Design and Optimization of Heat Sinks for the Liquid Cooling of Electronics with Multiple Heat Sources: A Literature Review
Abstract
:1. Introduction
2. Overheating Problem of Electronics under Multiple Peak Heat Flux
2.1. Lithium-Ion Battery Packs
2.2. Multiple LED Arrays
2.3. Power Electronics
2.4. Single-Chip Modules (SCMs) and Multi-Chip Modules (MCMs)
2.5. Multi-Junction High Concentrator Photovoltaics (HCPVs)
2.6. Short Summary
3. Heat Sink Design and Structural Optimization
3.1. Heat Sink Design—Basic Structures and Variants
3.2. Structural Optimization of Heat Sinks for Liquid Cooling
3.2.1. Channel Cross-Section Optimization
3.2.2. Channel Flow Passage Optimization
3.2.3. Flow Distribution Investigation/Optimization on Parallel Straight Channels
3.2.4. Fin-Shape and Arrangement Optimization for Pin-Fin Heat Sinks
3.2.5. Topology Optimization (TO) of Global Flow Configuration
4. Conclusions and Perspectives
- In electronic devices, non-uniform heating with multiple heat sources is a common occurrence due to the stacking/array arrangement of functional units for increased power or capacity. This multiple-peak heat flux condition poses a greater risk of overheating compared to uniform heating or single-peak heating, leading to detrimental consequences such as reduced efficiency, device shutdown, decreased lifespan, irreversible component damage, or even thermal runaway. Therefore, an efficient thermal management approach is crucial for cooling non-uniform heating surfaces with multiple heat sources.
- Conventional heat sinks for single-phase cooling can be categorized into parallel channel, pin-fin, and complex types, with different variants proposed to enhance heat transfer performance. Notably, structural optimization can be performed using size, shape, or TO methods. Research efforts have been directed towards optimizing (1) the shape of the channel cross-section, (2) the channel flow passages, (3) flow distribution uniformity or adaptability in parallel-channel heat sinks, (4) the shape and arrangement of pin-fins, and (5) the topology of global flow channel configuration in heat sinks.
- The TO of global flow channel configurations involves allocating and organizing the fluid and solid phases within the design domain of a heat sink without geometry presetting. Offering the highest design flexibility, this approach shows promise in addressing the cooling challenges posed by non-uniform heating with multiple heat sources, surpassing the limitations of size or shape optimization methods. Currently, the most popular TO method for heat sink structural optimization combines density-based design parametrization, FEM for heat transfer modeling and gradient-based optimizers. While this TO strategy is efficient and straightforward, it also faces limitations such as local optimum trapping, vague fluid-solid boundary, inaccuracy in modeling conjugate heat transfer modeling, non-physical topologies obtained, etc.
- (1)
- The majority of heat sink design and structural optimization studies are still based on simplified uniform heating conditions. Some very recent work has started to consider more realistic non-uniform heating boundaries in the optimization, which should be prioritized in future studies. More adapted design guidelines and optimization approaches also need to be developed specifically for the cooling of uneven heating surfaces caused by multiple heat sources.
- (2)
- The limitations of the current density-based methods for TO of global flow channel configuration have been identified. More efforts should be directed towards improving the effectiveness and applicability of these methods. Additionally, there is a significant need to explore and develop gradient-free approaches (e.g., GA, BO) as promising alternatives.
- (3)
- ML technique has recently emerged and has been applied in the structural optimization of heat sinks. Currently, ML shows interesting applications when combined with size or shape optimization approaches, either for accelerating the modeling process by improving the prediction of thermo-hydraulic performances or for enhancing the optimization algorithms. ML-assisted TO approaches [160] for heat sink/heat exchangers, although still rare, hold great promise and represent a ground-breaking direction for future research.
- (4)
- The majority of TO studies rely only on CFD simulations, while experimental validation is indispensable for verifying simulation results and assessing the optimization effectiveness. The rapid development of additive manufacturing technologies offers promising ways for the realization of topologically optimized heat sinks with complex internal structures [161,162]. Therefore, additional efforts are needed to conduct experimental testing and performance comparisons of heat sinks optimized using different characterization methods.
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
BO | Bayesian Optimization |
CCPC | Crossed Compound Parabolic Concentrator |
CFD | Computational Fluid Dynamics |
CPV | Concentrator Photovoltaics |
CPU | Central Processing Unit |
DNN | Deep Neural Network |
FEM | Finite Element Method |
FVM | Finite Volume Method |
GA | Genetic Algorithm |
HCPV | High Concentrator Photovoltaics |
HEMTs | High Electron Mobility Transistors |
IGBT | Insulated-Gate Bipolar Transistor and Diodes |
IHS | Integrated Heat Spreader |
LBM | Lattice Boltzmann Method |
LED | Light-Emitting Diode |
MCM | Multi-Chip Modules |
ML | Machine Learning |
MOGA | Multi-Objective Genetic Algorithm |
MOPSO | Multi-Objective Particle Swarm Optimization |
NSGA | Non-Dominated Sorting Genetic Algorithm |
PSO | Particle Swarm Optimization |
RSA | Response Surface Analysis |
SCM | Single-Chip Module |
TIM | Thermal Interface Material |
TO | Topology Optimization |
References
- Zhang, Z.; Wang, X.; Yan, Y. A review of the state-of-the-art in electronic cooling. e-Prime 2021, 1, 100009. [Google Scholar] [CrossRef]
- Xia, G.; Ma, D.; Zhai, Y.; Li, Y.; Liu, R.; Du, M. Experimental and numerical study of fluid flow and heat transfer characteristics in microchannel heat sink with complex structure. Energy Convers. Manag. 2015, 105, 848–857. [Google Scholar] [CrossRef]
- Ahmed, H.E.; Salman, B.H.; Kherbeet, A.S.; Ahmed, M.I. Optimization of thermal design of heat sinks: A review. Int. J. Heat Mass Transf. 2018, 118, 129–153. [Google Scholar] [CrossRef]
- Fawaz, A.; Hua, Y.; Le Corre, S.; Fan, Y.; Luo, L. Topology optimization of heat exchangers: A review. Energy 2022, 252, 124053. [Google Scholar] [CrossRef]
- Shang, Z.; Qi, H.; Liu, X.; Ouyang, C.; Wang, Y. Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system. Int. J. Heat Mass Transf. 2019, 130, 33–41. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog. Nat. Sci. Mater. Int. 2018, 28, 653–666. [Google Scholar] [CrossRef]
- Ehrlich, G.M. Handbook of Batteries, 3rd ed.; Linden, D., Reddy, T.B., Eds.; McGraw-Hill: New York, NY, USA, 2002; ISBN 0-07-135978-8. [Google Scholar]
- Zhao, R. Overheating Prediction and Management of Lithium-Ion Batteries; Carleton University: Ottawa, ON, Canada, 2018. [Google Scholar]
- Basu, S.; Hariharan, K.S.; Kolake, S.M.; Song, T.; Sohn, D.K.; Yeo, T. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system. Appl. Energy 2016, 181, 1–13. [Google Scholar] [CrossRef]
- Goutam, S.; Nikolian, A.; Jaguemont, J.; Smekens, J.; Omar, N.; Van Dan Bossche, P.; Van Mierlo, J. Three-dimensional electro-thermal model of li-ion pouch cell: Analysis and comparison of cell design factors and model assumptions. Appl. Therm. Eng. 2017, 126, 796–808. [Google Scholar] [CrossRef]
- Tang, Y.; Luo, Y.; Du, P.; Wang, H.; Ma, H.; Qin, Y.; Bai, P.; Zhou, G. Experimental investigation on active heat sink with heat pipe assistance for high-power automotive LED headlights. Case Stud. Therm. Eng. 2021, 28, 101503. [Google Scholar] [CrossRef]
- Hu, J.; Yang, L.; Whan Shin, M. Mechanism and thermal effect of delamination in light-emitting diode packages. Micro. J. 2007, 38, 157–163. [Google Scholar] [CrossRef]
- Zhang, X.; Li, R.-C.; Zheng, Q. Analysis and simulation of high-power LED array with microchannel heat sink. Adv. Manuf. 2013, 1, 191–195. [Google Scholar] [CrossRef]
- Effects Of Temperature On LED Lights. Available online: https://ledlightsunlimited.net/2020/09/15/effects-of-temperature-on-led-lights/ (accessed on 6 September 2023).
- Gatapova, E.Y.; Sahu, G.; Khandekar, S.; Hu, R. Thermal management of high-power LED module with single-phase liquid jet array. Appl. Therm. Eng. 2021, 184, 116270. [Google Scholar] [CrossRef]
- Rammohan, A.; Ramesh Kumar, C.; Chandramohan, V.P. Experimental analysis on estimating junction temperature and service life of high power LED array. Microelectron. Reliab. 2021, 120, 114121. [Google Scholar] [CrossRef]
- Bose, B.K. Power Electronics and Variable Frequency Drives: Technology and Applications; Bose, B.K., Ed.; Wiley-IEEE Press: New York, NY, USA, 1997; ISBN 9780470545553. [Google Scholar]
- Schlapbach, U.; Rahimo, M.; von Arx, C.; Mukhitdinov, A.; Linder, S. 1200 V IGBTs operating at 200 °C? An investigation on the potentials and the design constraints. In Proceedings of the 19th International Symposium on Power Semiconductor Devices and IC’s, Jeju, Republic of Korea, 27–31 May 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 9–12. [Google Scholar]
- Hu, Z.; Ge, X.; Xie, D.; Zhang, Y.; Yao, B.; Dai, J.; Yang, F. An Aging-Degree Evaluation Method for IGBT Bond Wire with Online Multivariate Monitoring. Energies 2019, 12, 3962. [Google Scholar] [CrossRef]
- An, N.; Du, M.; Hu, Z.; Wei, K. A High-Precision Adaptive Thermal Network Model for Monitoring of Temperature Variations in Insulated Gate Bipolar Transistor (IGBT) Modules. Energies 2018, 11, 595. [Google Scholar] [CrossRef]
- Yahyaee, A.; Bahman, A.; Blaabjerg, F. A Modification of Offset Strip Fin Heatsink with High-Performance Cooling for IGBT Modules. Appl. Sci. 2020, 10, 1112. [Google Scholar] [CrossRef]
- Choi, U.-M.; Blaabjerg, F.; Lee, K.-B. Study and Handling Methods of Power IGBT Module Failures in Power Electronic Converter Systems. IEEE Trans. Power Electron. 2015, 30, 2517–2533. [Google Scholar] [CrossRef]
- Qiu, X.Z.; Zhang, G.R.; Chen, W.J.; Yu, T.; Hou, X.M.; Zhang, Q.Z.; Xu, G.Q. Review of IGBT Junction Temperature Extraction and Estimation Methods. IOP Conf. Ser. Mater. Sci. Eng. 2020, 774, 012091. [Google Scholar] [CrossRef]
- Hao, X.; Peng, B.; Xie, G.; Chen, Y. Efficient on-chip hotspot removal combined solution of thermoelectric cooler and mini-channel heat sink. Appl. Therm. Eng. 2016, 100, 170–178. [Google Scholar] [CrossRef]
- Nan, G.; Xie, Z.; Guan, X.; Ji, X.; Lin, D. Constructal design for the layout of multi-chip module based on thermal-flow-stress coupling calculation. Microelectron. Reliab. 2021, 127, 114417. [Google Scholar] [CrossRef]
- What is the safe CPU temperature range? Available online: https://levvvel.com/what-is-the-safe-cpu-temperature-range/ (accessed on 6 September 2023).
- Manoj Siva, V.; Pattamatta, A.; Das, S.K. Effect of flow maldistribution on the thermal performance of parallel microchannel cooling systems. Int. J. Heat Mass Transf. 2014, 73, 424–428. [Google Scholar] [CrossRef]
- Will Overheating My CPU Cause any Real Damage? Available online: https://www.pcgamer.com/cpu-temperature-overheat/#:~:text=Overclocking (accessed on 6 September 2023).
- IEA. Renewable Electricity Growth Is Accelerating Faster than Ever Worldwide, Supporting the Emergence of the New Global Energy Economy; IEA: Paris, France, 2021. [Google Scholar]
- Yamaguchi, M.; Dimroth, F.; Geisz, J.F.; Ekins-Daukes, N.J. Multi-junction solar cells paving the way for super high-efficiency. J. Appl. Phys. 2021, 129, 240901. [Google Scholar] [CrossRef]
- Multijunction III-V Photovoltaics Research. Available online: https://www.energy.gov/eere/solar/multijunction-iii-v-photovoltaics-research (accessed on 6 September 2023).
- Philipps, S.P.; Bett, A.W. III-V Multi-junction solar cells and concentrating photovoltaic (CPV) systems. Adv. Opt. Technol. 2014, 3, 469–478. [Google Scholar] [CrossRef]
- Braun, A.; Hirsch, B.; Vossier, A.; Katz, E.A.; Gordon, J.M. Temperature dynamics of multijunction concentrator solar cells up to ultra-high irradiance. Prog. Photo. Res. Appl. 2013, 21, 202–208. [Google Scholar] [CrossRef]
- Tan, W.-C.; Chong, K.-K.; Tan, M.-H. Performance study of water-cooled multiple-channel heat sinks in the application of ultra-high concentrator photovoltaic system. Sol. Energy 2017, 147, 314–327. [Google Scholar] [CrossRef]
- Han, F.; Guo, H.; Ding, X. Design and optimization of a liquid cooled heat sink for a motor inverter in electric vehicles. Appl. Energy 2021, 291, 116819. [Google Scholar] [CrossRef]
- Hua, Y.-C.; Li, H.-L.; Cao, B.-Y. Thermal Spreading Resistance in Ballistic-Diffusive Regime for GaN HEMTs. IEEE Trans. Electron Devices 2019, 66, 3296–3301. [Google Scholar] [CrossRef]
- Cui, P.; Liu, Z. Enhanced flow boiling of HFE-7100 in picosecond laser fabricated copper microchannel heat sink. Int. J. Heat Mass Transf. 2021, 175, 121387. [Google Scholar] [CrossRef]
- Li, Y.F.; Xia, G.D.; Ma, D.D.; Jia, Y.T.; Wang, J. Characteristics of laminar flow and heat transfer in microchannel heat sink with triangular cavities and rectangular ribs. Int. J. Heat Mass Transf. 2016, 98, 17–28. [Google Scholar] [CrossRef]
- Promvonge, P.; Chompookham, T.; Kwankaomeng, S.; Thianpong, C. Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generators. Energy Convers. Manag. 2010, 51, 1242–1249. [Google Scholar] [CrossRef]
- Singh, S.; Malik, A.; Mali, H.S. A critical review on single-phase thermo-hydraulic enhancement in geometrically modified microchannel devices. Appl. Therm. Eng. 2023, 235, 121729. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, S.; Gong, L.; Huang, Z. Numerical study and optimizing on micro square pin-fin heat sink for electronic cooling. Appl. Therm. Eng. 2016, 93, 1347–1359. [Google Scholar] [CrossRef]
- Wang, G.; Niu, D.; Xie, F.; Wang, Y.; Zhao, X.; Ding, G. Experimental and numerical investigation of a microchannel heat sink (MCHS) with micro-scale ribs and grooves for chip cooling. Appl. Therm. Eng. 2015, 85, 61–70. [Google Scholar] [CrossRef]
- Paknezhad, M.; Rashidi, A.M.; Yousefi, T.; Saghir, Z. Effect of aluminum-foam heat sink on inclined hot surface temperature in the case of free convection heat transfer. Case Stud. Therm. Eng. 2017, 10, 199–206. [Google Scholar] [CrossRef]
- Dai, Z.; Fletcher, D.F.; Haynes, B.S. Impact of tortuous geometry on laminar flow heat transfer in microchannels. Int. J. Heat Mass Transf. 2015, 83, 382–398. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Huang, B.; Xu, T. Numerical Investigation on the Optimum Thermal Design of the Shape and Geometric Parameters of Microchannel Heat Exchangers with Cavities. Micromachines 2020, 11, 721. [Google Scholar] [CrossRef]
- Zhou, F.; Zhou, W.; Zhang, C.; Qiu, Q.; Yuan, D.; Chu, X. Experimental and numerical studies on heat transfer enhancement of microchannel heat exchanger embedded with different shape micropillars. Appl. Therm. Eng. 2020, 175, 115296. [Google Scholar] [CrossRef]
- Wang, G.-L.; Yang, D.-W.; Wang, Y.; Niu, D.; Zhao, X.-L.; Ding, G.-F. Heat Transfer and Friction Characteristics of the Microfluidic Heat Sink with Variously-Shaped Ribs for Chip Cooling. Sensors 2015, 15, 9547–9562. [Google Scholar] [CrossRef]
- Tang, S.; Zhao, Y.; Diao, Y.; Quan, Z. Effects of various inlet/outlet positions and header forms on flow distribution and thermal performance in microchannel heat sink. Microsyst. Technol. 2018, 24, 2485–2497. [Google Scholar] [CrossRef]
- Saeed, M.; Kim, M.H. Header design approaches for mini-channel heatsinks using analytical and numerical methods. Appl. Therm. Eng. 2017, 110, 1500–1510. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, Z.; Wang, J.; Lv, X. Research progress on structural optimization design of microchannel heat sinks applied to electronic devices. Appl. Therm. Eng. 2023, 235, 121294. [Google Scholar] [CrossRef]
- Zhou, W.; Dong, K.; Sun, Q.; Luo, W.; Zhang, B.; Guan, S.; Wang, G. Research progress of the liquid cold plate cooling technology for server electronic chips: A review. Int. J. Energy Res. 2022, 46, 11574–11595. [Google Scholar] [CrossRef]
- Sadique, H.; Murtaza, Q. Samsher Heat transfer augmentation in microchannel heat sink using secondary flows: A review. Int. J. Heat Mass Transf. 2022, 194, 123063. [Google Scholar] [CrossRef]
- He, Z.; Yan, Y.; Zhang, Z. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review. Energy 2021, 216, 119223. [Google Scholar] [CrossRef]
- Ghani, I.A.; Che Sidik, N.A.; Kamaruzzaman, N.; Jazair Yahya, W.; Mahian, O. The effect of manifold zone parameters on hydrothermal performance of micro-channel HeatSink: A review. Int. J. Heat Mass Transf. 2017. [CrossRef]
- Baodong, S.; Lifeng, W.; Jianyun, L.; Heming, C. Multi-objective optimization design of a micro-channel heat sink using adaptive genetic algorithm. Int. J. Numer. Methods Heat Fluid Flow 2011, 21, 353–364. [Google Scholar] [CrossRef]
- Karathanassis, I.K.; Papanicolaou, E.; Belessiotis, V.; Bergeles, G.C. Multi-objective design optimization of a micro heat sink for Concentrating Photovoltaic/Thermal (CPVT) systems using a genetic algorithm. Appl. Therm. Eng. 2013, 59, 733–744. [Google Scholar] [CrossRef]
- Normah, G.-M.; Oh, J.-T.; Chien, N.B.; Choi, K.-I.; Robiah, A. Comparison of the optimized thermal performance of square and circular ammonia-cooled microchannel heat sink with genetic algorithm. Energy Convers. Manag. 2015, 102, 59–65. [Google Scholar] [CrossRef]
- Halelfadl, S.; Adham, A.M.; Mohd-Ghazali, N.; Maré, T.; Estellé, P.; Ahmad, R. Optimization of thermal performances and pressure drop of rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid. Appl. Therm. Eng. 2014, 62, 492–499. [Google Scholar] [CrossRef]
- Lin, D.; Kang, C.-H.; Chen, S.-C. Optimization of the Micro Channel Heat Sink by Combing Genetic Algorithm with the Finite Element Method. Inventions 2018, 3, 32. [Google Scholar] [CrossRef]
- Hung, T.-C.; Yan, W.-M.; Wang, X.-D.; Huang, Y.-X. Optimal design of geometric parameters of double-layered microchannel heat sinks. Int. J. Heat Mass Transf. 2012, 55, 3262–3272. [Google Scholar] [CrossRef]
- Wang, X.-D.; An, B.; Xu, J.-L. Optimal geometric structure for nanofluid-cooled microchannel heat sink under various constraint conditions. Energy Convers. Manag. 2013, 65, 528–538. [Google Scholar] [CrossRef]
- Wang, X.-D.; An, B.; Lin, L.; Lee, D.-J. Inverse geometric optimization for geometry of nanofluid-cooled microchannel heat sink. Appl. Therm. Eng. 2013, 55, 87–94. [Google Scholar] [CrossRef]
- Leng, C.; Wang, X.-D.; Wang, T.-H.; Yan, W.-M. Optimization of thermal resistance and bottom wall temperature uniformity for double-layered microchannel heat sink. Energy Convers. Manag. 2015, 93, 141–150. [Google Scholar] [CrossRef]
- Rao, R.V.; More, K.C.; Taler, J.; Ocłoń, P. Dimensional optimization of a micro-channel heat sink using Jaya algorithm. Appl. Therm. Eng. 2016, 103, 572–582. [Google Scholar] [CrossRef]
- Yin, H.; Ooka, R. Shape optimization of water-to-water plate-fin heat exchanger using computational fluid dynamics and genetic algorithm. Appl. Therm. Eng. 2015, 80, 310–318. [Google Scholar] [CrossRef]
- Foli, K.; Okabe, T.; Olhofer, M.; Jin, Y.; Sendhoff, B. Optimization of micro heat exchanger: CFD, analytical approach and multi-objective evolutionary algorithms. Int. J. Heat Mass Transf. 2006, 49, 1090–1099. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, S.; Liu, Z.; Liu, W. Optimal shape design of a minichannel heat sink applying multi-objective optimization algorithm and three-dimensional numerical method. Appl. Therm. Eng. 2019, 148, 120–128. [Google Scholar] [CrossRef]
- Dokken, C.B.; Fronk, B.M. Optimization of 3D printed liquid cooled heat sink designs using a micro-genetic algorithm with bit array representation. Appl. Therm. Eng. 2018, 143, 316–325. [Google Scholar] [CrossRef]
- Khan, W.A.; Kadri, M.B.; Ali, Q. Optimization of Microchannel Heat Sinks Using Genetic Algorithm. Heat Transf. Eng. 2013, 34, 279–287. [Google Scholar] [CrossRef]
- Husain, A.; Kim, K.-Y. Optimization of a microchannel heat sink with temperature dependent fluid properties. Appl. Therm. Eng. 2008, 28, 1101–1107. [Google Scholar] [CrossRef]
- Kulkarni, K.; Afzal, A.; Kim, K.-Y. Multi-objective optimization of a double-layered microchannel heat sink with temperature-dependent fluid properties. Appl. Therm. Eng. 2016, 99, 262–272. [Google Scholar] [CrossRef]
- Shang, X.; Li, Q.; Cao, Q.; Li, Z.; Shao, W.; Cui, Z. Mathematical modeling and multi-objective optimization on the rectangular micro-channel heat sink. Int. J. Therm. Sci. 2023, 184, 107926. [Google Scholar] [CrossRef]
- Alperen, Y.; Sertac, C. Multi objective optimization of a micro-channel heat sink through genetic algorithm. Int. J. Heat Mass Transf. 2020, 146, 118847. [Google Scholar] [CrossRef]
- Shaeri, M.R.; Sarabi, S.; Randriambololona, A.M.; Shadlo, A. Machine learning-based optimization of air-cooled heat sinks. Therm. Sci. Eng. Prog. 2022, 34, 101398. [Google Scholar] [CrossRef]
- Pai, S.S.; Weibel, J.A. Machine-learning-aided design optimization of internal flow channel cross-sections. Int. J. Heat Mass Transf. 2022, 195, 123118. [Google Scholar] [CrossRef]
- Lee, G.; Lee, I.; Kim, S.J. Topology optimization of a heat sink with an axially uniform cross-section cooled by forced convection. Int. J. Heat Mass Transf. 2021, 168, 120732. [Google Scholar] [CrossRef]
- Khudhur, D.S.; Al-Zuhairy, R.C.; Kassim, M.S. Thermal analysis of heat transfer with different fin geometry through straight plate-fin heat sinks. Int. J. Therm. Sci. 2022, 174, 107443. [Google Scholar] [CrossRef]
- Rajalingam, A.; Chakraborty, S. Estimation of the thermohydraulic performance of a microchannel heat sink with gradual and sudden variation of the flow passage. Int. J. Heat Mass Transf. 2022, 190, 122776. [Google Scholar] [CrossRef]
- Zhu, Q.; Su, R.; Hu, L.; Chen, J.; Zeng, J.; Zhang, H.; Sun, H.; Zhang, S.; Fu, D. Heat transfer enhancement for microchannel heat sink by strengthening fluids mixing with backward right-angled trapezoidal grooves in channel sidewalls. Int. Commun. Heat Mass Transf. 2022, 135, 106106. [Google Scholar] [CrossRef]
- Samadi, H.; Hosseini, M.J.; Ranjbar, A.A.; Pahamli, Y. Thermohydraulic performance of new minichannel heat sink with grooved barriers. Int. Commun. Heat Mass Transf. 2023, 144, 106753. [Google Scholar] [CrossRef]
- Chen, H.; Chen, C.; Zhou, Y.; Yang, C.; Song, G.; Hou, F.; Jiao, B.; Liu, R. Evaluation and Optimization of a Cross-Rib Micro-Channel Heat Sink. Micromachines 2022, 13, 132. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, X. Numerical simulation of heat transfer and flow of Al2O3-water nanofluid in microchannel heat sink with cantor fractal structure based on genetic algorithm. Anal. Chim. Acta 2022, 1221, 339927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; He, Y.; Wang, C.; Liang, B.; Zhu, Y.; Gou, H.; Xiao, K.; Lu, F. A new type of liquid-cooled channel thermal characteristics analysis and optimization based on the optimal characteristics of 24 types of channels. Int. J. Heat Mass Transf. 2023, 202, 123734. [Google Scholar] [CrossRef]
- Sikirica, A.; Grbčić, L.; Kranjčević, L. Machine learning based surrogate models for microchannel heat sink optimization. Appl. Therm. Eng. 2023, 222, 119917. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, X.; Wang, P.; Yang, Z.; Huang, J.; Gu, J.; Zhao, W. Multi-objective optimization of thermal-hydraulic performance in a microchannel heat sink with offset ribs using the fuzzy grey approach. Appl. Therm. Eng. 2022, 201, 117748. [Google Scholar] [CrossRef]
- Cao, Y.; Abbas, M.; El-Shorbagy, M.A.; Gepreel, K.A.; Dahari, M.; Le, V.V.; Badran, M.F.; Huynh, P.H.; Wae-hayee, M. Thermo-hydraulic performance in ceramic-made microchannel heat sinks with an optimum fin geometry. Case Stud. Therm. Eng. 2022, 36, 102230. [Google Scholar] [CrossRef]
- Rajalingam, A.; Chakraborty, S. Microchannel heat sink with microstructured wall—A critical study on fluid flow and heat transfer characteristics. Therm. Sci. Eng. Prog. 2023, 38, 101613. [Google Scholar] [CrossRef]
- Zhang, Q.; Feng, Z.; Zhang, J.; Guo, F.; Huang, S.; Li, Z. Design of a mini-channel heat sink for high-heat-flux electronic devices. Appl. Therm. Eng. 2022, 216, 119053. [Google Scholar] [CrossRef]
- Shen, H.; Xie, G.; Wang, C.-C.; Liu, H. Experimental and numerical examinations of thermofluids characteristics of double-layer microchannel heat sinks with deflectors. Int. J. Heat Mass Transf. 2022, 182, 121961. [Google Scholar] [CrossRef]
- Tian, X.-W.; Sun, C.; Zeng, X.; Qian, S.-H.; Li, C.-F.; Cai, Y.-Z.; Chen, Y.; Wang, W. Free-shape modeling and optimization for straight channel of cold plate involving passage pattern, cross-section, and twist of channel. Int. J. Heat Mass Transf. 2022, 184, 122299. [Google Scholar] [CrossRef]
- Narendran, G.; Gnanasekaran, N. Investigation on novel inertial minichannel to mitigate maldistribution induced high temperature zones. Energy Convers. Manag. 2022, 271, 116300. [Google Scholar] [CrossRef]
- Tan, Z.; Jin, P.; Zhang, Y.; Xie, G. Flow and thermal performance of a multi-jet twisted square microchannel heat sink using CuO-water nanofluid. Appl. Therm. Eng. 2023, 225, 120133. [Google Scholar] [CrossRef]
- Jiang, M.; Pan, Z. Optimization of micro-channel heat sink based on genetic algorithm and back propagation neural network. Therm. Sci. 2023, 27, 179–193. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, P.K. A novel approach to manage temperature non-uniformity in minichannel heat sink by using intentional flow maldistribution. Appl. Therm. Eng. 2019, 163, 114403. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, P.K. Effects of flow inlet angle on flow maldistribution and thermal performance of water cooled mini-channel heat sink. Int. J. Therm. Sci. 2019, 138, 504–511. [Google Scholar] [CrossRef]
- Manikanda Kumaran, R.; Kumaraguruparan, G.; Sornakumar, T. Experimental and numerical studies of header design and inlet/outlet configurations on flow mal-distribution in parallel micro-channels. Appl. Therm. Eng. 2013, 58, 205–216. [Google Scholar] [CrossRef]
- Chein, R.; Chen, J. Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance. Int. J. Therm. Sci. 2009, 48, 1627–1638. [Google Scholar] [CrossRef]
- Chen, K.; Wu, W.; Yuan, F.; Chen, L.; Wang, S. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern. Energy 2019, 167, 781–790. [Google Scholar] [CrossRef]
- Li, Y.; Roux, S.; Castelain, C.; Luo, L.; Fan, Y. Tailoring the fluid flow distribution in a parallel mini-channel heat sink under multiple-peak heat flux. Therm. Sci. Eng. Prog. 2022, 29, 101182. [Google Scholar] [CrossRef]
- Dąbrowski, P. Mitigation of Flow Maldistribution in Minichannel and Minigap Heat Exchangers by Introducing Threshold in Manifolds. J. Appl. Fluid Mech. 2020, 13, 815–826. [Google Scholar] [CrossRef]
- Liu, H.; Li, P.; Van Lew, J.; Juarez-Robles, D. Experimental study of the flow distribution uniformity in flow distributors having novel flow channel bifurcation structures. Exp. Therm. Fluid Sci. 2012, 37, 142–153. [Google Scholar] [CrossRef]
- Zhou, J.; Ding, M.; Bian, H.; Zhang, Y.; Sun, Z. Characteristics of flow distribution in central-type compact parallel flow heat exchangers with modified inlet and header. Appl. Therm. Eng. 2020, 166, 114636. [Google Scholar] [CrossRef]
- Song, J.Y.; Hah, S.; Kim, D.; Kim, S.M. Enhanced flow uniformity in parallel mini-channels with pin-finned inlet header. Appl. Therm. Eng. 2019, 152, 718–733. [Google Scholar] [CrossRef]
- Liu, X.; Yu, J. Numerical study on performances of mini-channel heat sinks with non-uniform inlets. Appl. Therm. Eng. 2016, 93, 856–864. [Google Scholar] [CrossRef]
- Hou, Q.; Xuan, Y.; Lian, W.; Xu, Y.; Ma, Y. A novel approach for suppressing flow maldistribution in mini-channel heat exchangers. Int. J. Therm. Sci. 2023, 184, 108020. [Google Scholar] [CrossRef]
- Fatahian, H.; Jouybari, N.F.; Nimvari, M.E.; Fatahian, E.; Zhang, W. Improving the flow uniformity in compact parallel-flow heat exchangers manifold using porous distributors. J. Therm. Anal. Calorim. 2022, 147, 12919–12931. [Google Scholar] [CrossRef]
- Gilmore, N.; Hassanzadeh-Barforoushi, A.; Timchenko, V.; Menictas, C. Manifold configurations for uniform flow via topology optimisation and flow visualisation. Appl. Therm. Eng. 2021, 183, 116227. [Google Scholar] [CrossRef]
- Dhahad, H.A.; Alfayydh, E.M.; Fahim, K.H. Effect of flow field design and channel/header ratio on velocity distribution: An experimental approach. Therm. Sci. Eng. Prog. 2018, 8, 118–129. [Google Scholar] [CrossRef]
- Mu, Y.T.; Chen, L.; He, Y.L.; Tao, W.Q. Numerical study on temperature uniformity in a novel mini-channel heat sink with different flow field configurations. Int. J. Heat Mass Transf. 2015, 85, 147–157. [Google Scholar] [CrossRef]
- Hao, X.; Wu, Z.; Chen, X.; Xie, G. Numerical analysis and optimization on flow distribution and heat transfer of a U-type parallel channel heat sink. Adv. Mech. Eng. 2015, 7, 672451. [Google Scholar] [CrossRef]
- Mitra, I.; Ghosh, I. Mini-channel heat sink parameter sensitivity based on precise heat flux re-distribution. Therm. Sci. Eng. Prog. 2020, 20, 100717. [Google Scholar] [CrossRef]
- Song, J.-Y.; Senguttuvan, S.; Choi, W.-W.; Kim, S.-M. Effects of manifold design parameters on flow uniformity in parallel mini-channels. Int. J. Mech. Sci. 2022, 234, 107694. [Google Scholar] [CrossRef]
- Milman, O.O.; Spalding, D.B.; Fedorov, V.A. Steam condensation in parallel channels with nonuniform heat removal in different zones of heat-exchange surface. Int. J. Heat Mass Transf. 2012, 55, 6054–6059. [Google Scholar] [CrossRef]
- Wei, M.; Fan, Y.; Luo, L.; Flamant, G. Fluid flow distribution optimization for minimizing the peak temperature of a tubular solar receiver. Energy 2015, 91, 663–677. [Google Scholar] [CrossRef]
- Annapurna, S.; Varughese, S.; Niranjanappa, A.; Reddy, K.H. A Design of Experiments Approach Towards Desired Flow Distribution Through Manifolds in Electronics Cooling. Def. Sci. J. 2022, 72, 516–525. [Google Scholar] [CrossRef]
- Ahmadian-Elmi, M.; Mashayekhi, A.; Nourazar, S.S.; Vafai, K. A comprehensive study on parametric optimization of the pin-fin heat sink to improve its thermal and hydraulic characteristics. Int. J. Heat Mass Transf. 2021, 180, 121797. [Google Scholar] [CrossRef]
- Huang, C.-H.; Chen, Y.-H. An optimal design problem in determining non-uniform fin heights and widths for an impingement heat sink module. Appl. Therm. Eng. 2014, 63, 481–494. [Google Scholar] [CrossRef]
- Yang, Y.T.; Peng, H.S.; Hsu, H.T. Numerical Optimization of Pin-Fin Heat Sink with Forced Cooling. Int. J. Electron. Commun. Eng. 2013, 7, 884–891. [Google Scholar] [CrossRef]
- Yang, Y.-T.; Lin, S.-C.; Wang, Y.-H.; Hsu, J.-C. Numerical simulation and optimization of impingement cooling for rotating and stationary pin–fin heat sinks. Int. J. Heat Fluid Flow 2013, 44, 383–393. [Google Scholar] [CrossRef]
- Chen, C.-T.; Chen, H.-I. Multi-objective optimization design of plate-fin heat sinks using a direction-based genetic algorithm. J. Taiwan Inst. Chem. Eng. 2013, 44, 257–265. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Liu, D. The application of genetic algorithm for pin-fin heat sink optimization design. In Proceedings of the 2009 4th IEEE Conference on Industrial Electronics and Applications, Xi’an, China, 25–27 May 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 2816–2821. [Google Scholar]
- Jiang, M.; Pan, Z. Optimization of open micro-channel heat sink with pin fins by multi-objective genetic algorithm. Therm. Sci. 2022, 26, 3653–3665. [Google Scholar] [CrossRef]
- Nemati, H.; Moghimi, M.A.; Sapin, P.; Markides, C.N. Shape optimisation of air-cooled finned-tube heat exchangers. Int. J. Therm. Sci. 2020, 150, 106233. [Google Scholar] [CrossRef]
- Polat, M.E.; Ulger, F.; Cadirci, S. Multi-objective optimization and performance assessment of microchannel heat sinks with micro pin-fins. Int. J. Therm. Sci. 2022, 174, 107432. [Google Scholar] [CrossRef]
- Ge, Y.; He, Q.; Lin, Y.; Yuan, W.; Chen, J.; Huang, S.-M. Multi-objective optimization of a mini-channel heat sink with non-uniform fins using genetic algorithm in coupling with CFD models. Appl. Therm. Eng. 2022, 207, 118127. [Google Scholar] [CrossRef]
- Polat, M.E.; Cadirci, S. Artificial neural network model and multi-objective optimization of microchannel heat sinks with diamond-shaped pin fins. Int. J. Heat Mass Transf. 2022, 194, 123015. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.; Zeng, H.; Zhu, J.; Chen, K.; Cui, Z.; Wang, J. Structural optimization design of sinusoidal wavy plate fin heat sink with crosscut by Bayesian optimization. Appl. Therm. Eng. 2022, 213, 118755. [Google Scholar] [CrossRef]
- Ismail, O.A.; Ali, A.M.; Hassan, M.A.; Gamea, O. Geometric optimization of pin fins for enhanced cooling in a microchannel heat sink. Int. J. Therm. Sci. 2023, 190, 108321. [Google Scholar] [CrossRef]
- Yu, C.; Zhu, X.; Li, Z.; Ma, Y.; Yang, M.; Zhang, H. Optimization of elliptical pin-fin microchannel heat sink based on artificial neural network. Int. J. Heat Mass Transf. 2023, 205, 123928. [Google Scholar] [CrossRef]
- Yang, W.; Mills, J.K. Optimization of Pin Arrangement and Geometry in EV and HEV Heat Sink Using Genetic Algorithm Coupled With CFD. In Proceedings of the 2021 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 8–11 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 332–337. [Google Scholar]
- Wan, W.; Deng, D.; Huang, Q.; Zeng, T.; Huang, Y. Experimental study and optimization of pin fin shapes in flow boiling of micro pin fin heat sinks. Appl. Therm. Eng. 2017, 114, 436–449. [Google Scholar] [CrossRef]
- Keramati, H.; Hamdullahpur, F.; Barzegari, M. Deep reinforcement learning for heat exchanger shape optimization. Int. J. Heat Mass Transf. 2022, 194, 123112. [Google Scholar] [CrossRef]
- Ghasemi, A.; Elham, A. Multi-objective topology optimization of pin-fin heat exchangers using spectral and finite-element methods. Struct. Multidiscip. Optim. 2021, 64, 2075–2095. [Google Scholar] [CrossRef]
- Ismayilov, F.; Akturk, A.; Peles, Y. Systematic micro heat sink optimization based on hydrofoil shape pin fins. Case Stud. Therm. Eng. 2021, 26, 101028. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, M.; Li, H.; Shen, S.; Song, X.; Liu, H.; Waili, A.; Zhao, L.; Wei, W. Novel thermal design of micro-bream-fin heat sink using contour-extraction-based (CEB) method. Int. J. Therm. Sci. 2021, 165, 106952. [Google Scholar] [CrossRef]
- Yoon, G.H. Topological design of heat dissipating structure with forced convective heat transfer. J. Mech. Sci. Technol. 2010, 24, 1225–1233. [Google Scholar] [CrossRef]
- Dong, X.; Liu, X. Multi-objective optimal design of microchannel cooling heat sink using topology optimization method. Numer. Heat Transf. Part A Appl. 2020, 77, 90–104. [Google Scholar] [CrossRef]
- Subramaniam, V.; Dbouk, T.; Harion, J.-L. Topology optimization of conjugate heat transfer systems: A competition between heat transfer enhancement and pressure drop reduction. Int. J. Heat Fluid Flow 2019, 75, 165–184. [Google Scholar] [CrossRef]
- Yaji, K.; Yamada, T.; Yoshino, M.; Matsumoto, T.; Izui, K.; Nishiwaki, S. Topology optimization in thermal-fluid flow using the lattice Boltzmann method. J. Comput. Phys. 2016, 307, 355–377. [Google Scholar] [CrossRef]
- Sun, S.; Liebersbach, P.; Qian, X. Large Scale 3D Topology Optimization of Conjugate Heat Transfer. In Proceedings of the 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA, 28–31 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Alexandersen, J. Efficient Topology Optimisation of Multiscale and Multiphysics Problems; University of Southern Denmark: Odense, Denmark, 2016. [Google Scholar]
- Alexandersen, J.; Andreasen, C.S. A Review of Topology Optimisation for Fluid-Based Problems. Fluids 2020, 5, 29. [Google Scholar] [CrossRef]
- Sigmund, O.; Petersson, J. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 1998, 16, 68–75. [Google Scholar] [CrossRef]
- Yoshimura, M.; Shimoyama, K.; Misaka, T.; Obayashi, S. Topology optimization of fluid problems using genetic algorithm assisted by the Kriging model. Int. J. Numer. Methods Eng. 2017, 109, 514–532. [Google Scholar] [CrossRef]
- Shimoyama, K.; Komiya, A. Multi-objective Bayesian topology optimization of a lattice-structured heat sink in natural convection. Struct. Multidiscip. Optim. 2022, 65, 1. [Google Scholar] [CrossRef]
- Mekki, B.S.; Lynch, S.P. Voxel-Based Topology Optimization of Heat Exchanger Fins. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2022. [Google Scholar]
- Mekki, B.S.; Langer, J.; Lynch, S. Genetic algorithm based topology optimization of heat exchanger fins used in aerospace applications. Int. J. Heat Mass Transf. 2021, 170, 121002. [Google Scholar] [CrossRef]
- Weber, J.; Huckaby, E.D.; Straub, D. Comparison of Shape Optimization Methods for Heat Exchanger Fins Using Computational Fluid Dynamics. Int. J. Heat Mass Transf. 2023, 207, 124003. [Google Scholar] [CrossRef]
- Yaji, K.; Yamasaki, S.; Fujita, K. Data-driven multifidelity topology design using a deep generative model: Application to forced convection heat transfer problems. Comput. Methods Appl. Mech. Eng. 2022, 388, 114284. [Google Scholar] [CrossRef]
- Joo, Y.; Lee, I.; Kim, S.J. Topology optimization of heat sinks in natural convection considering the effect of shape-dependent heat transfer coefficient. Int. J. Heat Mass Transf. 2017, 109, 123–133. [Google Scholar] [CrossRef]
- Dilgen, S.B.; Dilgen, C.B.; Fuhrman, D.R.; Sigmund, O.; Lazarov, B.S. Density based topology optimization of turbulent flow heat transfer systems. Struct. Multidiscip. Optim. 2018, 57, 1905–1918. [Google Scholar] [CrossRef]
- Sun, S.; Liebersbach, P.; Qian, X. 3D topology optimization of heat sinks for liquid cooling. Appl. Therm. Eng. 2020, 178, 115540. [Google Scholar] [CrossRef]
- Yu, M.; Wang, X.; Gu, J.; Ruan, S.; Li, Z.; Qian, S.; Zhang, J.; Shen, C. A synergic topology optimization approach on distribution of cooling channels and diverse-intensity heat sources for liquid-cooled heat sink. Struct. Multidiscip. Optim. 2022, 65, 48. [Google Scholar] [CrossRef]
- Li, Y.; Roux, S.; Cathy, C.; Luo, L.; Fan, Y. A genetic algorithm-based topology optimization method for convective cooling of a heating surface with multiple-peak heat flux. In Proceedings of the Congrès Français de Thermique SFT, 30ième Congrès SFT, Valenciennes, France, 31 May 2022. [Google Scholar]
- Ozguc, S.; Pan, L.; Weibel, J.A. Topological optimization of flow-shifting microchannel heat sinks. Int. J. Heat Mass Transf. 2023, 207, 123933. [Google Scholar] [CrossRef]
- Zhang, T.; Jing, T.; Qin, F.; Sun, X.; Li, W.; He, G. Topology optimization of regenerative cooling channel in non-uniform thermal environment of hypersonic engine. Appl. Therm. Eng. 2023, 219, 119384. [Google Scholar] [CrossRef]
- Wang, M.L.; Zheng, L.J.; Bae, S.; Kang, H.W. Comprehensive performance enhancement of conformal cooling process using thermal-load-based topology optimization. Appl. Therm. Eng. 2023, 227, 120332. [Google Scholar] [CrossRef]
- Chen, F.; Wang, J.; Yang, X. Topology optimization design and numerical analysis on cold plates for lithium-ion battery thermal management. Int. J. Heat Mass Transf. 2022, 183, 122087. [Google Scholar] [CrossRef]
- Lin, Y.; Zhu, W.; Li, J.; Ke, Y. A stabilized parametric level-set XFEM topology optimization method for thermal-fluid problem. Int. J. Numer. Methods Eng. 2022, 123, 924–952. [Google Scholar] [CrossRef]
- Maksum, Y.; Amirli, A.; Amangeldi, A.; Inkarbekov, M.; Ding, Y.; Romagnoli, A.; Rustamov, S.; Akhmetov, B. Computational Acceleration of Topology Optimization Using Parallel Computing and Machine Learning Methods–Analysis of Research Trends. J. Ind. Inf. Integr. 2022, 28, 100352. [Google Scholar] [CrossRef]
- Dbouk, T. A review about the engineering design of optimal heat transfer systems using topology optimization. Appl. Therm. Eng. 2017, 112, 841–854. [Google Scholar] [CrossRef]
- Liu, J.; Gaynor, A.T.; Chen, S.; Kang, Z.; Suresh, K.; Takezawa, A.; Li, L.; Kato, J.; Tang, J.; Wang, C.C.L.; et al. Current and future trends in topology optimization for additive manufacturing. Struct. Multidiscip. Optim. 2018, 57, 2457–2483. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Roux, S.; Castelain, C.; Fan, Y.; Luo, L. Design and Optimization of Heat Sinks for the Liquid Cooling of Electronics with Multiple Heat Sources: A Literature Review. Energies 2023, 16, 7468. https://doi.org/10.3390/en16227468
Li Y, Roux S, Castelain C, Fan Y, Luo L. Design and Optimization of Heat Sinks for the Liquid Cooling of Electronics with Multiple Heat Sources: A Literature Review. Energies. 2023; 16(22):7468. https://doi.org/10.3390/en16227468
Chicago/Turabian StyleLi, Yijun, Stéphane Roux, Cathy Castelain, Yilin Fan, and Lingai Luo. 2023. "Design and Optimization of Heat Sinks for the Liquid Cooling of Electronics with Multiple Heat Sources: A Literature Review" Energies 16, no. 22: 7468. https://doi.org/10.3390/en16227468
APA StyleLi, Y., Roux, S., Castelain, C., Fan, Y., & Luo, L. (2023). Design and Optimization of Heat Sinks for the Liquid Cooling of Electronics with Multiple Heat Sources: A Literature Review. Energies, 16(22), 7468. https://doi.org/10.3390/en16227468