Research Progress on Aging Prediction Methods for Fuel Cells: Mechanism, Methods, and Evaluation Criteria
Abstract
:1. Introduction
2. Aging Factors and Lifespan Prolongation Strategy for PEMFC
2.1. PEMFC System Level
2.1.1. Air Subsystem Failure
2.1.2. Hydrogen Subsystem Failure
2.1.3. Hydrothermal Management Subsystem Failure
2.1.4. Electronic Control Subsystem Failure
2.2. PEMFC Stack Level
2.2.1. Membrane Failure
2.2.2. Catalyst Layer Failure
2.2.3. Gas Diffusion Layer Failure
2.2.4. Bipolar Plates Failure
2.3. Lifespan Prolongation Strategy for PEMFC
2.3.1. Fault Handling Measures for System Level
2.3.2. Fault-Handling Measures for Stack Level
3. Aging Prediction Method
3.1. Model-Based Method
3.1.1. Physical Model Method
3.1.2. State Space Model Method
3.2. Data-Driven Method
3.2.1. Machine Learning Method
3.2.2. Signal Processing Method
3.2.3. Statistical Method
4. Degradation Index and Accuracy Evaluation Criteria
4.1. Degradation Index
4.1.1. Measurement Data-Based DI
4.1.2. Stack Component-Based DI
4.1.3. Hybrid Characteristic-Based DI
4.2. Accuracy Evaluation Criteria
5. Challenges and Future Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, Y.; Zhang, L.; Jiang, Y.; Peng, K.; Jin, Z. A hybrid method for performance degradation probability prediction of proton exchange membrane fuel cell. Membranes 2023, 13, 426. [Google Scholar] [CrossRef]
- Tang, X.; Qin, X.; Wei, K.; Xu, S. A novel online degradation model for proton exchange membrane fuel cell based on online transfer learning. Int. J. Hydrogen Energy 2023, 48, 13617–13632. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Lee, S.M.; Yu, S. A comprehensive review of degradation prediction methods for an automotive proton exchange membrane fuel cell. Energies 2023, 16, 4772. [Google Scholar] [CrossRef]
- Sun, X.; Xie, M.; Fu, J.; Zhou, F.; Liu, J. An improved neural network model for predicting the remaining useful life of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2023, 48, 25499–25511. [Google Scholar] [CrossRef]
- Peng, W.; Wei, Z.; Huang, C.G.; Feng, G.; Li, J. A hybrid health prognostics method for proton Exchange membrane fuel cells with internal health recovery. IEEE Trans. Transp. Electrif. 2023, 9, 4406–4417. [Google Scholar] [CrossRef]
- Du, Q.; Zhan, Z.; Wen, X.; Zhang, H.; Tan, Y.; Li, S.; Pan, M. A hybrid model to assess the remaining useful life of proton exchange membrane fuel cells. Processes 2023, 11, 1583. [Google Scholar] [CrossRef]
- Novalin, T.; Eriksson, B.; Proch, S.; Bexell, U.; Moffatt, C.; Westlinder, J.; Lagergren, C.; Lindbergh, G.; Lindström, R.W. Concepts for preventing metal dissolution from stainless-steel bipolar plates in PEM fuel cells. Energy Convers. Manag. 2022, 253, 115153. [Google Scholar] [CrossRef]
- Hua, Z.; Zheng, Z.; Pahon, E.; Péra, M.C.; Gao, F. Remaining useful life prediction of PEMFC systems under dynamic operating conditions. Energy Convers. Manag. 2021, 231, 113825. [Google Scholar] [CrossRef]
- Pei, P.; Li, Y.; Xu, H.; Wu, Z. A review on water fault diagnosis of PEMFC associated with the pressure drop. Appl. Energy 2016, 173, 366–385. [Google Scholar] [CrossRef]
- Jahnke, T.; Futter, G.; Latz, A.; Malkow, T.; Papakonstantinou, G.; Tsotridis, G.; Schott, P.; Gérard, M.; Quinaud, M.; Quiroga, M.; et al. Performance and degradation of Proton Exchange Membrane Fuel Cells: State of the art in modeling from atomistic to system scale. J. Power Sources 2016, 304, 207–233. [Google Scholar] [CrossRef]
- Jouin, M.; Gouriveau, R.; Hissel, D.; Péra, M. C.; Zerhouni, N. Prognostics and Health Management of PEMFC–State of the art and remaining challenges. Int. J. Hydrogen Energy 2013, 38, 15307–15317. [Google Scholar] [CrossRef]
- Zhou, D.; Tian, Z.; Liang, J. A Robust Prognostic Indicator for Renewable Energy Fuel Cells: A Hybrid Data-Driven Prediction Approach. In Sustainability: Cases and Studies in Using Operations Research and Management Science Methods; Springer: Berlin/Heidelberg, Germany, 2023; pp. 167–197. [Google Scholar]
- Liu, H.; Chen, J.; Hissel, D.; Lu, J.; Hou, M.; Shao, Z. Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review. Renew. Sustain. Energy Rev. 2020, 123, 109721. [Google Scholar] [CrossRef]
- Huo, W.; Li, W.; Zhang, Z.; Sun, C.; Zhou, F.; Gong, G. Performance prediction of proton-exchange membrane fuel cell based on convolutional neural network and random forest feature selection. Energy Convers. Manag. 2021, 243, 114367. [Google Scholar] [CrossRef]
- Benouioua, D.; Harel, F.; Candusso, D. Diagnostic of fuel cell air supply subsystems based on pressure signal records and statistical pattern recognition approach. Int. J. Hydrogen Energy 2021, 46, 38809–38826. [Google Scholar] [CrossRef]
- Zhou, S.; Jin, J.; Wei, Y. Research on online diagnosis method of fuel cell centrifugal air compressor surge fault. Energies 2021, 14, 3071. [Google Scholar] [CrossRef]
- Thounthong, P.; Sethakul, P. Analysis of a fuel starvation phenomenon of a PEM fuel cell. In Proceedings of the 2007 Power Conversion Conference-Nagoya, Nagoya, Japan, 2–5 April 2007; pp. 731–738. [Google Scholar]
- Chen, H.; Zhao, X.; Zhang, T.; Pei, P. The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: A review. Energy Convers. Manag. 2019, 182, 282–298. [Google Scholar] [CrossRef]
- Ko, D.; Kang, Y.; Yang, J.; Jeong, J.; Choi, G.; Kim, D. Polarization characteristics and property distributions of a proton exchange membrane fuel cell under cathode starvation conditions. Int. J. Energy Res. 2010, 34, 865–877. [Google Scholar] [CrossRef]
- Han, J.; Yu, S.; Yi, S. Adaptive control for robust air flow management in an automotive fuel cell system. Appl. Energy 2017, 190, 73–83. [Google Scholar] [CrossRef]
- Pukrushpan, J.T.; Stefanopoulou, A.G.; Peng, H. Control of fuel cell breathing. IEEE Control Syst. Mag. 2004, 24, 30–46. [Google Scholar]
- Liu, J.; Luo, W.; Yang, X.; Wu, L. Robust model-based fault diagnosis for PEM fuel cell air-feed system. IEEE Trans. Ind. Electron. 2016, 63, 3261–3270. [Google Scholar] [CrossRef]
- Zhou, F.; Andreasen, S.J.; Kær, S.K.; Yu, D. Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition. Int. J. Hydrogen Energy 2015, 40, 2833–2839. [Google Scholar] [CrossRef]
- Enz, S.; Dao, T.; Messerschmidt, M.; Scholta, J. Investigation of degradation effects in polymer electrolyte fuel cells under automotive-related operating conditions. J. Power Sources 2015, 274, 521–535. [Google Scholar] [CrossRef]
- Jia, F.; Guo, L.; Liu, H. Mitigation strategies for hydrogen starvation under dynamic loading in proton exchange membrane fuel cells. Energy Convers. Manag. 2017, 139, 175–181. [Google Scholar] [CrossRef]
- Maeda, K.; Tamura, Y. Characteristics of hydrogen leakage sound from a fuel-cell vehicle by hearing. Int. J. Hydrogen Energy 2017, 42, 7331–7339. [Google Scholar] [CrossRef]
- Beshay, M.; Sekhar, J.G.C.; Alonso, J.D.; Boehr, C.; Lieberman, R.A. Miniaturized real-time monitor for fuel cell leak applications. In Proceedings of the Photonic Applications for Aerospace, Transportation, and Harsh Environment II, Orlando, FL, USA, 26 May 2011; SPIE: Orlando, FL, USA, 2011; Volume 8026, pp. 56–66. [Google Scholar]
- Jian, Q.; Huang, B.; Luo, L.; Zhao, J.; Cao, S.; Huang, Z. Experimental investigation of the thermal response of open-cathode proton exchange membrane fuel cell stack. Int. J. Hydrogen Energy 2018, 43, 13489–13500. [Google Scholar] [CrossRef]
- Hwang, S.H.; Kim, M.S. An experimental study on the cathode humidification and evaporative cooling of polymer electrolyte membrane fuel cells using direct water injection method at high current densities. Appl. Therm. Eng. 2016, 99, 635–644. [Google Scholar] [CrossRef]
- Liso, V.; Nielsen, M.P.; Kær, S.K.; Mortensen, H.H. Thermal modeling and temperature control of a PEM fuel cell system for forklift applications. Int. J. Hydrogen Energy 2014, 39, 8410–8420. [Google Scholar] [CrossRef]
- Lebreton, C.; Benne, M.; Damour, C.; Yousfi-Steiner, N.; Grondin-Perez, B.; Hissel, D.; Chabriat, J.P. Fault Tolerant Control Strategy applied to PEMFC water management. Int. J. Hydrogen Energy 2015, 40, 10636–10646. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Liu, Z.; Li, Q.; Chen, W. Thermal management system modeling of a water-cooled proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2015, 40, 3048–3056. [Google Scholar] [CrossRef]
- Pavlišič, A.; Jovanovič, P.; Šelih, V.S.; Šala, M.; Hodnik, N.; Gaberšček, M. Platinum dissolution and redeposition from Pt/C fuel cell electrocatalyst at potential cycling. J. Electrochem. Soc. 2018, 165, F3161–F3165. [Google Scholar] [CrossRef]
- Guilbert, D.; Gaillard, A.; N’Diaye, A.; Djerdir, A. Fault-tolerant control for PEMFC and its DC/DC converter. In Proceedings of the 2015 5th International Youth Conference on Energy (IYCE), Pisa, Italy, 27–30 May 2015; pp. 1–6. [Google Scholar]
- Mohammadi, A.; Guilbert, D.; Gaillard, A.; Bouquain, D.; Khaburi, D.; Djerdir, A. Faults diagnosis between PEM fuel cell and DC/DC converter using neural networks for automotive applications. In Proceedings of the IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 8186–8191. [Google Scholar]
- Cheng, X.; Shi, Z.; Glass, N.; Zhang, L.; Zhang, J.; Song, D.; Liu, Z.S.; Wang, H.; Shen, J. A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. J. Power Sources 2007, 165, 739–756. [Google Scholar] [CrossRef]
- Zhao, Y.; Mao, Y.; Zhang, W.; Tang, Y.; Wang, P. Reviews on the effects of contaminations and research methodologies for PEMFC. Int. J. Hydrogen Energy 2020, 45, 23174–23200. [Google Scholar] [CrossRef]
- St-Pierre, J.; Wilkinsor, D.; Knights, S.; Bos, M. Relationships between water management, contamination and lifetime degradation in PEFC. J. N. Mater. Electrochem. Syst. 2000, 3, 99–106. [Google Scholar]
- Zhang, J.; Wang, H.; Wilkinson, D.P.; Song, D.; Shen, J.; Liu, Z.S. Model for the contamination of fuel cell anode catalyst in the presence of fuel stream impurities. J. Power Sources 2005, 147, 58–71. [Google Scholar] [CrossRef]
- Collier, A.; Wang, H.; Yuan, X.Z.; Zhang, J.; Wilkinson, D.P. Degradation of polymer electrolyte membranes. Int. J. Hydrogen Energy 2006, 31, 1838–1854. [Google Scholar] [CrossRef]
- Laribi, S.; Mammar, K.; Sahli, Y.; Koussa, K. Air supply temperature impact on the PEMFC impedance. J. Energy Storage 2018, 17, 327–335. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, B. Fault tolerance control for proton exchange membrane fuel cell systems. J. Power Sources 2016, 324, 804–829. [Google Scholar] [CrossRef]
- Shah, A.A.; Ralph, T.; Walsh, F. Modeling and simulation of the degradation of perfluorinated ion-exchange membranes in PEM fuel cells. J. Electrochem. Soc. 2009, 156, B465. [Google Scholar] [CrossRef]
- Seo, D.; Lee, J.; Park, S.; Rhee, J.; Choi, S.W.; Shul, Y.G. Investigation of MEA degradation in PEM fuel cell by on/off cyclic operation under different humid conditions. Int. J. Hydrogen Energy 2011, 36, 1828–1836. [Google Scholar] [CrossRef]
- Borup, R.L.; Davey, J.R.; Garzon, F.H.; Wood, D.L.; Inbody, M.A. PEM fuel cell electrocatalyst durability measurements. J. Power Sources 2006, 163, 76–81. [Google Scholar] [CrossRef]
- Meier, J.C.; Galeano, C.; Katsounaros, I.; Witte, J.; Bongard, H.J.; Topalov, A.A.; Baldizzone, C.; Mezzavilla, S.; Schüth, F.; Mayrhofer, K.J. Design criteria for stable Pt/C fuel cell catalysts. Beilstein J. Nanotechnol. 2014, 5, 44–67. [Google Scholar] [CrossRef] [PubMed]
- Ehelebe, K.; Knöppel, J.; Bierling, M.; Mayerhöfer, B.; Böhm, T.; Kulyk, N.; Thiele, S.; Mayrhofer, K.J.; Cherevko, S. Platinum dissolution in realistic fuel cell catalyst layers. Angew. Chem. 2021, 133, 8964–8970. [Google Scholar] [CrossRef]
- Yadav, A.P.; Okayasu, T.; Sugawara, Y.; Nishikata, A.; Tsuru, T. Effects of pH on dissolution and surface area loss of platinum due to potential cycling. J. Electrochem. Soc. 2012, 159, C190. [Google Scholar] [CrossRef]
- Darling, R.M.; Meyers, J.P. Kinetic model of platinum dissolution in PEMFCs. J. Electrochem. Soc. 2003, 150, A1523. [Google Scholar] [CrossRef]
- Darling, R.M.; Meyers, J.P. Mathematical model of platinum movement in PEM fuel cells. J. Electrochem. Soc. 2004, 152, A242. [Google Scholar] [CrossRef]
- Fan, L.; Zhao, J.; Luo, X.; Tu, Z. Comparison of the performance and degradation mechanism of PEMFC with Pt/C and Pt black catalyst. Int. J. Hydrogen Energy 2022, 47, 5418–5428. [Google Scholar] [CrossRef]
- Park, S.S.; Jeon, Y.; Kim, T.; Park, J.I.; Shul, Y.G. Enhancement of electrochemical properties through high-temperature treatment of CNF grown on ACF support for PEMFC. Electrochim. Acta 2014, 134, 49–54. [Google Scholar] [CrossRef]
- Promislow, K.; Chang, P.; Haas, H.; Wetton, B. Two-phase unit cell model for slow transients in polymer electrolyte membrane fuel cells. J. Electrochem. Soc. 2008, 155, A494. [Google Scholar] [CrossRef]
- Kuhnert, E.; Hacker, V.; Bodner, M. A Review of Accelerated Stress Tests for Enhancing MEA Durability in PEM Water Electrolysis Cells. Int. J. Energy Res. 2023, 2023, 3183108. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, H.; Brandon, N.P. Gas diffusion layer degradation in proton exchange membrane fuel cells: Mechanisms, characterization techniques and modelling approaches. J. Power Sources 2021, 513, 230560. [Google Scholar] [CrossRef]
- Chlistunoff, J.; Davey, J.R.; Rau, K.C.; Mukundan, R.; Borup, R.L. PEMFC gas diffusion media degradation determined by acid-base titrations. ECS Trans. 2013, 50, 521. [Google Scholar] [CrossRef]
- Hiramitsu, Y.; Sato, H.; Kobayashi, K.; Hori, M. Controlling gas diffusion layer oxidation by homogeneous hydrophobic coating for polymer electrolyte fuel cells. J. Power Sources 2011, 196, 5453–5469. [Google Scholar] [CrossRef]
- Wu, J.; Martin, J.J.; Orfino, F.P.; Wang, H.; Legzdins, C.; Yuan, X.Z.; Sun, C. In situ accelerated degradation of gas diffusion layer in proton exchange membrane fuel cell: Part I: Effect of elevated temperature and flow rate. J. Power Sources 2010, 195, 1888–1894. [Google Scholar] [CrossRef]
- Mehta, V.; Cooper, J.S. Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 2003, 114, 32–53. [Google Scholar] [CrossRef]
- Jiang, B.; Stübler, N.; Wu, W.; Li, Q.; Ziegmann, G.; Meiners, D. Manufacturing and characterization of bipolar fuel cell plate with textile reinforced polymer composites. Mater. Des. 2015, 65, 1011–1020. [Google Scholar] [CrossRef]
- Pan, T.; Zhang, P.; Du, C.; Wu, D. A review of fault diagnosis and fault-tolerant control of vehicular polymer electrolyte membrane fuel cell power system. In Proceedings of the Journal of Physics: Conference Series, Nanjing, China, 10–12 September 2021; IOP Publishing: Bristol, UK, 2022; Volume 2206, p. 012015. [Google Scholar]
- Zhu, Y.; Zou, J.; Li, S.; Peng, C.; Xie, Y. Nonlinear model predictive control of PEMFC anode hydrogen circulation system based on dynamic coupling analysis. Int. J. Hydrogen Energy 2023, 48, 2385–2400. [Google Scholar] [CrossRef]
- Yang, D.; Wang, Y.; Chen, Z. Robust fault diagnosis and fault tolerant control for PEMFC system based on an augmented LPV observer. Int. J. Hydrogen Energy 2020, 45, 13508–13522. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Gao, J.; Chu, H.; Chen, H. Fault-tolerant control through dynamic surface triple-step approach for proton exchange membrane fuel cell air supply systems. Int. J. Hydrogen Energy 2022, 47, 1804–1819. [Google Scholar] [CrossRef]
- Li, J.; Zhou, T. Active fault-tolerant coordination energy management for a proton exchange membrane fuel cell using curriculum-based multiagent deep meta-reinforcement learning. Renew. Sustain. Energy Rev. 2023, 185, 113581. [Google Scholar] [CrossRef]
- Oh, H.; Choi, Y.Y.; Kim, M.; Sohn, Y.J.; Kim, S.G.; Lee, W.Y. Experimental validation of passive and active fault-tolerant controls against sensor faults in a proton exchange membrane fuel cell system. J. Process Control 2023, 129, 103064. [Google Scholar] [CrossRef]
- Yan, C.; Chen, J.; Liu, H.; Lu, H. Model-based fault tolerant control for the thermal management of PEMFC systems. IEEE Trans. Ind. Electron. 2019, 67, 2875–2884. [Google Scholar] [CrossRef]
- Yan, C.; Chen, J.; Liu, H.; Kumar, L.; Lu, H. Health for pem fuel cells based on an active fault tolerant control strategy. IEEE Trans. Sustain. Energy 2020, 12, 1311–1320. [Google Scholar] [CrossRef]
- Abbaspour, A.; Yen, K.K.; Forouzannezhad, P.; Sargolzaei, A. An adaptive resilient control approach for pressure control in proton exchange membrane fuel cells. IEEE Trans. Ind. Appl. 2019, 55, 6344–6354. [Google Scholar] [CrossRef]
- Zhou, S.; Gao, J.; Pan, Z.; Zhang, G.; Zhai, S.; Shen, W. Fault diagnosis and fault-tolerant control method for a multistack fuel cell thermal management subsystem. Energy Technol. 2023, 11, 2300132. [Google Scholar] [CrossRef]
- Hernández-Torres, D.; Sename, O.; Riu, D.; Druart, F. On the robust control of DC-DC converters: Application to a hybrid power generation system. IFAC Proc. Vol. 2010, 43, 123–130. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Q.; Tu, C.; Che, L.; Hou, Y.; Xiao, F. A two-layer control strategy for hydrogen-battery hybrid system considering the efficiency characteristics of MS-PEMFC. Electr. Power Syst. Res. 2023, 225, 109818. [Google Scholar] [CrossRef]
- Zamel, N.; Li, X. Transient analysis of carbon monoxide poisoning and oxygen bleeding in a PEM fuel cell anode catalyst layer. Int. J. Hydrogen Energy 2008, 33, 1335–1344. [Google Scholar] [CrossRef]
- Postole, G.; Auroux, A. The poisoning level of Pt/C catalysts used in PEM fuel cells by the hydrogen feed gas impurities: The bonding strength. Int. J. Hydrogen Energy 2011, 36, 6817–6825. [Google Scholar] [CrossRef]
- Jackson, C.; Raymakers, L.; Mulder, M.; Kucernak, A. Poison mitigation strategies for the use of impure hydrogen in electrochemical hydrogen pumps and fuel cells. J. Power Sources 2020, 472, 228476. [Google Scholar] [CrossRef]
- Robin, C.; Gerard, M.; Franco, A.A.; Schott, P. Multi-scale coupling between two dynamical models for PEMFC aging prediction. Int. J. Hydrogen Energy 2013, 38, 4675–4688. [Google Scholar] [CrossRef]
- Ao, Y.; Chen, K.; Laghrouche, S.; Depernet, D. Proton exchange membrane fuel cell degradation model based on catalyst transformation theory. Fuel Cells 2021, 21, 254–268. [Google Scholar] [CrossRef]
- Polverino, P.; Pianese, C. Model-based prognostic algorithm for online RUL estimation of PEMFCs. In Proceedings of the 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol), Barcelona, Spain, 7–9 September 2016; pp. 599–604. [Google Scholar]
- Hu, Z.; Xu, L.; Li, J.; Ouyang, M.; Song, Z.; Huang, H. A reconstructed fuel cell life-prediction model for a fuel cell hybrid city bus. Energy Convers. Manag. 2018, 156, 723–732. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, D.; Luo, M.; Dong, Z. Load profile based empirical model for the lifetime prediction of an automotive PEM fuel cell. Int. J. Hydrogen Energy 2017, 42, 11868–11878. [Google Scholar] [CrossRef]
- Ou, M.; Zhang, R.; Shao, Z.; Li, B.; Yang, D.; Ming, P.; Zhang, C. A novel approach based on semi-empirical model for degradation prediction of fuel cells. J. Power Sources 2021, 488, 229435. [Google Scholar] [CrossRef]
- Bressel, M.; Hilairet, M.; Hissel, D.; Bouamama, B.O. Extended Kalman filter for prognostic of proton exchange membrane fuel cell. Appl. Energy 2016, 164, 220–227. [Google Scholar] [CrossRef]
- Pan, R.; Yang, D.; Wang, Y.; Chen, Z. Performance degradation prediction of proton exchange membrane fuel cell using a hybrid prognostic approach. Int. J. Hydrogen Energy 2020, 45, 30994–31008. [Google Scholar] [CrossRef]
- Chen, K.; Laghrouche, S.; Djerdir, A. Fuel cell health prognosis using Unscented Kalman Filter: Postal fuel cell electric vehicles case study. Int. J. Hydrogen Energy 2019, 44, 1930–1939. [Google Scholar] [CrossRef]
- Ao, Y.; Laghrouche, S.; Depernet, D.; Chen, K. Proton exchange membrane fuel cell prognosis based on frequency-domain Kalman filter. IEEE Trans. Transp. Electrif. 2021, 7, 2332–2343. [Google Scholar] [CrossRef]
- Zhou, D.; Wu, Y.; Gao, F.; Breaz, E.; Ravey, A.; Miraoui, A. Degradation prediction of PEM fuel cell stack based on multiphysical aging model with particle filter approach. IEEE Trans. Ind. Appl. 2017, 53, 4041–4052. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, D.; Lyu, C.; Lu, C. A novel health indicator for PEMFC state of health estimation and remaining useful life prediction. Int. J. Hydrogen Energy 2017, 42, 20230–20238. [Google Scholar] [CrossRef]
- Kimotho, J.K.; Meyer, T.; Sextro, W. PEM fuel cell prognostics using particle filter with model parameter adaptation. In Proceedings of the 2014 International Conference on Prognostics and Health Management, Cheney, WA, USA, 22–25 June 2014; pp. 1–6. [Google Scholar]
- Cheng, Y.; Zerhouni, N.; Lu, C. A hybrid remaining useful life prognostic method for proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2018, 43, 12314–12327. [Google Scholar] [CrossRef]
- Wang, F.K.; Amogne, Z.E.; Chou, J.H. A hybrid method for remaining useful life prediction of proton exchange membrane fuel cell stack. IEEE Access 2021, 9, 40486–40495. [Google Scholar] [CrossRef]
- Chen, K.; Laghrouche, S.; Djerdir, A. Degradation model of proton exchange membrane fuel cell based on a novel hybrid method. Appl. Energy 2019, 252, 113439. [Google Scholar] [CrossRef]
- Zhang, J.; Man, K.F. Time series prediction using RNN in multi-dimension embedding phase space. In Proceedings of the SMC’98 Conference Proceedings, 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 98CH36218), San Diego, CA, USA, 14 October 1998; Volume 2, pp. 1868–1873. [Google Scholar]
- Liu, J.; Li, Q.; Chen, W.; Yan, Y.; Qiu, Y.; Cao, T. Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks. Int. J. Hydrogen Energy 2019, 44, 5470–5480. [Google Scholar] [CrossRef]
- Ma, R.; Yang, T.; Breaz, E.; Li, Z.; Briois, P.; Gao, F. Data-driven proton exchange membrane fuel cell degradation predication through deep learning method. Appl. Energy 2018, 231, 102–115. [Google Scholar] [CrossRef]
- Wang, F.K.; Cheng, X.B.; Hsiao, K.C. Stacked long short-term memory model for proton exchange membrane fuel cell systems degradation. J. Power Sources 2020, 448, 227591. [Google Scholar] [CrossRef]
- Wang, F.K.; Mamo, T.; Cheng, X.B. Bi-directional long short-term memory recurrent neural network with attention for stack voltage degradation from proton exchange membrane fuel cells. J. Power Sources 2020, 461, 228170. [Google Scholar] [CrossRef]
- Zuo, J.; Lv, H.; Zhou, D.; Xue, Q.; Jin, L.; Zhou, W.; Yang, D.; Zhang, C. Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application. Appl. Energy 2021, 281, 115937. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Outbib, R.; Dou, M.; Zhao, D. A novel long short-term memory networks-based data-driven prognostic strategy for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2022, 47, 10395–10408. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.X.; He, H.; Sun, F. A short-and long-term prognostic associating with remaining useful life estimation for proton exchange membrane fuel cell. Appl. Energy 2021, 304, 117841. [Google Scholar] [CrossRef]
- Xia, T.; Song, Y.; Zheng, Y.; Pan, E.; Xi, L. An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation. Comput. Ind. 2020, 115, 103182. [Google Scholar] [CrossRef]
- Hua, Z.; Zheng, Z.; Pahon, E.; Péra, M.C.; Gao, F. A review on lifetime prediction of proton exchange membrane fuel cells system. J. Power Sources 2022, 529, 231256. [Google Scholar] [CrossRef]
- Chen, K.; Laghrouche, S.; Djerdir, A. Prognosis of fuel cell degradation under different applications using wavelet analysis and nonlinear autoregressive exogenous neural network. Renew. Energy 2021, 179, 802–814. [Google Scholar] [CrossRef]
- Ibrahim, M.; Steiner, N.Y.; Jemei, S.; Hissel, D. Wavelet-based approach for online fuel cell remaining useful lifetime prediction. IEEE Trans. Ind. Electron. 2016, 63, 5057–5068. [Google Scholar] [CrossRef]
- Hua, Z.; Zheng, Z.; Pahon, E.; Péra, M.C.; Gao, F. Multi-timescale lifespan prediction for PEMFC systems under dynamic operating conditions. IEEE Trans. Transp. Electrif. 2021, 8, 345–355. [Google Scholar] [CrossRef]
- Hua, Z.; Zheng, Z.; Pahon, E.; Péra, M.C.; Gao, F. Lifespan prediction for proton exchange membrane fuel cells based on wavelet transform and echo state network. IEEE Trans. Transp. Electrif. 2021, 8, 420–431. [Google Scholar] [CrossRef]
- Zhou, D.; Al-Durra, A.; Zhang, K.; Ravey, A.; Gao, F. Online remaining useful lifetime prediction of proton exchange membrane fuel cells using a novel robust methodology. J. Power Sources 2018, 399, 314–328. [Google Scholar] [CrossRef]
- Detti, A.H.; Steiner, N.Y.; Bouillaut, L.; Same, A.; Jemei, S. Fuel cell performance prediction using an AutoRegressive moving-average ARMA model. In Proceedings of the 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, 14–17 October 2019; pp. 1–5. [Google Scholar]
- Zhu, L.; Chen, J. Prognostics of PEM fuel cells based on Gaussian process state space models. Energy 2018, 149, 63–73. [Google Scholar] [CrossRef]
- Deng, H.; Hu, W.; Cao, D.; Chen, W.; Huang, Q.; Chen, Z.; Blaabjerg, F. Degradation trajectories prognosis for PEM fuel cell systems based on Gaussian process regression. Energy 2022, 244, 122569. [Google Scholar] [CrossRef]
- Zhou, D.; Al-Durra, A.; Zhang, K.; Ravey, A.; Gao, F. A robust prognostic indicator for renewable energy technologies: A novel error correction grey prediction model. IEEE Trans. Ind. Electron. 2019, 66, 9312–9325. [Google Scholar] [CrossRef]
- Chen, K.; Laghrouche, S.; Djerdir, A. Degradation prediction of proton exchange membrane fuel cell based on grey neural network model and particle swarm optimization. Energy Convers. Manag. 2019, 195, 810–818. [Google Scholar] [CrossRef]
- Gouriveau, R.; Hilairet, M.; Hissel, D.; Jemei, S.; Jouin, M.; Lechartier, E.; Zerhouni, N. IEEE PHM 2014 data challenge: Outline, experiments, scoring of results, winners. Proc. IEEE Conf. Prognostics Health Manag. 2014, 1–6. Available online: http://eng.fclab.fr/wp-content/uploads/2014/04/IEEE-Details-After.pdf (accessed on 28 June 2023).
- Bezmalinovic, D.; Simic, B.; Barbir, F. Characterization of PEM fuel cell degradation by polarization change curves. J. Power Sources 2015, 294, 82–87. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Lu, C.; Zhou, B. PEM fuel cell health state assessment using a geometrical approach and mahalanobis distance. In Proceedings of the 2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China, 12–15 June 2016; pp. 1312–1316. [Google Scholar]
- Li, Q.; Gao, Z.B. A similarity-based prognostics approach for full cells state of health. In Proceedings of the 2014 Prognostics and System Health Management Conference (PHM-2014 Hunan), Zhangjiajie, China, 24–27 August 2014; pp. 279–283. [Google Scholar]
- Vianna, W.O.L.; de Medeiros, I.P.; Aflalo, B.S.; Rodrigues, L.R.; Malère, J.P.P. Proton exchange membrane fuel cells (PEMFC) impedance estimation using regression analysis. In Proceedings of the 2014 International Conference on Prognostics and Health Management, Cheney, WA, USA, 22–25 June 2014; pp. 1–8. [Google Scholar]
- Karpenko-Jereb, L.; Sternig, C.; Fink, C.; Tatschl, R. Membrane degradation model for 3D CFD analysis of fuel cell performance as a function of time. Int. J. Hydrogen Energy 2016, 41, 13644–13656. [Google Scholar] [CrossRef]
- Inaba, M.; Kinumoto, T.; Kiriake, M.; Umebayashi, R.; Tasaka, A.; Ogumi, Z. Gas crossover and membrane degradation in polymer electrolyte fuel cells. Electrochim. Acta 2006, 51, 5746–5753. [Google Scholar] [CrossRef]
- Liu, D.; Case, S. Durability study of proton exchange membrane fuel cells under dynamic testing conditions with cyclic current profile. J. Power Sources 2006, 162, 521–531. [Google Scholar] [CrossRef]
- Xu, H.; Boroup, R.; Brosha, E.; Gazon, F.; Pivovar, B. Effect of relative humidity on membrane degradation rate and mechanism in PEM fuel cells. Ecs Trans. 2007, 6, 51. [Google Scholar] [CrossRef]
- Burlatsky, S.; Gummalla, M.; O’Neill, J.; Atrazhev, V.; Varyukhin, A.; Dmitriev, D.; Erikhman, N. A mathematical model for predicting the life of polymer electrolyte fuel cell membranes subjected to hydration cycling. J. Power Sources 2012, 215, 135–144. [Google Scholar] [CrossRef]
- Macauley, N.; Watson, M.; Lauritzen, M.; Knights, S.; Wang, G.G.; Kjeang, E. Empirical membrane lifetime model for heavy duty fuel cell systems. J. Power Sources 2016, 336, 240–250. [Google Scholar] [CrossRef]
- Mao, L.; Jackson, L.; Jackson, T. Investigation of polymer electrolyte membrane fuel cell internal behaviour during long term operation and its use in prognostics. J. Power Sources 2017, 362, 39–49. [Google Scholar] [CrossRef]
- Kim, T.; Oh, H.; Kim, H.; Youn, B.D. An online-applicable model for predicting health degradation of PEM fuel cells with root cause analysis. IEEE Trans. Ind. Electron. 2016, 63, 7094–7103. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, J.; Al-Durra, A.; Muyeen, S.; Zhou, D.; Hua, S. A novel aging prediction method of fuel cell based on empirical mode decomposition and complexity threshold quantitative criterion. J. Power Sources 2023, 574, 233120. [Google Scholar] [CrossRef]
Contamination Classification | Source | Contamination Component | Factor | Impact |
---|---|---|---|---|
Reaction gas | Hydrogen | Carbon oxides, CH4, Sulfides | Residual contaminants from catalytic steam reforming of hydrogen | PEM and electrode degradation |
Air | Nitrogen gas, Nitrogen oxides, Sulfides, Toxic gas | Operation environment and air quality determine | ||
Key components | Membrane | Na+ | Membrane degradation | Diluting reactant concentrations accelerates aging |
BPP | Fe3+, Cu2+ | Wear and corrosion | ||
Sealing gasket | Si | Wear and corrosion |
Approach Category | Subclass | References | Degradation Index | Characteristic |
---|---|---|---|---|
Model-based methods | Physical model | [76,77,78,79] | PEM thickness, ECSA, FRR, and other component properties. | Theoretical description of the actual physical degradation phenomena; modeling process is complex. |
State space model method | [80,81,82,83,84,85,86,87,88,89] | Output voltage, output power, SMMP, and ECMP. | Simple and easy implementation. | |
Data-driven methods | Machine learning method | [90,91,92,93,94,95,96,97,98,99,100] | Mainly output voltage, output power, and EIS. | Sensitive to the data quality and quantity. |
Signal processing method | [91,101,102,103,104,105] | Mainly output voltage, output power, and EIS. | Suitable for non-stationary time series. | |
Statistical method | [106,107,108,109,110,111] | Mainly output voltage, output power, and EIS. | Good generalization capability; Stationary series. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Z.; Wei, Z.; Wang, J.; Wang, Y.; Lei, Y.; Hu, P.; Muyeen, S.M.; Zhou, D. Research Progress on Aging Prediction Methods for Fuel Cells: Mechanism, Methods, and Evaluation Criteria. Energies 2023, 16, 7750. https://doi.org/10.3390/en16237750
Tian Z, Wei Z, Wang J, Wang Y, Lei Y, Hu P, Muyeen SM, Zhou D. Research Progress on Aging Prediction Methods for Fuel Cells: Mechanism, Methods, and Evaluation Criteria. Energies. 2023; 16(23):7750. https://doi.org/10.3390/en16237750
Chicago/Turabian StyleTian, Zhuang, Zheng Wei, Jinhui Wang, Yinxiang Wang, Yuwei Lei, Ping Hu, S. M. Muyeen, and Daming Zhou. 2023. "Research Progress on Aging Prediction Methods for Fuel Cells: Mechanism, Methods, and Evaluation Criteria" Energies 16, no. 23: 7750. https://doi.org/10.3390/en16237750
APA StyleTian, Z., Wei, Z., Wang, J., Wang, Y., Lei, Y., Hu, P., Muyeen, S. M., & Zhou, D. (2023). Research Progress on Aging Prediction Methods for Fuel Cells: Mechanism, Methods, and Evaluation Criteria. Energies, 16(23), 7750. https://doi.org/10.3390/en16237750