P-Doped Modified Porous Carbon Derived from ZIF-8 for Enhanced Capacitive Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of P-Doped Modified Porous Carbon Derived from ZIF-8 (ZPC)
2.3. Characterization
2.4. Electrochemical Measurements
3. Results
3.1. Morphological and Structural Characterization
3.2. Electrochemical Performance of ZPCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohanty, A.; Jaihindh, D.P.; Fu, Y.P.; Senanayak, S.P.; Mende, L.S.; Ramadoss, A. An extensive review on three dimension architectural metal-organic frameworks towards supercapacitor application. J. Power Sources 2021, 488, 229444. [Google Scholar] [CrossRef]
- Peng, Y.; Xu, J.; Xu, J.M.; Ma, J.; Bai, Y.; Cao, S.; Zhang, S.T.; Pang, H. Metal-organic framework (MOF) composites as promising materials for energy storage applications. Adv. Colloid Interfac. 2022, 307, 102732. [Google Scholar] [CrossRef] [PubMed]
- Khokhar, S.; Anand, H.; Chand, P. Current advances of nickel based metal organic framework and their nanocomposites for high performance supercapacitor applications: A critical review. J. Energy Storage 2022, 56, 105897. [Google Scholar] [CrossRef]
- Dar, M.A.; Dinagaran, S.; Govindarajan, D.; Ahamed, S.R.; Habib, F.; Siva, C.; Moholkar, A.V.; Ahmad, Z.; Yatoo, M.A. Snx-0MnxS nanomaterial based electrodes for future-generation supercapacitor and data storage devices. J. Alloys Compd. 2023, 958, 170523. [Google Scholar] [CrossRef]
- Lokhande, P.E.; Kulkarni, S.; Chakrabarti, S.; Pathan, H.M.; Sindhu, M.; Kumar, D.; Singh, J.; Kumar, A.; Mishra, Y.K.; Toncu, D.C.; et al. The progress and roadmap of metal-organic frameworks for high-performance supercapacitors. Coord. Chem. Rev. 2022, 473, 214771. [Google Scholar] [CrossRef]
- Gao, X.; Wu, H.Y.; Su, C.; Lu, C.M.; Dai, Y.H.; Zhao, S.Y.; Hu, X.Y.; Zhao, F.J.; Zhang, W.; Parkin, I.P.; et al. Recent advances in carbon-based nanomaterials for multivalent-ion hybrid capacitors: A review. Energy Environ. Sci. 2023, 16, 1364. [Google Scholar] [CrossRef]
- Vlad, A.; Singh, N.; Rolland, J.; Melinte, S.; Ajayan, P.M.; Gohy, J.F. Hybrid supercapacitor-battery materialsfor fast electrochemical charge storage. Sci. Rep. 2014, 4, 4315. [Google Scholar] [CrossRef]
- Du, W.; Bai, Y.L.; Xu, J.Q.; Zhao, H.B.; Zhang, L.; Li, X.F.; Zhang, J.J. Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. J. Power Sources 2018, 402, 281–295. [Google Scholar] [CrossRef]
- Zhu, S.; Chang, Y.Z.; Hou, W.J.; Li, Y.P.; Ni, J.F.; Han, G.Y. Molten-salt directed mesopore engineering of carbon nanotubes for energetic quasi-solid-state supercapacitors. Carbon 2022, 200, 75–83. [Google Scholar] [CrossRef]
- Khan, M.S.; Jhankal, D.; Shakya, P.; Sharma, A.K.; Banerjee, M.K.; Sachdev, K. Ultraslim and highly flexible supercapacitor based on chemical vapor deposited nitrogen-doped bernal graphene for wearable electronics. Carbon 2023, 208, 227–237. [Google Scholar] [CrossRef]
- Zhang, W.; Li, W.X.; Li, S. Molten salt assisted self-activated carbon with controllable architecture for aqueous supercapacitor. J. Mater. Sci. Technol. 2023, 156, 107–117. [Google Scholar] [CrossRef]
- Zhou, L.F.; You, X.Y.; Wang, L.J.; Qi, S.J.; Wang, R.C.; Uraki, Y.; Zhang, H.J. Fabrication of graphitized carbon fibers from fusible lignin and their application in supercapacitors. Polymers 2023, 15, 1947. [Google Scholar] [CrossRef] [PubMed]
- Escobar, B.; Martinez-Casillas, D.C.; Perez-Salcedo, K.Y.; Rosas, D.; Morales, L.; Liao, S.J.; Huang, L.L.; Shi, X. Research progress on biomass-derived carbon electrode materials for electrochemical energy storage and conversion technologies. Int. J. Hydrogen Energy 2021, 46, 26053–26073. [Google Scholar] [CrossRef]
- Shi, C.J.; Li, S.; Pan, Y.; Guo, L.; Wang, Y.Z. Self-standing porous N doped carbon/carbon foam for high-performance supercarpacitor. Diam. Relat. Mater. 2020, 110, 108138. [Google Scholar] [CrossRef]
- Zhang, H.R.; Wang, Z.X.; Li, X.X.; Zhu, M.X.; Zhou, J.P. A flake-like N, O co-doped hierarchical porous carbon derived from chitin with enhanced supercapacitance. J. Alloys Compd. 2022, 924, 166534. [Google Scholar] [CrossRef]
- Hsiao, Y.J.; Lin, L.Y. Efficient pore engineering in carbonized zeolitic imidazolate Framework-8 via chemical and physical methods as active materials for supercapacitors. J. Power Sources 2021, 486, 229370. [Google Scholar] [CrossRef]
- Xue, C.F.; Zhao, W.; Zhang, Q.; Wang, J.X.; Wei, Y.Y.; Lv, K.; Wu, T.; Lin, Y.; Li, X.H.; Hao, X.G. From salt-filled ZIF-8 to open-door nanoporous carbon with optimized pore system for electrochemical supercapacitor with enhanced energy density. J. Energy Storage 2022, 51, 104421. [Google Scholar] [CrossRef]
- Yang, L.Y.; Feng, Y.; Yu, D.B.; Qiu, J.H.; Zhang, X.F.; Dong, D.H.; Yao, J.F. Design of ZIF-based CNTs wrapped porous carbon with hierarchical pores as electrode materials for supercapacitors. J. Phys. Chem. Solids 2019, 125, 57–63. [Google Scholar] [CrossRef]
- Zhang, W.J.; Li, M.; Zhong, L.; Huang, J.L.; Liu, M. A family of MOFs@Wood-Derived hierarchical porous composites as freestanding thick electrodes of solid supercapacitors with enhanced areal capacitances and energy densities. Mater. Today Energy 2022, 24, 100951. [Google Scholar] [CrossRef]
- Han, B.; Cheng, G.; Zhang, E.Y.; Zhang, L.J.; Wang, X.K. Three dimensional hierarchically porous ZIF-8 derived carbon/LDH core-shell composite for high performance supercapacitors. Electrochim. Acta 2018, 263, 391–399. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.; Badhulika, S. Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. J. Power Sources 2020, 480, 228830. [Google Scholar] [CrossRef]
- Li, G.F.; Li, Y.W.; Chen, X.F.; Hou, X.Y.; Lin, H.T.; Jia, L.S. One step synthesis of N, P co-doped hierarchical porous carbon nanosheets derived from pomelo peel for high performance supercapacitors. J. Colloid Interface Sci. 2022, 605, 71–81. [Google Scholar] [CrossRef]
- Wang, L.L.; Li, X.J.; Huang, X.; Han, S.; Jiang, J.B. Activated green resources to synthesize N, P co-doped O-rich hierarchical interconnected porous carbon for high-performance supercapacitors. J. Alloys Compd. 2021, 891, 161908. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, M.; Chen, Z.J.; Yan, T.; Li, J.L.; Ma, Y.Q.; Ma, L. The application of biomass-based carbon materials in flexible all-solid supercapacitors. J. Mater. Sci. Mater. Electron. 2022, 33, 15422–15432. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.G.; Gu, Z.J.; Wang, H.D.; Liu, X.F.; Li, S.P.; Chen, X.X.; Liang, X.H.; Jiang, Z.X.; Ogino, K.; et al. Synthesis and design of biomass-derived heteroatom-doped hierarchical porous carbon systems for high-voltage supercapacitors. Fuel Process. Technol. 2023, 247, 107776. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.; Badhulika, S. From onion skin waste tomulti-heteroatom self-doped highly wrinkled porous carbon nanosheets for high-performance supercapacitor device. J. Energy Storage 2021, 38, 102533. [Google Scholar] [CrossRef]
- Wu, S.M.; Feng, C.X.; Fan, B.B.; Li, Y.H.; Wang, H.; Zhou, Y.M. N/O/P co-doped hierarchical porous graphitic carbon materials for high-rate supercapacitors. J. Alloys Compd. 2022, 899, 163282. [Google Scholar] [CrossRef]
- Manzoor, A.; Afzal, A.M.; Umair, M.; Ali, A.; Rizwan, M.; Yaqoob, M.Z. Synthesis and characterization of Bismuth ferrite (BiFeO3) nanoparticles by solution evaporation method. J. Magn. Magn. Mater. 2015, 393, 269–272. [Google Scholar] [CrossRef]
- Balmuchu, S.P.; Radhika, E.; Dobbidi, P. The impact of oxygen partial pressure in modifying energy storage property of lanthanum doped multiferroic bismuth ferrite thin films deposited via pulsed laser deposition. J. Energy Storage 2023, 71, 108179. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, J.M.; Huang, Y.; Zhang, S.; Zhang, S.; Zou, J.H. Rational design of N-doped porous biomass carbon nanofiber electrodes for flexible asymmetric supercapacitors with high-performance. Appl. Surf. Sci. 2023, 638, 158137. [Google Scholar] [CrossRef]
- Wang, J.M.; Huang, Y.; Han, X.P.; Li, Z.Y.; Zhang, S.; Zong, M. A flexible Zinc-ion hybrid supercapacitor constructed by porous carbon with controllable structure. Appl. Surf. Sci. 2022, 579, 152247. [Google Scholar] [CrossRef]
- Zhu, Y.W.; Li, Z.W.; Tao, Y.J.; Zhou, J.H.; Zhang, H.Y. Hierarchical porous carbon materials produced from heavy bio-oil for high-performance supercapacitor electrodes. J. Energy Storage 2022, 47, 103624. [Google Scholar] [CrossRef]
- Xi, Y.L.; Cao, J.M.; Li, J.Z.; Zhang, P.; Zhu, Y.K.; Han, W. High-rate supercapacitor based on 3D hierarchical N-doped porous carbon derived from sustainable spongy cornstalk pith. J. Energy Storage 2021, 37, 102470. [Google Scholar] [CrossRef]
- Liu, H.L.; Xie, Y.X.; Li, J.X.; Sun, Z.J.; Liu, J.B.; Moon, K.S.; Lu, L.S.; Chen, Y.; Tang, Y.; Chen, X.; et al. Laser-induced nitrogen-self-doped graphite nanofibers from cyanate ester for on-chip micro-supercapacitors. Chem. Eng. J. 2021, 404, 126375. [Google Scholar] [CrossRef]
- Ren, G.Y.; Li, Y.N.; Chen, Q.S.; Qian, Y.; Zheng, J.G.; Zhu, Y.A.; Teng, C. Sepia-derived N, P co-doped porous carbon spheres as oxygen reduction reaction electrocatalyst and supercapacitor. ACS Sustain. Chem. Eng. 2018, 6, 16032–16038. [Google Scholar] [CrossRef]
- Wang, M.; Yang, J.; Jia, K.L.; Liu, S.Y.; Hu, C.; Qiu, J.S. Boosting supercapacitor performance of graphene by coupling with nitrogen-doped hollow carbon frameworks. Chem. Eur. J. 2020, 26, 2897–2903. [Google Scholar] [CrossRef]
- Teng, W.L.; Zhou, Q.Q.; Wang, X.K.; Che, H.B.; Du, Y.C.; Hu, P.; Li, H.Y.; Wang, J.S. Biotemplating preparation of N,O-codoped hierarchically porous carbon for high-performance supercapacitors. Appl. Surf. Sci. 2021, 566, 150613. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, D.L.; Wang, T.; Jia, D.Z. Nitrogen, phosphorus co-doped carbon obtained from amino acid based resin xerogel as efficient electrode for supercapacitor. ACS Appl. Energy Mater. 2020, 3, 957–969. [Google Scholar] [CrossRef]
- Wang, Y.; Qiao, M.F.; Mamat, X. Nitrogen-doped macro-meso-micro hierarchical ordered porous carbon derived from ZIF-8 for boosting supercapacitor performance. Appl. Surf. Sci. 2021, 540, 148352. [Google Scholar] [CrossRef]
- Jiang, X.C.; Guo, F.Q.; Jia, X.P.; Zhan, Y.B.; Zhou, H.M.; Qian, L. Synthesis of nitrogen-doped hierarchical porous carbons from peanut shell as a promising electrode material for high-performance supercapacitors. J. Energy Storage 2020, 30, 101451. [Google Scholar] [CrossRef]
- Liao, H.X.; Zhong, L.S.; Deng, Y.T.; Chen, H.N.; Liao, G.H.; Xiao, Y.H.; Cheng, B.C.; Lei, S.J. A systematic study on Equisetum ramosissimum Desf. derived honeycomb porous carbon for supercapacitors: Insight into the preparation-structure-performance relationship. Appl. Surf. Sci. 2023, 623, 157010. [Google Scholar] [CrossRef]
- Chao, Y.Z.; Chen, S.B.; Xiao, Y.C.; Hu, X.J.; Chen, H.Q.; Xin, S.X.; Bai, Y.B. Ordinary filter paper-derived hierarchical pore structure carbon materials for supercapacitor. J. Energy Storage 2021, 35, 102331. [Google Scholar] [CrossRef]
- García-Dalí, S.; Quílez-Bermejo, J.; Castro-Gutierrez, J.; Baccile, N.T.; Izquierdo, M.; Celzard, A.; Fierro, V. Green and easy synthesis of P-doped carbon-based hydrogen evolution reaction electrocatalysts. Carbon 2023, 212, 118154. [Google Scholar] [CrossRef]
- Shang, Z.; An, X.Y.; Liu, L.Q.; Yang, J.; Zhang, W.; Dai, H.Q.; Cao, H.B.; Xu, Q.L.; Liu, H.B.; Ni, Y.H. Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor. Carbohyd. Polym. 2021, 251, 117107. [Google Scholar] [CrossRef]
- Long, Y.Y.; An, X.Y.; Zhang, H.; Yang, J.; Liu, L.Q.; Tian, Z.J.; Yang, G.H.; Cheng, Z.B.; Cao, H.B.; Liu, H.B.; et al. Highly graphitized lignin-derived porous carbon with hierarchical N/O co-doping “core-shell” superstructure supported by metal-organic frameworks for advanced supercapacitor performance. Chem. Eng. J. 2023, 451, 138877. [Google Scholar] [CrossRef]
- Hou, Y.N.; Zhao, Z.B.; Yu, Z.F.; Zhang, S.; Li, S.F.; Yang, J.; Zhang, H.; Liu, C.; Wang, Z.Y.; Qiu, J.S. Microporous MOFs engaged in the formation of nitrogen-doped mesoporous carbon nanosheets for high-rate supercapacitors. Chem. Eur. J. 2018, 24, 2681–2686. [Google Scholar] [CrossRef]
- Zhang, D.X.; Qin, T.H.; Wu, S.W.; Guo, X.G.; Wang, C.J.; Xiang, Q. Nafion-assisted electrophoretic deposition of ZIF-8 derivative N-doped porous carbon coating as high-performance supercapacitor electrode. Mater. Lett. 2022, 323, 132579. [Google Scholar] [CrossRef]
- Wang, D.H.; Chen, Y.; Wang, H.Q.; Zhao, P.H.; Liu, W.; Wang, Y.Z.; Yang, J.L. N-doped porous carbon anchoring on carbon nanotubes derived from ZIF-8/polypyrrole nanotubes for superior supercapacitor electrodes. Appl. Surf. Sci. 2018, 457, 1018–1024. [Google Scholar] [CrossRef]
- Zhang, D.L.; Zhang, J.H.; Pan, M.D.; Wang, Y.; Sun, T. Necklace-like C-ZIF-8@MWCNTs fabricated by electrochemical deposition towards enhanced supercapacitor. J. Alloys Compd. 2021, 853, 157368. [Google Scholar] [CrossRef]
- Wang, M.X.; Zhang, J.; Yi, X.B.; Zhao, X.F.; Liu, B.X.; Liu, X.C. Nitrogen-doped hierarchical porous carbon derived from ZIF-8 supported on carbon aerogels with advanced performance for supercapacitor. Appl. Surf. Sci. 2020, 507, 145166. [Google Scholar] [CrossRef]
- Jiao, S.S.; Li, C.; Zhang, Y.W.; Gao, J.Y.; Li, Z.J.; Liu, K.; Wang, L. ZIF-8-templated synthesis of core-shell structured IPOP@MOF hybrid-derived nitrogen-doped porous carbon for efficient oxygen reduction electrocatalysis and supercapacitor. Electrochim. Acta 2023, 441, 141817. [Google Scholar] [CrossRef]
- Jiao, S.H.; Yao, Y.T.; Zhang, J.L.; Zhang, L.Q.; Li, C.W.; Zhang, H.X.; Zhao, X.; Chen, H.L.; Jiang, J.C. Nano-flower-like porous carbon derived from soybean straw for efficient N-S co-doped supercapacitors by coupling in-situ heteroatom doping with green activation method. Appl. Surf. Sci. 2023, 615, 156365. [Google Scholar] [CrossRef]
- Sun, J.Q.; Zhang, J.; Shang, M.G.; Zhang, M.N.; Zhao, X.F.; Liu, S.J.; Liu, X.C.; Liu, S.; Yi, X.B. N, O co-doped carbon aerogel derived from sodium alginate/melamine composite for all-solid-state supercapacitor. Appl. Surf. Sci. 2023, 608, 155109. [Google Scholar] [CrossRef]
- Li, D.P.; Sun, Q.; Zhang, Y.M.; Dai, X.Y.; Ji, F.J.; Li, K.K.; Yuan, Q.H.; Liu, X.J.; Ci, L.J. Fast and stable K-ion storage enabled by synergistic interlayer and pore-structure engineering. Nano Res. 2021, 14, 4502–4511. [Google Scholar] [CrossRef]
- Wei, Q.L.; Li, Q.D.; Jiang, Y.L.; Zhao, Y.L.; Tan, S.S.; Dong, J.; Mai, L.Q.; Peng, D.L. High-Energy and high-power pseudocapacitor-Battery hybrid sodium-ion capacitor with Na+ intercalation pseudocapacitance anode. Nano-Micro Lett. 2021, 13, 55. [Google Scholar] [CrossRef]
- Mo, F.; Wu, X.L. MgO template-assisted synthesis of hierarchical porous carbon with high content heteroatoms for supercapacitor. J. Energy Storage 2022, 54, 105287. [Google Scholar] [CrossRef]
- Das, S.K.; Pradhan, L.; Jena, B.K.; Basu, S. Polymer derived honeycomb-like carbon nanostructures for high capacitive supercapacitor application. Carbon 2023, 201, 49–59. [Google Scholar] [CrossRef]
Sample | SBET (m2 g−1) | Vt (cm3 g−1) | Vmeso (cm3 g−1) | Vmicro (cm3 g−1) | D (nm) | ID/IG | Specific Capacitance at 1 A g−1 (F g−1) |
---|---|---|---|---|---|---|---|
ZC-1000 | 891.7 | 0.323 | 0.032 | 0.289 | 2.27 | 0.85 | 201.8 |
ZPC-700 | 55.4 | 0.046 | 0.043 | 0 | 3.48 | 0.74 | 54 |
ZPC-800 | 836.1 | 0.426 | 0.059 | 0.323 | 5.29 | 0.89 | 165 |
ZPC-900 | 698.8 | 0.288 | 0.0026 | 0.283 | 3.51 | 0.83 | 185.9 |
ZPC-1000 | 911.7 | 0.374 | 0.11 | 0.26 | 2.31 | 0.85 | 219.4 |
Sample | SBET (m2 g−1) | Heteroatom Types | Electrolyte | Specific Capacitance | Ref. |
---|---|---|---|---|---|
GPNC | 1089 | N, O | 6 M KOH | 198 F g−1 (1 A g−1) | [36] |
NPC-900 | 876 | N, O | 6 M KOH | 130 F g−1 (1 A g−1) | [44] |
K1:1GC-EHL3@ZIF-8 | 2307.3 | N, O | 6 M KOH | 248.7 F g−1 (1 A g−1) | [45] |
NMCS-8 | 1937 | N, O | 6 M KOH | 219 F g−1 (1 A g−1) | [46] |
Nafion-assisted EPD | - | - | 6 M NaOH | 233.6 F g−1 (1 A g−1) | [47] |
PC-CNTs | 659.5 | N, O | 6 M KOH | 210 F g−1 (1 A g−1) | [48] |
C-ZIF-8@MWCNTs | 1063.2 | N, O | 1 M H2SO4 | 216.3 F g−1 (1 A g−1) | [49] |
ZCCA composite | 3075.49 | N, O | 2 M KOH | 228 F g−1 (1 A g−1) | [50] |
PNC/C | 475.10 | N, O | 6 M KOH | 240.1 F g−1 (1 A g−1) | [14] |
NC-900 | 929.54 | N, O | 6 M KOH | 225 F g−1 (1 A g−1) | [51] |
ZPC-1000 | 911.7 | N, O, P | 6 M KOH | 219.4 F g−1 (1 A g−1) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Li, G.; Wu, Y.; Wang, X.; Niu, Y.; Wu, J. P-Doped Modified Porous Carbon Derived from ZIF-8 for Enhanced Capacitive Performance. Energies 2023, 16, 7232. https://doi.org/10.3390/en16217232
Guo C, Li G, Wu Y, Wang X, Niu Y, Wu J. P-Doped Modified Porous Carbon Derived from ZIF-8 for Enhanced Capacitive Performance. Energies. 2023; 16(21):7232. https://doi.org/10.3390/en16217232
Chicago/Turabian StyleGuo, Congxiu, Guilin Li, Yujia Wu, Xuhui Wang, Yu Niu, and Jiao Wu. 2023. "P-Doped Modified Porous Carbon Derived from ZIF-8 for Enhanced Capacitive Performance" Energies 16, no. 21: 7232. https://doi.org/10.3390/en16217232
APA StyleGuo, C., Li, G., Wu, Y., Wang, X., Niu, Y., & Wu, J. (2023). P-Doped Modified Porous Carbon Derived from ZIF-8 for Enhanced Capacitive Performance. Energies, 16(21), 7232. https://doi.org/10.3390/en16217232