrossRef]
- Rafieenia, R.; Girotto, F.; Peng, W.; Cossu, R.; Pivato, A.; Raga, R.; Lavagnolo, M.C. Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions. J. Waste Manag. 2017, 59, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Balachandar, R.; Baskaran, L.; Yuvaraj, A.; Thangaraj, R.; Subbaiya, R.; Ravindran, B.; Chang, S.W.; Karmegam, N. Enriched pressmud vermicompost production with green manure plants using Eudrilus eugeniae. Bioresour. Technol. 2020, 299, 122578. [Google Scholar] [CrossRef]
- Katiyar, R.B.; Sundaramurthy, S.; Sharma, A.K.; Arisutha, S.; Khan, M.A.; Sillanpää, M. Optimization of Engineering and Process Parameters for Vermicomposting. Sustainability 2023, 15, 8090. [Google Scholar] [CrossRef]
- Kulcu, R.; Yaldiz, O. Composting of goat manure and wheat straw using pine cones as a bulking agent. Bioresour. Technol. 2007, 98, 2700–2704. [Google Scholar] [CrossRef]
- Huang, K.; Xia, H.; Zhang, Y.; Li, J.; Cui, G.; Li, F.; Bai, W.; Jiang, Y.; Wu, N. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomicanalysis. Bioresour. Technol. 2020, 297, 122451. [Google Scholar] [CrossRef]
- Katiyar, R.B.; Sundaramurthy, S.; Sharma, A.K.; Arisutha, S.; Pratap-Singh, A.; Mishra, S.; Ayub, R.; Jeon, B.-H.; Khan, M.A. Vermicompost: An Eco-Friendly and Cost-Effective Alternative for Sustainable Agriculture. Sustainability 2023, 15, 14701. [Google Scholar] [CrossRef]
- Cheah, C.G.; Chia, W.Y.; Lai, S.F.; Chew, K.W.; Chia, S.R.; Show, P.L. Innovation designs of industry 4.0 based solid waste management: Machinery and digital circular economy. Environ. Res. 2022, 213, 113619. [Google Scholar] [CrossRef]
- Olıverı, L.M.; Arfò, S.; Matarazzo, A.; D’Urso, D.; Chıacchıo, F. Improving the composting process of a treatment facility via an Industry 4.0 monitoring and control solution: Performance and economic feasibility assessment. J. Environ. Manag. 2023, 345, 118776. [Google Scholar] [CrossRef]
- Gopirajan, P.V.; Gopinath, K.P.; Sivaranjani, G.; Arun, J. Optimization of hydrothermal gasification process through machine learning approach: Experimental conditions, product yield and pollution. J. Clean. Prod. 2021, 306, 127302. [Google Scholar] [CrossRef]
- Rizkiana, J.; Guan, G.; Widayatno, W.B.; Hao, X.; Huang, W.; Tsutsumi, A.; Abudula, A. Effect of biomass type on the performance of cogasification of low rank coal with biomass at relatively low temperatures. Fuel 2014, 134, 414–419. [Google Scholar] [CrossRef]
- Kondratenko, Y.; Kozlov, O.; Gerasin, O.; Topalov, A.; Korobko, O. Automation of control processes in specialized pyrolysis complexes based on web SCADA systems. In Proceedings of the 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Bucharest, Romania, 21–23 September 2017. [Google Scholar] [CrossRef]
- Kondratenko, Y.; Kozlov, O.; Topalov, A.; Korobko, O.; Gerasin, O. Automation of control processes in specialized pyrolysis complexes based on industrial Internet of Things. In Dependable IoT for Human and Industry, 1st ed.; Kharchenko, V., Kor, A.L., Rucinski, A., Eds.; River Publishers: New York, NY, USA, 2018; pp. 367–388. [Google Scholar]
- Ullah, M.; Gopalraj, S.K.; Gutierrez-Rojas, D.; Nardelli, P.; Kärki, T. IoT framework and requirement for intelligent industrial pyrolysis process to recycle CFRP composite wastes: Application study. InIntelligent and Transformative Production in Pandemic Times. In Proceedings of the 26th International Conference on Production Research, Taichung, Taiwan, 18–21 July 2021. [Google Scholar]
- Energy Commission. PLAN EM. Ghana Renewable Energy Master Plan. 2019; 98p. Available online: https://www.energycom.gov.gh/files/Renewable-Energy-Masterplan-February-2019.pdf (accessed on 16 November 2023).
- Arias, D.M.; Solé-Bundó, M.; Garfi, M.; Ferrer, I.; García, J.; Uggetti, E. Integrating microalgae tertiary treatment into activated sludge systems for energy and nutrients recovery from wastewater. Bioresour. Technol. 2018, 247, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.D.; McCarthy, K. The optimal production of biogas for use as a transport fuel in Ireland. J. Renew. Energy 2005, 30, 2111–2127. [Google Scholar] [CrossRef]
- Barnor, B.; Ahunu, L.; Ohene Adu, R. Power Generation from Municipal Solid Waste in Ghana. Soc. Sci. Res. 2018. [Google Scholar] [CrossRef]
- Uddin, M.M.; Wright, M.M. Anaerobic digestion fundamentals, challenges, and technological advances. Phys. Sci. Rev. 2023, 8, 2819–2837. [Google Scholar] [CrossRef]
- Kuleape, R.; Cobbina, S.J.; Dampare, S.B.; Duwiejuah, A.B.; Amoako, E.E.; Asare, W. Assessment of the energy recovery potentials of solid waste generated in Akosombo, Ghana. Afr. J. Environ. 2014, 8, 297–305. [Google Scholar] [CrossRef]
- Ohene Adu, R.; Lohmueller, R. The Use of Organic Waste as an Eco-Efficient Energy Source in Ghana. J. Environ. Prot. 2012, 3, 553–562. [Google Scholar] [CrossRef]
- Bandarra, B.S.; Quina, M.J. Municipal Solid Waste Incineration and Sustainable Development. Advances in Sustainable Energy: Policy, Materials and Devices; Gao, Y.J., Song, W., Liu, J.L., Bashir, S., Eds.; Springer: Cham, Switzerland, 2021; pp. 653–680. [Google Scholar] [CrossRef]
- Amoatey, N.K.; Darmey, J.; Tabbicca, K.E. Estimation of the Methane Generation Potential of the Tamale Landfill Site Using LandGEM. Ghana Min. J. 2023, 23, 27–33. [Google Scholar] [CrossRef]
- Ghosh, P.; Shah, G.; Chandra, R.; Sahota, S.; Kumar, H.; Vijay, V.K.; Thakur, I.S. Assessment of methane emissions and energy recovery potential from the municipal solid waste landfills of Delhi, India. Bioresour. Technol. 2019, 272, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Surroop, D.; Mohee, R. Power generation from landfill gas. In Proceedings of the 2nd International Conference on Environmental Engineering and Applications IPCBEE 2011, Jeju Island, Republic of Korea, 29–30 June 2012. [Google Scholar]
Year | Population | Quantity of MSW Generated per Day (×1000 tons) |
---|---|---|
2000 | 1,668,000 | 1.10–1.80 |
2004 | 1,815,000 | 1.25–1.90 |
2007 | 1,934,000 | 1.50–2.20 |
2010 | 2,060,000 | 3.00–3.80 |
2020 | 2,514,000 | 1.05–1.80 |
Year | Population | Quantity of MSW Generated per Day (×1000 tons) |
---|---|---|
2000 | 1,187,000 | 0.8 |
2004 | 1,465,000 | 0.85–0.90 |
2007 | 1,716,000 | 0.95–1.01 |
2010 | 2,010,000 | 1.50–2.10 |
2020 | 3,348,000 | 2.10 |
Year | Population | Quantity of MSW Generated per Day (×1000 tons) |
---|---|---|
2000 | 294,000 | 0.60–0.80 |
2004 | 373,000 | 0.70–0.85 |
2007 | 445,000 | 0.90–1.00 |
2010 | 532,000 | 1.30–2.50 |
2020 | 946,000 | 0.66 |
Year | Population | Quantity of MSW Generated per Day (×1000 tons) |
---|---|---|
2000 | 205,000 | 0.35–0.45 |
2004 | 259,000 | 0.40–0.60 |
2007 | 308,000 | 0.70–0.85 |
2010 | 366,000 | 1.09–1.20 |
2020 | 642,000 | 0.46 |
Parameters | Slow Pyrolysis | Fast Pyrolysis | Flash Pyrolysis |
---|---|---|---|
Pyrolysis temperature (K) | 550–900 | 850–1250 | 1050–1300 |
Heating rate (K/s) | 0.1–1 | 10–200 | >1000 |
Particle size (mm) | 5–50 | <1 | <0.2 |
Solid residence time (s) | 300–3600 | 0.5–10 | <0.5 |
Products Yield (wt%) | |||
---|---|---|---|
Bio-Oil | Biochar | Syngas | |
Slow pyrolysis | 10–30 | 25–65 | 10–50 |
Fast pyrolysis | 40–70 | 15–25 | 10–20 |
Flash pyrolysis | 10–20 | 10–15 | 60–80 |
Composition of Gas | % in Landfill Gas | % in Digester Gas |
---|---|---|
Methane (CH4) | 55 | 45–60 |
Carbon dioxide (CO2) | 45 | 35–50 |
Carbon monoxide (CO) | - | 0.0–0.3 |
Nitrogen (N2) | 3.1 | 1.0–5.0 |
Hydrogen (H2) | - | 0.0–3.0 |
Hydrogen sulfide (H2S), mg/m3 | 88 | 0.1–0.5 |
Oxygen (O2) | 0.8 | Trace |
Chlorine (Cl2), mg/m3 | 22 | - |
Fluorine (F2), mg/m3 | 5 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darmey, J.; Ahiekpor, J.C.; Narra, S.; Achaw, O.-W.; Ansah, H.F. Municipal Solid Waste Generation Trend and Bioenergy Recovery Potential: A Review. Energies 2023, 16, 7753. https://doi.org/10.3390/en16237753
Darmey J, Ahiekpor JC, Narra S, Achaw O-W, Ansah HF. Municipal Solid Waste Generation Trend and Bioenergy Recovery Potential: A Review. Energies. 2023; 16(23):7753. https://doi.org/10.3390/en16237753
Chicago/Turabian StyleDarmey, James, Julius Cudjoe Ahiekpor, Satyanarayana Narra, Osei-Wusu Achaw, and Herbert Fiifi Ansah. 2023. "Municipal Solid Waste Generation Trend and Bioenergy Recovery Potential: A Review" Energies 16, no. 23: 7753. https://doi.org/10.3390/en16237753
APA StyleDarmey, J., Ahiekpor, J. C., Narra, S., Achaw, O. -W., & Ansah, H. F. (2023). Municipal Solid Waste Generation Trend and Bioenergy Recovery Potential: A Review. Energies, 16(23), 7753. https://doi.org/10.3390/en16237753