Suitability Analysis Using GIS-Based Analytic Hierarchy Process (AHP) for Solar Power Exploration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Selection of Criteria and Acquisition of Data
2.2.1. Climatology Criteria (C1)
2.2.2. Location Criteria (C2)
2.2.3. Geographical Criteria (C3)
2.2.4. Meteorology Criteria (C4)
2.2.5. Disaster Susceptibility Criteria (C5)
2.3. AHP
2.4. Generation of Maps
2.5. Policy Restriction Parameters
2.5.1. Protected Areas (RP1)
2.5.2. Distance to Bodies of Water (RP2)
2.5.3. Distance from Faults (RP3)
2.5.4. Ancestral Domains (RP4)
2.5.5. Proclaimed Watershed (RP5)
2.5.6. Distance from Roads (RP6)
2.6. Development of Suitability Map
3. Results
3.1. Suitable Criteria Mapping
3.1.1. Climatology Criteria Mapping
3.1.2. Location Criteria Mapping
3.1.3. Geographical Criteria Mapping
3.1.4. Meteorological Criteria Mapping
3.1.5. Disaster Susceptibility Criteria Mapping
3.2. Policy-Restricted Parameters’ Mapping
3.3. AHP Evaluation
3.4. Solar Suitability Map
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Feature Class | Feature Weight |
---|---|---|
Climatology | ||
P1 | ≤18.00 | 1 |
18.00–20.00 | 2 | |
20.00–22.00 | 3 | |
22.00–24.00 | 4 | |
>24.00 | 5 | |
P2 | ≤1200 | 1 |
1200–1300 | 2 | |
1300–1400 | 3 | |
1400–1500 | 4 | |
>1500 | 5 | |
P3 | ≤1300 | 1 |
1300–1400 | 2 | |
1400–1500 | 3 | |
1500–1600 | 4 | |
>1600 | 5 | |
P4 | ≤1300 | 1 |
1300–1400 | 2 | |
1400–1500 | 3 | |
1500–1600 | 4 | |
>1600 | 5 | |
P5 | ≤730 | 1 |
730–760 | 2 | |
760–790 | 3 | |
790–820 | 4 | |
>820 | 5 | |
Location | ||
P6 | >1000 | 1 |
600–800 | 2 | |
400–600 | 3 | |
200–400 | 4 | |
0–200 | 5 | |
P7 | >1000 | 1 |
600–800 | 2 | |
400–600 | 3 | |
200–400 | 4 | |
0–200 | 5 | |
P8 | 0–100 | 1 |
100–200 | 2 | |
200–300 | 3 | |
300–400 | 4 | |
>500 | 5 | |
Environment | ||
P9 | >1200 | 1 |
750–1200 | 2 | |
450–750 | 3 | |
200–450 | 4 | |
0–200 | 5 | |
P10 | 0–1 | 5 |
1–2 | 2 | |
2–3 | 3 | |
3–4 | 4 | |
4–11 | 5 | |
>11 | 1 | |
P11 | Built-up | 1 |
Inland Water | 1 | |
Fishpond | 1 | |
Mangrove Forest | 1 | |
Closed Forest | 1 | |
Open Forest | 2 | |
Perennial Crop | 3 | |
Annual Crop | 4 | |
Brush-Shrubs | 4 | |
Grassland | 5 | |
Open-Barren | 5 | |
Meteorology | ||
P12 | ≤35.00 | 1 |
35.00–40.00 | 2 | |
40.00–45.00 | 3 | |
45.00–50.00 | 4 | |
>50.00 | 5 | |
P13 | ≤5.6813 | 5 |
5.6813–5.6884 | 4 | |
5.6884–5.6955 | 3 | |
5.6955–5.7026 | 2 | |
>5.7026 | 1 | |
Disaster Susceptibility | ||
P14 | High | 1 |
Moderate | 3 | |
Low | 4 | |
Very Low | 5 | |
P15 | Very High | 1 |
High | 2 | |
Moderate | 3 | |
Low | 5 |
Respondent | Field of Expertise/Projects | Agency/Institution/Project |
---|---|---|
1 | Associate Professor/GIS expert | University of the Philippines |
2 | Project Engineer | SUWECO (Sun West Corporation) Tablas Energy Corporation |
3 | Plant Manager | Solar Philippines Tarlac Corporation |
4 | Plant Supervisor | SUWECO (Sun West Corporation) Tablas Energy Corporation |
5 | Engineer/CHPC System Operator | Catingas Mini Hydro Power Corporation |
6 | Project Engineer | SUWECO (Sun West Corporation) Tablas Energy Corporation |
7 | Chief Operating Officer/Solar Broker and Designer | LMN Deavors, LLC |
8 | Instructor I/Civil Engineer/GIS Expert | Romblon State University/Risk Assessment Spatial Mapping |
9 | Assistant Professor/Visiting Researcher/Energy Management/ Sustainable Development | Uttara University |
10 | Ph.D., Architecture/ Prefabricated BIPV Design and Construction | National University of Singapore |
References
- Opeyemi, I.I.; Abayomi, A.S.; Suara, G. Site Suitability Assessment for Solar Photovoltaic Power Plant in FCT-Abuja, Nigeria: A Geographic Information System (GIS) and Analytical Hierarchy Process (AHP). World Sci. News 2022, 172, 88–104. [Google Scholar]
- Colak, H.E.; Memisoglu, T.; Gercek, Y. Optimal Site Selection for Solar Photovoltaic (PV) Power Plants Using GIS and AHP: A Case Study of Malatya Province, Turkey. Renew. Energy 2020, 149, 565–576. [Google Scholar] [CrossRef]
- Prieto-Amparán, J.A.; Pinedo-Alvarez, A.; Morales-Nieto, C.R.; Valles-Aragón, M.C.; Álvarez-Holguín, A.; Villarreal-Guerrero, F. A Regional Gis-Assisted Multi-Criteria Evaluation of Site-Suitability for the Development of Solar Farms. Land 2021, 10, 217. [Google Scholar] [CrossRef]
- Kocabaldir, C.; Yucel, M.A. GIS-Based Multi-Criteria Decision Analysis of Site Selection for Photovoltaic Power Plants in Çanakkale Province. Int. J. Environ. Geoinform. 2020, 7, 347–355. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Ghenaatpisheh Senani, A.; Fadaei, A.; Simaee, M.; Moltames, R. A Framework for GIS-Based Site Selection and Technical Potential Evaluation of PV Solar Farm Using Fuzzy-Boolean Logic and AHP Multi-Criteria Decision-Making Approach. Renew. Energy 2022, 186, 89–104. [Google Scholar] [CrossRef]
- Stephenson, M.H. Affordable and Clean Energy; Springer: Cham, Switzerland, 2021; pp. 159–182. [Google Scholar]
- Gašparović, I.; Gašparović, M. Determining Optimal Solar Power Plant Locations Based on Remote Sensing and GIS Methods: A Case Study from Croatia. Remote Sens. 2019, 11, 1481. [Google Scholar] [CrossRef]
- Hales, D. Renewables 2018, Global Status Report; REN21: Paris, France, 2018; ISBN 9783981891133. [Google Scholar]
- Noorollahi, E.; Fadai, D.; Shirazi, M.A.; Ghodsipour, S.H. Land Suitability Analysis for Solar Farms Exploitation Using GIS and Fuzzy Analytic Hierarchy Process (FAHP)—A Case Study of Iran. Energies 2016, 9, 643. [Google Scholar] [CrossRef]
- Suprova, N.T.; Zidan, R.; Rashid, A.R.M.H. Optimal Site Selection for Solar Farms Using GIS and AHP: A Literature Review. In Proceedings of the International Conference on Industrial & Mechanical Engineering and Operations Management, Dhaka, Bangladesh, 26–27 December 2020; pp. 1–13. [Google Scholar]
- Halder, B.; Banik, P.; Almohamad, H.; Al Dughairi, A.A.; Al-Mutiry, M.; Al Shahrani, H.F.; Abdo, H.G. Land Suitability Investigation for Solar Power Plant Using GIS, AHP and Multi-Criteria Decision Approach: A Case of Megacity Kolkata, West Bengal, India. Sustainability 2022, 14, 11276. [Google Scholar] [CrossRef]
- Zawilska, E.; Brooks, M.J. An Assessment of the Solar Resource for Durban, South Africa. Renew. Energy 2011, 36, 3433–3438. [Google Scholar] [CrossRef]
- Hassaan, M.A.; Hassan, A.; Al-Dashti, H. GIS-Based Suitability Analysis for Siting Solar Power Plants in Kuwait. Egypt. J. Remote Sens. Space Sci. 2021, 24, 453–461. [Google Scholar] [CrossRef]
- Rahmat, M.A.A.; Abd Hamid, A.S.; Lu, Y.; Ishak, M.A.A.; Suheel, S.Z.; Fazlizan, A.; Ibrahim, A. An Analysis of Renewable Energy Technology Integration Investments in Malaysia Using HOMER Pro. Sustainability 2022, 14, 13684. [Google Scholar] [CrossRef]
- Koc, A.; Turk, S.; Şahin, G. Multi-Criteria of Wind-Solar Site Selection Problem Using a GIS-AHP-Based Approach with an Application in Igdir Province/Turkey. Environ. Sci. Pollut. Res. 2019, 26, 32298–32310. [Google Scholar] [CrossRef] [PubMed]
- Galvan, J.P.D. Suitability Analysis for Solar Energy System Development Using GIS and AHP in Cagayan Province, Philippines. Mindanao J. Sci. Technol. 2021, 19, 107–125. [Google Scholar] [CrossRef]
- Alhammad, A.; Sun, Q.; Yaguang, T. Optimal Solar Plant Site Identification Using GIS and Remote. Energies 2022, 15, 312. [Google Scholar] [CrossRef]
- Guaita-Pradas, I.; Marques-Perez, I.; Gallego, A.; Segura, B. Analyzing Territory for the Sustainable Development of Solar Photovoltaic Power Using GIS Databases. Environ. Monit. Assess. 2019, 191, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, C.; Shao, L.; Meng, J.; Zhang, L.; Chen, G. Is Solar Power Renewable and Carbon-Neutral: Evidence from a Pilot Solar Tower Plant in China under a Systems View. Renew. Sustain. Energy Rev. 2021, 138, 110655. [Google Scholar] [CrossRef]
- Elboshy, B.; Alwetaishi, M.; Aly, R.M.H.; Zalhaf, A.S. A Suitability Mapping for the PV Solar Farms in Egypt Based on GIS-AHP to Optimize Multi-Criteria Feasibility. Ain Shams Eng. J. 2022, 13, 101618. [Google Scholar] [CrossRef]
- Kirpichnikova, I.M.; Shestakova, V. Problems of Using Solar Photovoltaic Panels and Ways to Increase Their Efficiency. In Proceedings of the 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russia, 18–22 May 2020. [Google Scholar]
- Sward, J.A.; Nilson, R.S.; Katkar, V.V.; Stedman, R.C.; Kay, D.L.; Ifft, J.E.; Zhang, K.M. Integrating Social Considerations in Multicriteria Decision Analysis for Utility-Scale Solar Photovoltaic Siting. Appl. Energy 2021, 288, 116543. [Google Scholar] [CrossRef]
- Al Garni, H.Z.; Awasthi, A. Solar PV Power Plant Site Selection Using a GIS-AHP Based Approach with Application in Saudi Arabia. Appl. Energy 2017, 206, 1225–1240. [Google Scholar] [CrossRef]
- Lindenbaum, S. GIS/Mapping Case Studies; Open Society Institute: San Francisco, CA, USA, 2006. [Google Scholar]
- Adedeji, P.A.; Akinlabi, S.A.; Madushele, N.; Olatunji, O.O. Neuro-Fuzzy Resource Forecast in Site Suitability Assessment for Wind and Solar Energy: A Mini Review. J. Clean. Prod. 2020, 269, 122104. [Google Scholar] [CrossRef]
- Nebey, A.H.; Taye, B.Z.; Workineh, T.G. Site Suitability Analysis of Solar PV Power Generation in South Gondar, Amhara Region. J. Energy 2020, 2020, 3519257. [Google Scholar] [CrossRef]
- Habib, S.M.; El-Raie Emam Suliman, A.; Al Nahry, A.H.; Abd El Rahman, E.N. Spatial Modeling for the Optimum Site Selection of Solar Photovoltaics Power Plant in the Northwest Coast of Egypt. Remote Sens. Appl. Soc. Environ. 2020, 18, 100313. [Google Scholar] [CrossRef]
- Taoufik, M.; Laghlimi, M.; Fekri, A. Land Suitability Analysis for Solar Farms Exploitation Using the GIS and Analytic Hierarchy Process (AHP)—A Case Study of Morocco. Polityka Energ. 2021, 24, 79–96. [Google Scholar] [CrossRef]
- Hossain, M.; Mekhilef, S.; Afifi, F.; Halabi, L.M.; Olatomiwa, L.; Seyedmahmoudian, M.; Horan, B.; Stojcevski, A. Application of the Hybrid ANFIS Models for Long Term Wind Power Density Prediction with Extrapolation Capability. PLoS ONE 2018, 13, e0193772. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.R.; Kalavathi, M.S. Artificial Intelligence Based Forecast Models for Predicting Solar Power Generation. Mater. Today Proc. 2018, 5, 796–802. [Google Scholar] [CrossRef]
- Wang, C.; Yang, F.; Minh, T.; Vo, N.; Nguyen, V.T.T. Applied Sciences Enhancing Efficiency and Cost-Effectiveness: A Groundbreaking Bi-Algorithm MCDM Approach. Appl. Sci. 2023, 13, 9105. [Google Scholar] [CrossRef]
- Munkhbat, U.; Choi, Y. Gis-Based Site Suitability Analysis for Solar Power Systems in Mongolia. Appl. Sci. 2021, 11, 3748. [Google Scholar] [CrossRef]
- Yankiv-Vitkovska, L.; Peresunko, B.; Wyczałek, I.; Papis, J. Site Selection for Solar Power Plant in Zaporizhia City (Ukraine). Geod. Cartogr. 2020, 69, 97–116. [Google Scholar]
- Nguyen, V.T.T.; Wang, C.N.; Yang, F.C.; Vo, T.M.N. Efficiency Evaluation of Cyber Security Based on EBM-DEA Model. Eurasia Proc. Sci. Technol. Eng. Math. 2022, 17, 38–44. [Google Scholar] [CrossRef]
- Wang, C.-N.; Yang, F.-C.; Vo, N.T.M.; Nguyen, V.T.T. Enhancing Lithium-Ion Battery Manufacturing Efficiency: A Comparative Analysis Using DEA Malmquist and Epsilon-Based Measures. Batteries 2023, 9, 317. [Google Scholar] [CrossRef]
- Gacu, J.G.; Monjardin, C.E.F.; de Jesus, K.L.M.; Senoro, D.B. GIS-Based Risk Assessment of Structure Attributes in Flood Zones of Odiongan, Romblon, Philippines. Buildings 2023, 13, 506. [Google Scholar] [CrossRef]
- Shao, Z.; Jahangir, Z.; Yasir, Q.M. Identification of potential sites for a multi-purpose dam using a dam suitability stream model. Water 2020, 12, 3249. [Google Scholar] [CrossRef]
- Atmaca, E.; Aktaş, E.; Öztürk, H.N. Evaluated Post-Disaster and Emergency Assembly Areas Using Multi-Criteria Decision-Making Techniques: A Case Study of Turkey. Sustainability 2023, 15, 8350. [Google Scholar] [CrossRef]
- Dang, T.T.; Nguyen, N.A.T.; Nguyen, V.T.T.; Dang, L.T.H. A Two-Stage Multi-Criteria Supplier Selection Model for Sustainable Automotive Supply Chain under Uncertainty. Axioms 2022, 11, 228. [Google Scholar] [CrossRef]
- Yilmaz, I. A Hybrid DEA–Fuzzy COPRAS Approach to the Evaluation of Renewable Energy: A Case of Wind Farms in Turkey. Sustainability 2023, 15, 11267. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Jiang, L.; Liu, X.; Tong, Z.; Buildings, M.G.D.; Assessment, R.; Marín-García, D.; Rubio-Gómez-Torga, J.; Pinheiro, M.D.; et al. Vulnerability Assessment of Residential Buildings in Jeddah: A Methodological Proposal. Int. J. Disaster Risk Reduct. 2022, 14, 102602. [Google Scholar]
- Trojanowska, M.; Nęcka, K. Selection of the Multiple-Criiater Decision-Making Method for Evaluation of Sustainable Energy Development: A Case Study of Poland. Energies 2020, 13, 6321. [Google Scholar] [CrossRef]
- Yolcu, A. Bipolar Spherical Fuzzy Soft Topology with Applications to Multi-Criteria Group Decision-Making in Buildings Risk Assessment. Symmetry 2022, 14, 2362. [Google Scholar] [CrossRef]
- Ekmekcioğlu, Ö.; Koc, K.; Özger, M. Stakeholder Perceptions in Flood Risk Assessment: A Hybrid Fuzzy AHP-TOPSIS Approach for Istanbul, Turkey. Int. J. Disaster Risk Reduct. 2021, 60, 102327. [Google Scholar] [CrossRef]
- Rafiei-Sardooi, E.; Azareh, A.; Choubin, B.; Mosavi, A.H.; Clague, J.J. Evaluating Urban Flood Risk Using Hybrid Method of TOPSIS and Machine Learning. Int. J. Disaster Risk Reduct. 2021, 66, 102614. [Google Scholar] [CrossRef]
- Mekonnen, A.D. Wind Farm Site Suitability Analysis in Lake Erie Using Web-Based Participatory GIS (PGIS). Ph.D Thesis, Bowling Green State University, Bowling Green, OH, USA, 2014. [Google Scholar]
- Azizi, A.; Malekmohammadi, B.; Jafari, H.R.; Nasiri, H.; Amini Parsa, V. Land Suitability Assessment for Wind Power Plant Site Selection Using ANP-DEMATEL in a GIS Environment: Case Study of Ardabil Province, Iran. Environ. Monit. Assess. 2014, 186, 6695–6709. [Google Scholar] [CrossRef] [PubMed]
- Karimimoshaver, M.; Hajivaliei, H.; Shokri, M.; Khalesro, S.; Aram, F.; Shamshirband, S. A Model for Locating Tall Buildings through a Visual Analysis Approach. Appl. Sci. 2020, 10, 6072. [Google Scholar] [CrossRef]
- Li, R.; Huang, S.; Dou, H. Dynamic Risk Assessment of Landslide Hazard for Large-Scale Photovoltaic Power Plants under Extreme Rainfall Conditions. Water 2023, 15, 2832. [Google Scholar] [CrossRef]
- Al-harbi, K.M.A. The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 45, 378. [Google Scholar]
- Vaidya, O.S.; Kumar, S. Analytic Hierarchy Process: An Overview of Applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Hur Pintor, B.; Fae Sola, E.; Teves, J.; Camille Inocencio, L.; Rosario Concepcion Ang, M.; Hur, B.; Fae, E.; Camille, L.; Rosario, M. Solar energy resource assessment using R.SUN in GRASS GIS and site suitability analysis using AHP for groundmounted solar photovoltaic (PV) farm in the central Luzon region (Region 3), Philippines. Free. Open Source Softw. Geospat. FOSS4G Conf. Proc. 2015, 15, 3. [Google Scholar]
- Romblon Energy Plan 2018–2040. 2018. Available online: https://www.doe.gov.ph/sites/default/files/pdf/pep/Romblon%20Energy%20Plan%202018-2040%20%2820211102%29.pdf (accessed on 30 August 2023).
- Gacu, J.G.; Sim, A.A.M. Effect of Marble Microparticles as Additive on the Physical and Mechanical Properties of Concrete Mixes. Mater. Today Proc. 2022, 65, 1491–1497. [Google Scholar] [CrossRef]
- Almasad, A.; Pavlak, G.; Alquthami, T.; Kumara, S. Site Suitability Analysis for Implementing Solar PV Power Plants Using GIS and Fuzzy MCDM Based Approach. Sol. Energy 2023, 249, 642–650. [Google Scholar] [CrossRef]
- Levosada, A.T.A.; Ogena, R.P.T.; Santos, J.R.V.; Danao, L.A.M. Mapping of Suitable Sites for Concentrated Solar Power Plants in the Philippines Using Geographic Information System and Analytic Hierarchy Process. Sustainability 2022, 14, 12260. [Google Scholar] [CrossRef]
- Tahir, Z.R.; Asim, M. Surface Measured Solar Radiation Data and Solar Energy Resource Assessment of Pakistan: A Review. Renew. Sustain. Energy Rev. 2018, 81, 2839–2861. [Google Scholar] [CrossRef]
- Kwishaka, D.U.; Mwizerwa, F.; Hakizimana, J.d.D. Geospatial Analysis of Site Suitability for Solar Photovoltaic (PV) in Rwanda. Rwanda J. Eng. Sci. Technol. Environ. 2022, 4. Available online: https://www.ajol.info/index.php/rjeste/article/view/221047 (accessed on 30 August 2023).
- Vagiona, D.G.; Tzekakis, G.; Loukogeorgaki, E.; Karanikolas, N. Site Selection of Offshore Solar Farm Deployment in the Aegean Sea, Greece. J. Mar. Sci. Eng. 2022, 10, 224. [Google Scholar] [CrossRef]
- Hao, K.; Ialnazov, D.; Yamashiki, Y. GIS Analysis of Solar PV Locations and Disaster Risk Areas in Japan. Front. Sustain. 2021, 2, 815986. [Google Scholar] [CrossRef]
- Yousefi, H.; Hafeznia, H.; Yousefi-Sahzabi, A. Spatial Site Selection for Solar Power Plants Using a Gis-Based Boolean-Fuzzy Logic Model: A Case Study of Markazi Province, Iran. Energies 2018, 11, 1648. [Google Scholar] [CrossRef]
- Choi, Y.; Suh, J.; Kim, S.M. GIS-Based Solar Radiation Mapping, Site Evaluation, and Potential Assessment: A Review. Appl. Sci. 2019, 9, 1960. [Google Scholar] [CrossRef]
- Saaty, T.L.; Ozdemir, M. Rank from Comparisons and from Ratings in the Analytic Hierarchy/Network Processes. Eur. J. Oper. Res. 2006, 168, 557–570. [Google Scholar] [CrossRef]
- Gacu, J.G.; Monjardin, C.E.F.; Senoro, D.B.; Tan, F.J. Flood Risk Assessment Using GIS-Based Analytical Hierarchy Process in the Municipality of Odiongan, Romblon, Philippines. Appl. Sci. 2022, 12, 9456. [Google Scholar] [CrossRef]
- Monjardin, C.E.F.; Tan, F.J.; Uy, F.A.A.; Bale, F.J.P.; Voluntad, E.O.; Batac, R.M.N. Assessment of the Existing Drainage System in Infanta, Quezon Province for Flood Hazard Management Using Analytical Hierarchy Process. In Proceedings of the IEEE Conference on Technologies for Sustainability (SusTech), Santa Ana, CA, USA, 23–25 April 2020. [Google Scholar]
- Cabrera, J.S.; Lee, H.S. Flood-Prone Area Assessment Using GIS-Based Multi-Criteria Analysis: A Case Study in Davao Oriental, Philippines. Water 2019, 11, 2203. [Google Scholar] [CrossRef]
- Lyu, H.M.; Sun, W.J.; Shen, S.L.; Arulrajah, A. Flood Risk Assessment in Metro Systems of Mega-Cities Using a GIS-Based Modeling Approach. Sci. Total Environ. 2018, 626, 1012–1025. [Google Scholar] [CrossRef]
- Günen, M.A. A Comprehensive Framework Based on GIS-AHP for the Installation of Solar PV Farms in Kahramanmaraş, Turkey. Renew. Energy 2021, 178, 212–225. [Google Scholar] [CrossRef]
- Aldridge, C.; Baker, B. Watersheds: Role, Importance, & Stewardship. 2017. Available online: http://extension.msstate.edu/publications/watersheds-role-importance-stewardship (accessed on 30 August 2023).
- Piirisaar, I. A Multi-Criteria {GIS} Analysis for Siting of Utility-Scale Photovoltaic Solar Plants in County Kilkenny, Ireland. Master’s Thesis, Lund University, Lund, Sweden, 2019. [Google Scholar]
- Power Philippines News DOE: Solar Farms to “Eat” Agri Lands | Power Philippines. Available online: https://powerphilippines.com/doe-solar-farms-to-eat-agri-lands/ (accessed on 29 August 2023).
- Department of Energy. Philippine Energy Plan 2020–2040; Department of Energy: Taguig, Philippines, 2020.
- Yang, D.; Wang, W.; Xia, X. A Concise Overview on Solar Resource Assessment and Forecasting. Adv. Atmos. Sci. 2022, 39, 1239–1251. [Google Scholar] [CrossRef]
- Zorzano-Alba, E.; Fernandez-Jimenez, L.A.; Garcia-garrido, E.; Lara-santillan, P.M.; Falces, A.; Zorzano-santamaria, P.J.; Capellan-villacian, C.; Mendoza-villena, M. Visibility Assessment of New Photovoltaic Power Plants in Areas with Special Landscape Value. Appl. Sci. 2022, 12, 703. [Google Scholar] [CrossRef]
- Kesler, S.; Kivrak, S.; Gurleyen, H.; Dincer, F.; Yilmaz, S.; Ozcalik, H.R. A Low Cost Shading Analyzer and Site Evaluator Design to Determine Solar Power System Installation Area. Int. J. Photoenergy 2015, 2015, 126373. [Google Scholar] [CrossRef]
- Mokarram, M.; Mokarram, M.J.; Khosravi, M.R.; Saber, A.; Rahideh, A. Determination of the Optimal Location for Constructing Solar Photovoltaic Farms Based on Multi-Criteria Decision System and Dempster–Shafer Theory. Sci. Rep. 2020, 10, 8200. [Google Scholar] [CrossRef] [PubMed]
- Hissou, H.; Benkirane, S.; Guezzaz, A.; Azrour, M. A Novel Machine Learning Approach for Solar Radiation Estimation. Sustainability 2023, 15, 10609. [Google Scholar] [CrossRef]
- Tunc, A.; Tuncay, G.; Alacakanat, Z.; Sevimli, F.S. Gis Based Solar Power Plants Site Selection Using Analytic Hierarchy Process (Ahp) in Istanbul, Turkey. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2019, 42, 1353–1360. [Google Scholar] [CrossRef]
- Tahri, M.; Hakdaoui, M.; Maanan, M. The Evaluation of Solar Farm Locations Applying Geographic Information System and Multi-Criteria Decision-Making Methods: Case Study in Southern Morocco. Renew. Sustain. Energy Rev. 2015, 51, 1354–1362. [Google Scholar] [CrossRef]
- Javadi, F.S.; Rismanchi, B.; Sarraf, M.; Afshar, O.; Saidur, R.; Ping, H.W.; Rahim, N.A. Global Policy of Rural Electrification. Renew. Sustain. Energy Rev. 2013, 19, 402–416. [Google Scholar] [CrossRef]
- Tercan, E.; Eymen, A.; Urfalı, T.; Saracoglu, B.O. A Sustainable Framework for Spatial Planning of Photovoltaic Solar Farms Using GIS and Multi-Criteria Assessment Approach in Central Anatolia, Turkey. Land Use Policy 2021, 102, 105272. [Google Scholar] [CrossRef]
- Mwanza, M.; Ulgen, K. GIS-Based Assessment of Solar Energy Harvesting Sites and Electricity Generation Potential in Zambia; Springer: Cham, Switzerland, 2021; ISBN 9783030451066. [Google Scholar]
- Soydan, O. Solar Power Plants Site Selection for Sustainable Ecological Development in Nigde, Turkey. SN Appl. Sci. 2021, 3, 41. [Google Scholar] [CrossRef]
- Kristia, K.; Rabbi, M.F. Exploring the Synergy of Renewable Energy in the Circular Economy Framework: A Bibliometric Study. Sustainability 2023, 15, 13165. [Google Scholar] [CrossRef]
Code | Parameters | Source of Data | Duration/ Year | References |
---|---|---|---|---|
C1 | Climatology Criteria | |||
P1 | Temperature (T) | Raster File from Global Solar Atlas Website (https://globalsolaratlas.info/ accessed on 5 April 2023) | 2022 | [1,9,10,13,20,23,28,32,55] |
P2 | Solar Photovoltaic Power Output (SPVPO) | [17,23] | ||
P3 | Direct Normal Irradiation (DNI) | [12,56,57] | ||
P4 | Global Horizontal Irradiation (GHI) | [1,12,13,20,28,52,57,58] | ||
P5 | Diffuse Horizontal Irradiation (DHI) | [12,57] | ||
C2 | Location Criteria | |||
P6 | Distance from Roads (DFR) | Shapefile from the Department of Public Works and Highway (DPWH) | 2020 | [1,10,13,17,55,58] |
P7 | Distance from Transmission Lines (DTL) | Spreadsheet from ROMELCO | 2022 | [9,13,17,20,23,28,55,58] |
P8 | Distance from Coastal Areas (DCA) | Shapefile traced from Google Earth | 2019 | [10,23,59] |
C3 | Geographical Criteria | |||
P9 | Elevation (E) | Digital Terrain Model (DTM) with 5 m × 5 m resolution from National Mapping and Resource Information Authority (NAMRIA) | 2013 | [1,9,20,22,23,28,32] |
P10 | Slope (S) | [1,5,13,17,20,22,23,28,52,55] | ||
P11 | Land Cover (LC) | Shapefile form NAMRIA | 2019 | [5,10,20,22,23,26,28,52,58] |
C4 | Meteorology Criteria | |||
P12 | Relative Humidity (RH) | Spreadsheet file from DOST-PAGASA | 2022 | [5,10,13] |
P13 | Average Annual Cloud Cover (AACC) | [5,20] | ||
C5 | Disaster Susceptibility Criteria | |||
P14 | Flood Susceptibility (FS) | Shapefile from DENR—Mines and Geosciences Bureau (MGB) | 2019 | [22,60] |
P15 | Landslide Susceptibility (LS) | [22,52] |
Criteria | Parameters | Final Weights (%) |
---|---|---|
C1 | P1 | 25.170 |
P2 | 6.187 | |
P3 | 17.422 | |
P4 | 20.524 | |
P5 | 30.696 | |
C2 | P6 | 28.486 |
P7 | 13.288 | |
P8 | 58.226 | |
C3 | P9 | 41.379 |
P10 | 29.929 | |
P11 | 28.693 | |
C4 | P12 | 87.863 |
P13 | 12.137 | |
C5 | P14 | 61.994 |
P15 | 38.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gacu, J.G.; Garcia, J.D.; Fetalvero, E.G.; Catajay-Mani, M.P.; Monjardin, C.E.F. Suitability Analysis Using GIS-Based Analytic Hierarchy Process (AHP) for Solar Power Exploration. Energies 2023, 16, 6724. https://doi.org/10.3390/en16186724
Gacu JG, Garcia JD, Fetalvero EG, Catajay-Mani MP, Monjardin CEF. Suitability Analysis Using GIS-Based Analytic Hierarchy Process (AHP) for Solar Power Exploration. Energies. 2023; 16(18):6724. https://doi.org/10.3390/en16186724
Chicago/Turabian StyleGacu, Jerome G., Junrey D. Garcia, Eddie G. Fetalvero, Merian P. Catajay-Mani, and Cris Edward F. Monjardin. 2023. "Suitability Analysis Using GIS-Based Analytic Hierarchy Process (AHP) for Solar Power Exploration" Energies 16, no. 18: 6724. https://doi.org/10.3390/en16186724
APA StyleGacu, J. G., Garcia, J. D., Fetalvero, E. G., Catajay-Mani, M. P., & Monjardin, C. E. F. (2023). Suitability Analysis Using GIS-Based Analytic Hierarchy Process (AHP) for Solar Power Exploration. Energies, 16(18), 6724. https://doi.org/10.3390/en16186724