Climate Change Mitigation in Thailand’s Domestic Aviation: Mitigation Options Analysis towards 2050
Abstract
:1. Introduction
2. Methodology and Data
2.1. Key Data Sources
2.2. Forecasting Model of Jet Fuel Consumption
2.2.1. Multiple Linear Regression (MLR)
- B = Dependent variable of aviation jet fuel consumption (Liter);
- c = Intercept (constant term);
- , , , = Regression coefficient;
- , , , = Independent variable of aviation jet fuel prices (USD/Liter), the amount of freight (kg), the number of passengers (person), and GDP (Billion USD).
- = Dependent variable;
- c = Intercept (constant value);
- = Coefficient values;
- = Independent variable.
- r = Correlation coefficient;
- n = The amount of data;
- = The first variable’s total value;
- = The second variable’s total value;
- = The second value and the sum of the products of;
- = Sum of the squares of the first value;
- = Sum of the squares of the second value.
- R2 = The coefficient of multiple determination;
- = The actual value;
- = The predicted value of y;
- = The mean of y values.
- R2 = R-squared sample;
- T = Total sample size;
- v = The number of independent variables.
2.2.2. Formula for Future Projection
2.3. Assumptions and Scenarios for Analysis of Policies or Measure
2.3.1. Reference Future Scenario
2.3.2. Fuel Switching Scenario
2.3.3. Aircraft Technology Scenario
2.3.4. Carbon Pricing Scenario
2.4. Calculation Method for GHG Emissions
- CO2 = An emission of carbon dioxide (t CO2);
- E = A specific energy usage (ktoe);
- N = A net calorific value specific to fuel (TJ/ktoe);
- = A factor for carbon emissions (kg/TJ);
- f = Type of fuel.
2.5. Empirical Data
3. Results
3.1. Historical Trends
3.2. Forecasting of Fuel Use and GHG Emissions
3.3. Pathways for Mitigation in the Domestic Aviation Industry
3.3.1. Fuel Switching
3.3.2. Aircraft Technology
3.3.3. Carbon Pricing
3.3.4. Creating Multi-Policy Scenarios by Combining Different Policies
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, B.; Fleming, G.; Balasubramanian, S.; Malwitz, A.; Lee, J.; Waitz, I.; Klima, K.; Locke, M.; Holsclaw, C.; Morales, A.; et al. SAGE System for Assessing Aviation’s Global Emissions, Version 1.5; Federal Aviation Administration Office of Environment and Energy: Washington, DC, USA, 2005. [Google Scholar]
- Edwards, H.A.; Dixon-Hardy, D.; Wadud, Z. Aircraft cost index and the future of carbon emissions from air travel. Appl. Energy 2016, 164, 553–562. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Prussi, M.; Buffi, M.; Tacconi, D. Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels. Appl. Energy 2014, 136, 767–774. [Google Scholar] [CrossRef]
- Álvarez-Gil, M.J.; Yan, W. Is Environmental Innovation Worth It? The Case of the Civil Aviation Industry of Emerging Markets. IFIP Adv. Inf. Commun. Technol. 2013, 415, 294–301. [Google Scholar] [CrossRef]
- Norton, T.M. Aircraft Greenhouse Gas Emissions during the Landing and Takeoff Cycle at Bay Area Airports. 2014. Available online: https://repository.usfca.edu/capstone/15 (accessed on 24 May 2022).
- Uherek, E.; Halenka, T.; Borken-Kleefeld, J.; Balkanski, Y.; Berntsen, T.; Borrego, C.; Gauss, M.; Hoor, P.; Juda-Rezler, K.; Lelieveld, J.; et al. Transport impacts on atmosphere and climate: Land transport. Atmos. Environ. 2010, 44, 4772–4816. [Google Scholar] [CrossRef]
- Shon, Z.H.; Kim, K.H.; Song, S.K. Long-term trend in NO2 and NOx levels and their emission ratio in relation to road traffic activities in East Asia. Atmos. Environ. 2011, 45, 3120–3131. [Google Scholar] [CrossRef]
- Lee, D.S.; Pitari, G.; Grewe, V.; Gierens, K.; Penner, J.E.; Petzold, A.; Prather, M.J.; Schumann, U.; Bais, A.; Berntsen, T.; et al. Transport impacts on atmosphere and climate: Aviation. Atmos. Environ. 2010, 44, 4678–4734. [Google Scholar] [CrossRef]
- Lee, D.S.; Fahey, D.W.; Skowron, A.; Allen, M.R.; Burkhardt, U.; Chen, Q.; Doherty, S.J.; Freeman, S.; Forster, P.M.; Fuglestvedt, J.; et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 2021, 244, 117834. [Google Scholar] [CrossRef]
- Klöwer, M.; Allen, M.R.; Lee, D.S.; Proud, S.R.; Gallagher, L.; Skowron, A. Quantifying aviation’s contribution to global warming. Environ. Res. Lett. 2021, 16, 104027. [Google Scholar] [CrossRef]
- Planès, T.; Delbecq, S.; Pommier-Budinger, V.; Bénard, E. Simulation and evaluation of sustainable climate trajectories for aviation. J. Environ. Manag. 2021, 295, 113079. [Google Scholar] [CrossRef]
- Rupcic, L.; Pierrat, E.; Fricke, K.; Moll, T.; Hauschild, M.Z.; Laurent, A. Improving environmental performances of integrated bladed rotors for aircraft. CIRP Ann. 2022, 71, 13–16. [Google Scholar] [CrossRef]
- Héroux, M.-E.; Babisch, W.; Belojevic, G.; Brink, M.; Janssen, S.; Lercher, P.; Paviotti, M.; Pershagen, G.; Waye, K.P.; Preis, A.; et al. WHO Environmental noise guidelines for the European Region. In Proceedings of the Euronoise, 10th European Congress and Exposition on Noise Control Engineering, Maastricht, The Netherlands, 31 May–3 June 2015; pp. 2589–2593. [Google Scholar]
- Air Transport Bureau. Effects of Novel Coronavirus (COVID-19) on Civil Aviation: Economic Impact Analysis; ICAO–International Civil Aviation Organization: Montréal, QC, Canada, 2020. [Google Scholar]
- Brandon, G.; Kevin, Z.; Dan, R. CO2 Emissions from Commercial Aviation; International Council on Clean Transportation: Washington, DC, USA, 2018; Available online: https://theicct.org/publication/co2-emissions-from-commercial-aviation-2018/ (accessed on 24 May 2022).
- Crippa, M.; Oreggioni, G.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Lo Vullo, E.; Solazzo, E.; Monforti-Ferrario, F.; Olivier, J.G.J.; Vignati, E. Fossil CO2 and GHG Emissions of all World Countries. 2019. Available online: https://op.europa.eu/en/publication-detail/-/publication/9d09ccd1-e0dd-11e9-9c4e-01aa75ed71a1/language-en (accessed on 24 May 2022).
- IATA—International Air Transport Association. Economic Performance of the Airline Industry: 2015 Mid-Year Report. 2015. Available online: https://www.iata.org/en/publications/economics/ (accessed on 24 May 2022).
- ICAO—International Civil Aviation Organization. Assembly-40th Session Executive Committee Agenda Item 15: Environmental Protection-General Provisions, Aircraft Noise and Local Air Quality-Policy and Standardization Icao Global Environmental Trends-Present and Future Aircraft Noise and Emissions; ICAO: Montreal, QC, Canada, 2019. [Google Scholar]
- Dube, K. Emerging from the COVID-19 Pandemic: Aviation Recovery, Challenges and Opportunities, 2022. Aerospace 2023, 10, 19. [Google Scholar] [CrossRef]
- OECD—The Organisation for Economic Co-Operation and Development. Air Transport CO2 Emissions. 2022. Available online: https://stats.oecd.org/Index.aspx?DataSetCode=AIRTRANS_CO2# (accessed on 18 July 2022).
- C2ES—Center for Climate and Energy Solutions. Outcomes of the U.N. Climate Change Conference in Lima. 2016. Available online: https://www.c2es.org/wp-content/uploads/2017/10/outcomes-of-the-u-n-climate-change-conference-in-lima.pdf (accessed on 24 July 2022).
- UNFCCC—United Nations Framework Convention on Climate Change. Thailand’s Intended Nationally Determined Contribution (INDC). 2016. Available online: https://www4.unfccc.int/sites/SubmissionsStaging/NationalReports/Documents/347251_Thailand-BUR2-1-SBUR%20THAILAND.pdf (accessed on 26 July 2022).
- IATA—International Air Transport Association. Fact Sheet Climate Change & CORSIA a CO2 Standard for Aircraft. 2017. Available online: www.iata.org/policy/environment (accessed on 22 July 2022).
- ICAO—International Civil Aviation Organization. Introduction to the ICAO Basket of Measures to Mitigate Climate Change; ICAO: Montreal, QC, Canada, 2007. [Google Scholar]
- ICAO—International Civil Aviation Organization. CORSIA Eligible Fuels. Available online: https://www.icao.int/environmental-protection/CORSIA/Pages/CORSIA-Eligible-Fuels.aspx (accessed on 9 October 2023).
- Maertens, S.; Grimme, W.; Scheelhaase, J.; Jung, M. Options to Continue the EU ETS for Aviation in a CORSIA-World. Sustainability 2019, 11, 5703. [Google Scholar] [CrossRef]
- Tawatchai, S. Global Commitment of ICAO to the Development of the Low-Carbon Aviation Industry (Global Aspirational Goal); Thailand Greenhouse Gas Management Organization: Bangkok, Thailand, 2019. [Google Scholar]
- Gudmundsson, S.V.; Anger, A. Global carbon dioxide emissions scenarios for aviation derived from IPCC storylines: A meta-analysis. Transp. Res. Part D Transp. Environ. 2012, 17, 61–65. [Google Scholar] [CrossRef]
- Owen, B.; Lee, D.S.; Lim, L. Flying into the future: Aviation emissions scenarios to 2050. Environ. Sci. Technol. 2010, 44, 2255–2260. [Google Scholar] [CrossRef]
- Macintosh, A.; Wallace, L. International aviation emissions to 2025: Can emissions be stabilised without restricting demand? Energy Policy 2009, 37, 264–273. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, T.; Yu, Y.; Chen, D.; Zhu, B. Scenario analysis of CO2 emissions from China’s civil aviation industry through 2030. Appl. Energy 2016, 175, 100–108. [Google Scholar] [CrossRef]
- Kousoulidou, M.; Lonza, L. Biofuels in aviation: Fuel demand and CO2 emissions evolution in Europe toward 2030. Transp. Res. Part D Transp. Environ. 2016, 46, 166–181. [Google Scholar] [CrossRef]
- Hasan, M.A.; Mamun, A.A.; Rahman, S.M.; Malik, K.; Al Amran, M.I.U.; Khondaker, A.N.; Reshi, O.; Tiwari, S.P.; Alismail, F.S. Climate Change Mitigation Pathways for the Aviation Sector. Sustainability 2021, 13, 3656. [Google Scholar] [CrossRef]
- Bows-Larkin, A. All adrift: Aviation, shipping, and climate change policy. Clim. Policy 2015, 15, 681–702. [Google Scholar] [CrossRef]
- Fageda, X.; Teixidó, J.J. Pricing carbon in the aviation sector: Evidence from the European emissions trading system. J. Environ. Econ. Manag. 2022, 111, 102591. [Google Scholar] [CrossRef]
- Agencia Portuguesa do Ambiente, Portuguese National Inventory Report on Greenhouse Gases, 1990–2016. Submitted Under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. 2019. Available online: https://unfccc.int/documents/194464 (accessed on 30 August 2022).
- Andrés, L.; Padilla, E. Driving factors of GHG emissions in the EU transport activity. Transp. Policy 2019, 61, 60–74. [Google Scholar] [CrossRef]
- Environment Agency Austria. Austria’s National Inventory Report 2019, Submission to the UNFCCC Secretariat. 2019. Available online: https://unfccc.int/documents/194891 (accessed on 30 August 2022).
- Environmental Protection Agency. Ireland’s National Inventory Report 2019. Greenhouse Gas Emissions 1990–2017. Submission to the UNFCCC Secretariat. 2019. Available online: https://unfccc.int/documents/194638 (accessed on 30 August 2022).
- Tavakoli, A. A journey among top ten emitter country, decomposition of ‘Kaya Identity. Sustain. Cities Soc. 2018, 38, 254–264. [Google Scholar] [CrossRef]
- Sgouridis, S.; Bonnefoy, P.A.; Hansman, R.J. Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation. Transp. Res. Part A Policy Pract. 2011, 45, 1077–1091. [Google Scholar] [CrossRef]
- Zaporozhets, O.; Isaienko, V.; Synylo, K. Trends on current and forecasted aircraft hybrid electric architectures and their impact on environment. Energy 2020, 211, 118814. [Google Scholar] [CrossRef]
- CAAT—The Civil Aviation Authority of Thailand, State of Thai Aviation Industry, 2019 report. 2019. Available online: https://www.caat.or.th/wp-content/uploads/2020/06/STATE-OF-THAI-AVIATION-INDUSTRY-2019.pdf (accessed on 24 May 2022).
- Ozturk, I.; Al-Mulali, U.; Saboori, B. Investigating the environmental Kuznets curve hypothesis: The role of tourism and ecological footprint. Environ. Sci. Pollut. Res. 2015, 23, 1916–1928. [Google Scholar] [CrossRef]
- CAAT—The Civil Aviation Authority of Thailand. Announcement of the Civil Aviation Authority of Thailand: Guidelines for Airport Operators and Air Operators on Domestic Routes during the Coronavirus Disease 2019 Epidemic Situation. 2020. Available online: https://www.caat.or.th/th/archives/59631 (accessed on 24 May 2022).
- CAAT—The Civil Aviation Authority of Thailand. State of Thai Aviation Industry, 2020 Report; CAAT: Bangkok, Thailand, 2020. [Google Scholar]
- DEDE—Department of Alternative Energy Development and Efficiency. Energy Statistics, Energy Balance of Thailand. 2019. Available online: https://webkc.dede.go.th/testmax/sites/default/files/Energy_Balance_of_Thailand_2019.pdf (accessed on 24 May 2022).
- TGO—Thailand Greenhouse Gas Management Organization. Greenhouse Gas Management Organization Strategic Plan 2018–2022. 2019. Available online: http://www.tgo.or.th/2020/index.php/en/page/tgo-strategy-plan (accessed on 24 May 2022).
- Narciso, M.; Melo de Sousa, J.M. Influence of Sustainable Aviation Fuels on the Formation of Contrails and Their Properties. Energies 2021, 14, 5557. [Google Scholar] [CrossRef]
- Baxter, G. Mitigating Aircraft Auxiliary Power Unit Carbon Dioxide (CO2) Emissions During the Aircraft Turnaround Process from the Use of Solar Power at the Airport Gate: The Case of Moi International Airport, Kenya. Int. J. Environ. Agric. Biotechnol. 2022, 7, 14–22. [Google Scholar] [CrossRef]
- PTTOR—Petroleum Authority of Thailand Oil and Retail Business Public Company Limited. Aviation Jet Fuel Prices Report. 2020. Available online: https://www.pttplc.com/en/Products/Ourbusinessbyaffiliates/Oilandretailbusiness.aspx (accessed on 5 February 2023).
- IPCC—Intergovernmental Panel on Climate Change. Guidelines for National Greenhouse Gas Inventories. Available online: https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 26 July 2022).
- BOT—Bank of Thailand. Rates of Exchange of Commercial Banks. 2021. Available online: https://www.bot.or.th/english/_layouts/application/exchangerate/exchangerate.aspx (accessed on 24 May 2022).
- The World Bank. GDP (Current US$)—Thailand|Data. 2021. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=TH (accessed on 24 May 2022).
- Yin, L.; Yao, T.; Zhou, J.; Liu, G.; Liao, Y.; Ma, X. Prediction of CO2 Emissions Based on Multiple Linear Regression Analysis. Energy Procedia 2017, 105, 4222–4228. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Hu, S. Regression analysis and driving force model building of CO2 emissions in China. Sci. Rep. 2021, 11, 6715. [Google Scholar] [CrossRef]
- Maaouane, M.; Zouggar, S.; Krajačić, G.; Zahboune, H. Modelling industry energy demand using multiple linear regression analysis based on consumed quantity of goods. Energy 2021, 225, 120270. [Google Scholar] [CrossRef]
- Geem, Z.W.; Roper, W.E. Energy demand estimation of South Korea using artificial neural network. Energy Policy 2009, 37, 4049–4054. [Google Scholar] [CrossRef]
- Parikh, J.; Purohit, P.; Maitra, P. Demand projections of petroleum products and natural gas in India. Energy 2007, 32, 1825–1837. [Google Scholar] [CrossRef]
- Blakey, S.; Rye, L.; Wilson, C.W. Aviation gas turbine alternative fuels: A review. Proc. Combust. Inst. 2011, 33, 2863–2885. [Google Scholar] [CrossRef]
- Williams, P.I.; Allan, J.D.; Lobo, P.; Coe, H.; Christie, S.; Wilson, C.; Hagen, D.; Whitefield, P.; Raper, D.; Rye, L. Impact of alternative fuels on emissions characteristics of a gas turbine engine—Part 2: Volatile and semivolatile particulate matter emissions. Environ. Sci. Technol. 2012, 46, 10812–10819. [Google Scholar] [CrossRef]
- Corporan, E.; Edwards, T.; Shafer, L.; Dewitt, M.J.; Klingshirn, C.; Zabarnick, S.; West, Z.; Striebich, R.; Graham, J.; Klein, J. Chemical, Thermal Stability, Seal Swell, and Emissions Studies of Alternative Jet Fuels. Energy Fuels 2011, 25, 955–966. [Google Scholar] [CrossRef]
- Murgan, M.; Hamid, A.; Mustapha, M. Rethinking the potency of ICAO SARPS on global reduction of aviation emission and protection of global environment. Bratisl. Law Rev. 2017, 1, 28–37. [Google Scholar] [CrossRef]
- DEDE—Department of Alternative Energy Development and Efficiency. The Study of Sustainable Biojet Promotion Plan for Thailand. 2020. Available online: https://www.statista.com/statistics/655057/fuel-consumption-of-airlines-worldwide/ (accessed on 15 August 2022).
- ICAO—International Civil Aviation Organization. Sustainable Aviation Fuels Guide Version 2. 2018. Available online: https://www.icao.int/environmental-protection/Documents/Sustainable%20Aviation%20Fuels%20Guide_100519.pdf (accessed on 1 September 2022).
- European Commission. Regulation of the European Parliament and of the Council on Ensuring a Level Playing Field for Sustainable Air Transport. 2021. Available online: https://ec.europa.eu/transport/themes/mobilitystrategy_en (accessed on 1 September 2022).
- Keramidas, K.; Diaz-Vazquez, A.R.; Vandyck, T.; Rey Los Santos, L.; Schade, B.; Soria-Ramirez, A. Global Energy and Climate Outlook 2018: Sectoral Mitigation Options towards a Low-Emissions Economy. 2018. Available online: https://op.europa.eu/en/publication-detail/-/publication/edff2046-f2c1-11e8-9982-01aa75ed71a1/language-en (accessed on 16 August 2022).
- Kahn Ribeiro, S.; Kobayashi, S.; Beuthe, M.; Gasca, J.; Greene, D.; Lee, D.S.; Muromachi, Y.; Newton, P.J.; Plotkin, S.; Sperling, D.; et al. Transport and Its Infrastructure. In Climate Change 2007: Mitigation, Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; Available online: https://archive.ipcc.ch/publications_and_data/ar4/wg3/en/ch5.html (accessed on 4 September 2022).
- OECD—The Organisation for Economic Co-Operation and Development. Transport Outlook 2012: Seamless Transport for Greener Growth. 2012. Available online: https://www.itf-oecd.org/transport-outlook-2012-seamless-transport-greener-growth (accessed on 16 January 2023).
- ICAO—International Civil Aviation Organization. Environmental Report Aviation and Climate Change. 2010. Available online: https://www.icao.int/environmental-protection/Documents/Publications/ENV_Report_2010.pdf (accessed on 4 September 2022).
- World Bank. State and Trends of Carbon Pricing 2014; The World Bank: Washington, DC, USA, 2014. [Google Scholar] [CrossRef]
- Stern, N. The Stern Review: The Economics of Climate Change; Cambridge University Press: Cambridge, UK, 2007; Available online: https://www.cambridge.org/core/books/economics-of-climate-change/A1E0BBF2F0ED8E2E4142A9C878052204 (accessed on 17 August 2022).
- Baranzini, A.; Van den Bergh, J.C.J.M.; Carattini, S.; Howarth, R.B.; Padilla, E.; Roca, J. Carbon pricing in climate policy: Seven reasons, complementary instruments, and political economy considerations. Wiley Interdiscip. Rev. Clim. Chang. 2017, 8, e462. [Google Scholar] [CrossRef]
- Shen, X.J.; Liu, B.H.; Zhou, D.W. Spatiotemporal changes in the length and heating degree days of the heating period in Northeast China. Meteorol. Appl. 2017, 24, 135–141. [Google Scholar] [CrossRef]
- IPCC—Intergovernmental Panel on Climate Change. Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; IGES: Hayama, Japan, 2006; Available online: https://www.ipcc-nggip.iges.or.jp/support/Primer_2006GLs.pdf (accessed on 24 May 2022).
- IPCC—Intergovernmental Panel on Climate Change. Anthropogenic and Natural Radiative Forcing. 2018. Chapter 8. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf (accessed on 24 May 2022).
- IPCC—Intergovernmental Panel on Climate Change. The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity. In Climate Change 2021–The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- OECD—The Organisation for Economic Co-Operation and Development. Economic Surveys Economic Assessment. 2020. Available online: www.oecd.org/economy/thailand-economic-snapshot/ (accessed on 24 May 2022).
- CAAT—The Civil Aviation Authority of Thailand. The Report Predicts the Demand for Air Travel of the Country. 2020. Available online: https://www.caat.or.th/th/archives/53358 (accessed on 24 May 2022).
- Guo, X.; Ning, C.; Shen, Y.; Yao, C.; Chen, D.; Cheng, S. Projection of the Co-Reduced Emissions of CO2 and Air Pollutants from Civil Aviation in China. Sustainability 2023, 15, 7082. [Google Scholar] [CrossRef]
- Hasan, M.A.; Frame, D.J.; Chapman, R.; Archie, K.M. Curbing the car: The mitigation potential of a higher carbon price in the New Zealand transport sector. Clim. Policy 2020, 20, 563–576. [Google Scholar] [CrossRef]
- Rahman, S.M.; Khondaker, A.N.; Hasan, M.A.; Reza, I. Greenhouse gas emissions from road transportation in Saudi Arabia—A challenging frontier. Renew. Sustain. Energy Rev. 2017, 69, 812–821. [Google Scholar] [CrossRef]
Variables | Period | Description | Sources |
---|---|---|---|
3Jet fuel prices (USD/Litre) | 2008–2020 | Aviation jet fuel prices | Petroleum Authority of Thailand (PTT Oil and Retail Business Public Company Limited) [51] |
Number of passengers in domestic flight (person) | 2008–2020 | The number of passengers in domestic aviation sector | The Civil Aviation Authority of Thailand [46] |
Emissions factors (kg/TJ), (kg/LTO) | 2006 | Emission factors for calculating GHG emissions from fuel consumption | Intergovernmental Panel on Climate Change [52] |
Aviation Jet fuel use (ktoe) | 2008–2020 | Jet fuel use in domestic aviation sector | Department of Alternative Energy Development and Efficiency [47] |
Number of freights in domestic flight (kg) | 2008–2020 | The number of freights in domestic aviation sector | The Civil Aviation Authority of Thailand [46] |
Gross domestic product (GDP) (Billion Baht) | 2008–2020 | Thailand’s gross domestic product (Base year is 2008) | Bank of Thailand [53] The World bank [54] |
Type of Fuel Used | R2 | R-Value | Adjusted-R2 | Equation |
---|---|---|---|---|
Aviation Jet fuel | 0.987 | 0.994 | 0.982 | Y = (14.170 × X1) − (0.924 × X2) + (190,013.386 × X3) − (132,057,994.567 × X4) |
Year | SAF Percentage (%) |
---|---|
2021 | 0 |
2025 | 2 |
2030 | 5 |
2035 | 20 |
2040 | 32 |
2045 | 38 |
2050 | 63 |
Industrial Designation or Standard Name | The Formula for Chemical | The GWP Value for the 100-Year Time Horizon | |
---|---|---|---|
Fifth Assessment (AR5) | Sixth Assessment (AR6) | ||
Nitrous oxide | N2O | 265 | 273 |
Methane | CH4 | 28 | 29.8 |
Carbon dioxide | CO2 | 1 | 1 |
Fuel | CO2 Default (kg/TJ) | CH4 Default (kg/TJ) | N2O Default (kg/TJ) |
---|---|---|---|
Jet fuel (Jet Kerosene) | 71,500 | 0.5 | 2 |
Fuel | Factors (TJ/103 tonnes) |
---|---|
Jet Kerosene | 44.59 |
Year | Passengers (Person) | Freight (kg) | GDP Billion Baht (at 2008 Price) | Fuel Prices (USD/Litre) | Fuel Consumptions (ktoe) |
---|---|---|---|---|---|
2008 | 24,310,188 | 8,706,271 | 7722 | 1.19 | 246 |
2009 | 26,219,477 | 9,273,089 | 7668 | 0.81 | 288 |
2010 | 27,208,643 | 9,109,330 | 8243 | 1.06 | 258 |
2011 | 31,623,503 | 10,238,865 | 8302 | 1.47 | 265 |
2012 | 36,192,158 | 10,777,970 | 8903 | 1.43 | 261 |
2013 | 42,427,923 | 11,210,853 | 9143 | 1.41 | 295 |
2014 | 50,059,872 | 12,800,068 | 9233 | 1.22 | 625 |
2015 | 62,216,533 | 14,292,021 | 9523 | 0.72 | 732 |
2016 | 70,327,980 | 119,490,892 | 9866 | 0.62 | 818 |
2017 | 75,342,243 | 112,653,693 | 10,260 | 0.73 | 757 |
2018 | 78,625,622 | 93,682,980 | 10,692 | 0.89 | 856 |
2019 | 76,253,599 | 77,828,059 | 10,887 | 0.89 | 716 |
2020 | 41,996,665 | 32,214,457 | 10,348 | 0.60 | 477 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Champeecharoensuk, A.; Dhakal, S.; Chollacoop, N. Climate Change Mitigation in Thailand’s Domestic Aviation: Mitigation Options Analysis towards 2050. Energies 2023, 16, 7199. https://doi.org/10.3390/en16207199
Champeecharoensuk A, Dhakal S, Chollacoop N. Climate Change Mitigation in Thailand’s Domestic Aviation: Mitigation Options Analysis towards 2050. Energies. 2023; 16(20):7199. https://doi.org/10.3390/en16207199
Chicago/Turabian StyleChampeecharoensuk, Arthit, Shobhakar Dhakal, and Nuwong Chollacoop. 2023. "Climate Change Mitigation in Thailand’s Domestic Aviation: Mitigation Options Analysis towards 2050" Energies 16, no. 20: 7199. https://doi.org/10.3390/en16207199
APA StyleChampeecharoensuk, A., Dhakal, S., & Chollacoop, N. (2023). Climate Change Mitigation in Thailand’s Domestic Aviation: Mitigation Options Analysis towards 2050. Energies, 16(20), 7199. https://doi.org/10.3390/en16207199