An Assessment of Long-Term Climate Change on Building Energy in Indonesia
Abstract
:1. Introduction
- To identify and develop the based and variable building parameters data set for mitigation purposes.
- To investigate each parameter of building toward carbon mitigation.
2. Research Concept
3. Methods
3.1. Building Model Structure
3.1.1. Urban Indonesia
3.1.2. Building Parameters
3.2. Application of the Global Change Assessment Model (GCAM)
4. Results
4.1. Performance of Individual Parameters
4.1.1. U-Values
4.1.2. Floor Area Ratios
4.1.3. AC Efficiency
4.1.4. Ground Source Heat Pump
4.1.5. APL Efficiency
4.1.6. Rooftop PV
4.1.7. Embodied Emissions from Cement
4.2. Integrated Operation Energy
4.2.1. Effect by All Parameters Excluding GSHP
4.2.2. Effect by All Parameters Excluding AC
5. Discussion
6. Assumptions and Limitations
7. Conclusions
8. Recommendations
- ❖
- Potential for long-term climate change analysis by using GCAM with additional parameters such as indirect embodied carbon emissions under different building types or topologies.
- ❖
- Identify and develop robust policy frameworks for residential buildings in Indonesia which would address the carbon emissions ambition and mitigation gaps.
- ❖
- Apply selected policy adoption frameworks/methods for all scenarios in this study to quantify the carbon mitigation process over the whole-building life-cycle.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of Symbols
AC | air conditioner |
APLs | appliances (electrical) |
BCR | building coverage ratio |
GCAM | global change assessment model |
GDP | gross domestic product |
FAR | floor area ratio |
GBPN | global building performance network |
GSHP | ground source heat pump |
IPCC | intergovernmental panel on climate change |
NDC | nationally determined contribution |
PV | photovoltaic |
U-value | shell conductance |
Appendix A
Parameters→ Year ↓ | GCAM Population (×103) | Total Population (×103) | Urban Only (×103) | Rural Only (×103) | GCAM Labour Productivity | Projection Labour Productivity |
---|---|---|---|---|---|---|
2020 | 261,705 | 271,066 | 153,531.8 | 117,534.2 | 0.04833 | 0.050925 |
2025 | 270,395 | 285,333 | 177,876.6 | 107,456.4 | 0.05494 | 0.040947 |
2030 | 277,364 | 298,262 | 201,446.2 | 96,815.85 | 0.04654 | 0.034954 |
2035 | 282,723 | 309,854 | 223,838.5 | 86,015.47 | 0.04038 | 0.030868 |
2040 | 286,314 | 320,107 | 244,689.8 | 75,417.21 | 0.03721 | 0.027864 |
2045 | 287,958 | 329,023 | 263,679.0 | 65,343.97 | 0.03360 | 0.025542 |
2050 | 287,522 | 336,602 | 280,524.1 | 56,077.89 | 0.03062 | 0.023680 |
Parameter → | Shell Conductance/U-Value | Floor to Surface Ratio | ||||
---|---|---|---|---|---|---|
Year ↓ | Base | HighRate | LowRate | Base | HighRate | LowRate |
2020 | 1.234 | 0.529 | 0.275 | 5.5 | 4 | 1.8 |
2025 | 1.187 | 0.529 | 0.275 | 5.5 | 4 | 1.8 |
2030 | 1.142 | 0.529 | 0.275 | 5.5 | 4 | 1.8 |
2035 | 1.098 | 0.529 | 0.275 | 5.5 | 4 | 1.8 |
2040 | 1.06 | 0.529 | 0.275 | 5.5 | 4 | 1.8 |
2045 | 1.023 | 0.529 | 0.275 | 5.5 | 4 | 1.8 |
2050 | 0.988 | 0.529 | 0.275 | 5.5 | 4 | 1.8 |
Parameters→ | Energy Efficiency, Cooling | Energy Efficiency, APLs | ||||
---|---|---|---|---|---|---|
Year↓ | Base | HighRate | LowRate | Base | HighRate | LowRate |
2020 | 2.457978 | 6 | 3 | 0.836382 | 1.254573 | 0.920021 |
2025 | 2.566473 | 6.26484 | 3.13242 | 0.863709 | 1.295563 | 0.950079 |
2030 | 2.699898 | 6.590535 | 3.295268 | 0.891669 | 1.337504 | 0.980836 |
2035 | 2.828443 | 6.904317 | 3.452159 | 0.920277 | 1.380416 | 1.012305 |
2040 | 2.952658 | 7.207529 | 3.603764 | 0.946453 | 1.419679 | 1.041098 |
2045 | 3.081808 | 7.522788 | 3.761394 | 0.973209 | 1.459814 | 1.07053 |
2050 | 3.216078 | 7.850547 | 3.925274 | 1.000558 | 1.500836 | 1.100613 |
Parameters→ Year↓ | Base | LowRate | HighRate | Zero |
---|---|---|---|---|
2020 | 0.23 | 0.154 | 0.33 | 0 |
2025 | 0.23 | 0.154 | 0.33 | 0 |
2030 | 0.23 | 0.154 | 0.33 | 0 |
2035 | 0.23 | 0.154 | 0.33 | 0 |
2040 | 0.23 | 0.154 | 0.33 | 0 |
2045 | 0.23 | 0.154 | 0.33 | 0 |
2050 | 0.23 | 0.154 | 0.33 | 0 |
Appendix B
Appendix B.1. Supplementary Methods
No | Year | Pop (×103) | Add. Per Year (×103) | Growth (%) |
---|---|---|---|---|
2009 | 234,757 | |||
2010 | 238,519 | 3762 | 1.60% | |
1 | 2011 | 241,991 | 3472 | 1.46% |
2 | 2012 | 245,425 | 3434 | 1.42% |
3 | 2013 | 248,818 | 3393 | 1.38% |
4 | 2014 | 252,165 | 3347 | 1.35% |
5 | 2015 | 255,462 | 3297 | 1.31% |
6 | 2016 | 258,705 | 3243 | 1.27% |
7 | 2017 | 261,891 | 3186 | 1.23% |
8 | 2018 | 265,015 | 3124 | 1.19% |
9 | 2019 | 268,075 | 3060 | 1.15% |
10 | 2020 | 271,066 | 2991 | 1.12% |
Appendix B.2. Supplementary Results
X | Year | Growth (×103) | Population (×103) |
---|---|---|---|
11 | 2021 | 2960 | 274,026 |
12 | 2022 | 2907 | 276,933 |
13 | 2023 | 2853 | 279,787 |
14 | 2024 | 2800 | 282,587 |
15 | 2025 | 2746 | 285,333 |
16 | 2026 | 2693 | 288,026 |
17 | 2027 | 2639 | 290,665 |
18 | 2028 | 2586 | 293,251 |
19 | 2029 | 2532 | 295,783 |
20 | 2030 | 2479 | 298,262 |
21 | 2031 | 2425 | 300,687 |
22 | 2032 | 2372 | 303,059 |
23 | 2033 | 2318 | 305,378 |
24 | 2034 | 2265 | 307,642 |
25 | 2035 | 2211 | 309,854 |
26 | 2036 | 2158 | 312,011 |
27 | 2037 | 2104 | 314,116 |
28 | 2038 | 2051 | 316,166 |
29 | 2039 | 1997 | 318,164 |
30 | 2040 | 1944 | 320,107 |
31 | 2041 | 1890 | 321,998 |
32 | 2042 | 1837 | 323,834 |
33 | 2043 | 1783 | 325,617 |
34 | 2044 | 1730 | 327,347 |
35 | 2045 | 1676 | 329,023 |
36 | 2046 | 1623 | 330,646 |
37 | 2047 | 1569 | 332,215 |
38 | 2048 | 1516 | 333,731 |
39 | 2049 | 1462 | 335,193 |
40 | 2050 | 1409 | 336,602 |
Appendix C
Appendix C.1. Supplementary Methods
No | Year | Urban Population (%) | Add. Per Year (%) | Growth (%) |
---|---|---|---|---|
2010 | 49.9 | |||
1 | 2011 | 50.6 | 0.69 | 1.38% |
2 | 2012 | 51.3 | 0.68 | 1.34% |
3 | 2013 | 52.0 | 0.68 | 1.33% |
4 | 2014 | 52.6 | 0.68 | 1.31% |
5 | 2015 | 53.3 | 0.67 | 1.27% |
6 | 2016 | 54.0 | 0.68 | 1.28% |
7 | 2017 | 54.7 | 0.67 | 1.24% |
8 | 2018 | 55.3 | 0.67 | 1.23% |
9 | 2019 | 56.0 | 0.66 | 1.19% |
10 | 2020 | 56.64 | 0.65 | 1.16% |
Appendix C.2. Supplementary Results
X | Year | Growth Rate (%) | Total Urban Population (%) |
---|---|---|---|
2020 | 56.64% | ||
11 | 2021 | 1.18% | 57.82% |
12 | 2022 | 1.16% | 58.98% |
13 | 2023 | 1.14% | 60.12% |
14 | 2024 | 1.12% | 61.24% |
15 | 2025 | 1.10% | 62.34% |
16 | 2026 | 1.08% | 63.42% |
17 | 2027 | 1.06% | 64.48% |
18 | 2028 | 1.04% | 65.52% |
19 | 2029 | 1.02% | 66.54% |
20 | 2030 | 1.00% | 67.54% |
21 | 2031 | 0.98% | 68.52% |
22 | 2032 | 0.96% | 69.48% |
23 | 2033 | 0.94% | 70.42% |
24 | 2034 | 0.92% | 71.34% |
25 | 2035 | 0.90% | 72.24% |
26 | 2036 | 0.88% | 73.12% |
27 | 2037 | 0.86% | 73.98% |
28 | 2038 | 0.84% | 74.82% |
29 | 2039 | 0.82% | 75.64% |
30 | 2040 | 0.80% | 76.44% |
31 | 2041 | 0.78% | 77.22% |
32 | 2042 | 0.76% | 77.98% |
33 | 2043 | 0.74% | 78.72% |
34 | 2044 | 0.72% | 79.44% |
35 | 2045 | 0.70% | 80.14% |
36 | 2046 | 0.68% | 80.82% |
37 | 2047 | 0.66% | 81.48% |
38 | 2048 | 0.64% | 82.12% |
39 | 2049 | 0.62% | 82.74% |
40 | 2050 | 0.60% | 83.34% |
Appendix D
Appendix D.1. Supplementary Methods
No | Year | GDP Per Capita (×103 IDR) | Labour (×103) | Labour Productivity (×103 IDR) | Add. Per Year (×103) | Growth (%) |
---|---|---|---|---|---|---|
2009 | 5.606 × 1012 | 113,833 | 49,248 | |||
2010 | 6.864 × 1012 | 116,528 | 58,904 | 9657 | 19.61% | |
1 | 2011 | 7.832 × 1012 | 117,370 | 66,729 | 7825 | 13.28% |
2 | 2012 | 8.616 × 1012 | 118,053 | 72,984 | 6255 | 9.37% |
3 | 2013 | 9.546 × 1012 | 118,193 | 80,766 | 7782 | 10.66% |
4 | 2014 | 1.057 × 1013 | 121,873 | 86,730 | 5963 | 7.38% |
5 | 2015 | 1.1526 × 1013 | 114,819 | 100,384 | 13,654 | 15.74% |
6 | 2016 | 1.2407 × 1013 | 118,412 | 104,778 | 4394 | 4.38% |
7 | 2017 | 1.359 × 1013 | 121,022 | 112,294 | 7515 | 7.17% |
8 | 2018 | 1.4839 × 1013 | 126,282 | 117,507 | 5213 | 4.64% |
9 | 2019 | 1.5834 × 1013 | 128,755 | 122,978 | 5471 | 4.66% |
Labour (×103) | Population (×103) | Labour Participation Rate |
---|---|---|
113,833 | 234,757 | 0.484897 |
116,528 | 238,519 | 0.488548 |
117,370 | 241,991 | 0.485018 |
118,053 | 245,425 | 0.481015 |
118,193 | 248,818 | 0.475018 |
121,873 | 252,165 | 0.483307 |
114,819 | 255,462 | 0.449456 |
118,412 | 258,705 | 0.457711 |
121,022 | 261,891 | 0.462108 |
126,282 | 265,015 | 0.476509 |
128,755 | 268,075 | 0.480295 |
128,066 | 271,066 | 0.472453 |
Appendix D.2. Supplementary Results
Year | Labour Productivity (%) |
---|---|
2020 | 5.09252 |
2021 | 4.84105 |
2022 | 4.6207 |
2023 | 4.42565 |
2024 | 4.25146 |
2025 | 4.09473 |
2026 | 3.95277 |
2027 | 3.82344 |
2028 | 3.705 |
2029 | 3.59603 |
2030 | 3.49536 |
2031 | 3.40199 |
2032 | 3.31511 |
2033 | 3.234 |
2034 | 3.15807 |
2035 | 3.0868 |
2036 | 3.01974 |
2037 | 2.95649 |
2038 | 2.89673 |
2039 | 2.84013 |
2040 | 2.78645 |
2041 | 2.73543 |
2042 | 2.68688 |
2043 | 2.6406 |
2044 | 2.59642 |
2045 | 2.5542 |
2046 | 2.51379 |
2047 | 2.47508 |
2048 | 2.43794 |
2049 | 2.40228 |
2050 | 2.36801 |
Year | Labour Participation Rate (%) |
---|---|
2020 | 47.2453 |
2021 | 46.7128 |
2022 | 46.6505 |
2023 | 46.5926 |
2024 | 46.5385 |
2025 | 46.4877 |
2026 | 46.4399 |
2027 | 46.3948 |
2028 | 46.3519 |
2029 | 46.3112 |
2030 | 46.2725 |
2031 | 46.2355 |
2032 | 46.2001 |
2033 | 46.1661 |
2034 | 46.1336 |
2035 | 46.1022 |
2036 | 46.0721 |
2037 | 46.043 |
2038 | 46.0149 |
2039 | 45.9877 |
2040 | 45.9615 |
2041 | 45.936 |
2042 | 45.9113 |
2043 | 45.8874 |
2044 | 45.8641 |
2045 | 45.8415 |
2046 | 45.8195 |
2047 | 45.7981 |
2048 | 45.7772 |
2049 | 45.7569 |
2050 | 45.737 |
Appendix E
Appendix F
References
- Ianchenko, A.; Simonen, K.; Barnes, C. Residential building lifespan and community turnover. J. Archit. Eng. 2020, 26, 04020026. [Google Scholar] [CrossRef]
- O’Neil, A. Indonesia: Urbanisation from 2010 to 2020. 2021. Available online: https://www.statista.com/statistics/455835/urbanization-in-indonesia/ (accessed on 29 September 2021).
- Worldometer. Indonesia Population. Available online: https://www.worldometers.info/world-population/indonesia-population/ (accessed on 19 August 2021).
- Tumiwa, F. Climate Transparency Report—Comparing G20 Climate Action and Responses to the COVID-19 Crisis. Available online: https://www.climate-transparency.org/wp-content/uploads/2020/11/Indonesia-CT-2020-WEB.pdf (accessed on 24 November 2021).
- Adi, A.C.; Lasnawatin, F.; Prananto, A.B.; Halim, L.; Anutomo, I.G.; Anggreani, D.; Indarwati, F.; Yusuf, M.; Ambarsari, L.; Yuanningrat, H. Handbook of Energy and Economic Statistics of Indonesia; Ministry of Energy and Mineral Resources: Jakarta, Indonesia, 2021.
- McBain, B.; Lenzen, M.; Albrecht, G.; Wackernagel, M. Building Robust Housing Sector Policy Using the Ecological Footprint. Resources 2018, 7, 24. [Google Scholar] [CrossRef]
- GBPN. Healthy Buildings, Healthy Lives. Available online: https://www.gbpn.org/healthy-buildings-healthy-lives/ (accessed on 20 December 2021).
- UNFCC. First Nationally Determined Contribution-Republic of Indonesia. Available online: https://www4.unfccc.int/sites/NDCStaging/Pages/Party.aspx?party=IDN (accessed on 1 December 2021).
- Clarke, L.; Eom, J.; Marten, E.H.; Horowitz, R.; Kyle, P.; Link, R.; Mignone, B.K.; Mundra, A.; Zhou, Y. Effects of long-term climate change on global building energy expenditures. Energy Econ. 2018, 72, 667–677. [Google Scholar] [CrossRef]
- Fricko, O.; Havlik, P.; Rogelj, J.; Klimont, Z.; Gusti, M.; Johnson, N.; Kolp, P.; Strubegger, M.; Valin, H.; Amann, M.; et al. The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Glob. Environ. Change 2017, 42, 251–267. [Google Scholar] [CrossRef]
- Building, J.G. Jakarta Green Building User Guide Vol. 1 Building Envelope. Available online: https://greenbuilding.jakarta.go.id/files/userguides/Vol-1-BuildingEnvelope-UserGuide.pdf (accessed on 14 September 2021).
- Hajji, A.M.; Hilmi, A.R.Z. Façade design modification in complying the Indonesia’s national standard of energy conservation for tall building envelope—Case study: Green Office Park 9, Serpong, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 847, 012028. [Google Scholar] [CrossRef]
- Silalahi, D.F.; Blakers, A.; Stocks, M.; Lu, B.; Cheng, C.; Hayes, L. Indonesia’s Vast Solar Energy Potential. Energies 2021, 14, 5424. [Google Scholar] [CrossRef]
- Damayanti, H.; Tumiwa, F.; Citraningrum, M. Residential Rooftop Solar Technical and Market Potential in 34 Provinces in Indonesia; IESR: Jakarta, Indonesia, 2019; pp. 1–17. [Google Scholar]
- Donker, J.; van Tilburg, X. Three Indonesian Solar-Powered Futures. Solar PV and Ambitious Climate Policy. December 2019. Available online: https://ambitiontoaction.net/wp-content/uploads/2020/01/A2A-2019-Three-Indonesian-solar-powered-futures.pdf (accessed on 19 October 2023).
- Nasional, D.E. Technology Data for the Indonesian Power Sector: Catalogue for Generation and Storage of Electricity; Dewan Energi Nasional: Jakarta, Indonesia, 2021. [Google Scholar]
- Singh, R.; Banerjee, R. Estimation of rooftop solar photovoltaic potential of a city. Sol. Energy 2015, 115, 589–602. [Google Scholar] [CrossRef]
- Widaningsih, L.; Megayanti, T.; Minggra, R. Floor-Area Ratio in the Eastern Corridor of Jalan Ir. H. Djuanda Bandung. In Proceedings of the Annual Applied Science and Engineering Conference (AASEC), Bandung, Indonesia, 6–9 December 2016. [Google Scholar]
- Commonwealth of Australia (Department of Resources, Energy and Tourism). Consultation Regulation Impact Statement: Heat Pump Water Heaters, July 2013. Available online: https://www.energyrating.gov.au/industry-information/publications/heat-pump-water-heaters (accessed on 19 October 2023).
- Taqwim, S.; Saptadji, N.; Ashat, A. Measuring the Potential Benefits of Geothermal Cooling and Heating Applications in Indonesia. In Proceedings of the 13th Indonesia International Geothermal Convention, Jakarta, Indonesia, 12–14 June 2013. [Google Scholar]
- Yasukawa, K.; Uchida, Y. Space Cooling by Ground Source Heat Pump in Tropical Asia. In Renewable Geothermal Energy Explorations; IntechOpen: London, UK, 2018. [Google Scholar]
- Miyara, A.; Ishikawa, S.; Tarakka, R.; Mochtar, A.A. Development of an open-loop ground source cooling system for space air conditioning system in hot climate like Indonesia. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; p. 04007. [Google Scholar]
- Wilson, P. Building Regulations and Land Use in the Spatial Plan. Available online: https://www.mrfixitbali.com/building-construction/licences-permits-and-zoning/building-regulations-denpasar-sanur-227.html (accessed on 2 October 2021).
- Mochtar, S.; Sumiyati, Y.; Purisari, R. The Direction of Developing Green Building Criteria in Indonesia. J. Phys. Conf. Ser. 2021, 1811, 012090. [Google Scholar] [CrossRef]
- Mochtar, S.; Sumiyati, Y.; Purisari, R. The Constrains of Green Building Implementation in Indonesia. J. Phys. Conf. Ser. 2020, 1485, 012050. [Google Scholar] [CrossRef]
- Berawi, M.A.; Miraj, P.; Windrayani, R.; Berawi, A.R.B. Stakeholders’ perspectives on green building rating: A case study in Indonesia. Heliyon 2019, 5, e01328. [Google Scholar] [CrossRef] [PubMed]
- Tumiwa, F. The G20 Transition to a Low Carbon Economy. Available online: https://www.climate-transparency.org/wp-content/uploads/2019/01/BROWN-TO-GREEN_2018_Indonesia_FINAL.pdf (accessed on 24 November 2021).
- GBPN. Low Carbon Residential Buildings Regulatory Reform. Available online: https://library.gbpn.org/project/THE-SAMARINDA-RESIDENTIAL-PROJECT (accessed on 19 October 2023).
- GBPN. Review of Incentives on Green Building Regulations. Available online: https://www.gbpn.org/projects/review-of-incentives-on-green-building-regulations/ (accessed on 20 December 2021).
- BS EN 15978:2011; Sustainability of Construction Works Assessment of Environmental Performance of Buildings Calculation Method. British Standards Institution: Milton Keynes, UK, 2011.
- Kolokolov, A. Labor Productivity and Other Adventures. Available online: https://towardsdatascience.com/labor-productivity-and-other-adventures-67212d1d199b (accessed on 30 September 2021).
- Kyle, P.; Patel, P.; Lyer, G.; McJeon, H. Global Change Assessment Model (GCAM) Tutorial. Available online: http://www.globalchange.umd.edu/data/annual-meetings/2017/GCAM_Tutorial_2017.pdf (accessed on 3 December 2021).
- Dewi, J.; Siahaan, U.; Tobing, R.R. Parametric simulation as a tool for observing relationships between parcel and regulations in unplanned commercial corridor. Procedia-Soc. Behav. Sci. 2016, 227, 152–159. [Google Scholar] [CrossRef]
- Herlambang, S.; Leitner, H.; Tjung, L.J.; Sheppard, E.; Anguelov, D. Jakarta’s great land transformation: Hybrid neoliberalisation and informality. Urban Stud. 2019, 56, 627–648. [Google Scholar] [CrossRef]
- Energy. Heating and Cooling. Available online: https://www.energy.gov.au/households/heating-and-cooling (accessed on 15 September 2021).
- Energysage. What are the Most Energy Efficient Appliances and Are They Worth It? Available online: https://www.energysage.com/energy-efficiency/costs-benefits/energy-star-rebates/ (accessed on 3 October 2021).
- Boretti, A.; Castelletto, S.; Al-Kouz, W.; Nayfeh, J. Capacity factors of solar photovoltaic energy facilities in California, annual mean and variability. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; p. 02004. [Google Scholar]
- Tracker, C.A. Country Summary, Indonesia. Available online: https://climateactiontracker.org/countries/indonesia/ (accessed on 14 December 2021).
Variable Parameters | Base Inputs | ||||||||
---|---|---|---|---|---|---|---|---|---|
Parameters → Scenarios ↓ | U Value | FAR | AC Efficiency | GSHP | Appliance Efficiency | Rooftop PV | Cement | Pop | LPR |
S1 (base case) | Base data, internal default GCAM data set | Urban population (Pop) only | Projection Labour Productivity Rate (LPR) | ||||||
S2 | HighRate | Base data | Base data | Base data | Base data | Base data | Base data | ||
S3 | LowRate | ||||||||
S4 | Base data | HighRate | |||||||
S5 | LowRate | ||||||||
S6 | Base data | HighRate | |||||||
S7 | LowRate | ||||||||
S8 | Base data | HighRate | |||||||
S9 | LowRate | ||||||||
S10 | Base data | HighRate | |||||||
S11 | LowRate | ||||||||
S12 | HighRate | Base data | HighRate | ||||||
S13 | LowRate | HighRate | |||||||
S14 | HighRate | LowRate | |||||||
S15 | LowRate | LowRate | |||||||
S16 | HighRate | Zero | |||||||
S17 | LowRate | Zero |
Individual Scenario | Variable Rate | Integrated Scenario |
---|---|---|
U value (S3) FAR (S5) | Low | AdvTech-HighRange |
AC Efficiency (S6) GSHP (S8) APLs Efficiency (S10) Rooftop PV (S12) Cement (S1) | High | |
High (FAR-High) Base | ||
U value (S2) FAR (S4) | High | AdvTech-LowRange |
AC Efficiency (S7) GSHP (S9) APLs Efficiency (S11) Rooftop PV (S15) | Low | |
Low (FAR-Low) | ||
Cement (S1) | Base |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.K.; Graham, P.; Burton, C.; Harrington, P. An Assessment of Long-Term Climate Change on Building Energy in Indonesia. Energies 2023, 16, 7231. https://doi.org/10.3390/en16217231
Shah SK, Graham P, Burton C, Harrington P. An Assessment of Long-Term Climate Change on Building Energy in Indonesia. Energies. 2023; 16(21):7231. https://doi.org/10.3390/en16217231
Chicago/Turabian StyleShah, Sheikh Khaleduzzaman, Peter Graham, Craig Burton, and Philip Harrington. 2023. "An Assessment of Long-Term Climate Change on Building Energy in Indonesia" Energies 16, no. 21: 7231. https://doi.org/10.3390/en16217231
APA StyleShah, S. K., Graham, P., Burton, C., & Harrington, P. (2023). An Assessment of Long-Term Climate Change on Building Energy in Indonesia. Energies, 16(21), 7231. https://doi.org/10.3390/en16217231