Anomaly Detection in Power System State Estimation: Review and New Directions
Abstract
:1. Introduction
- Providing a history of legacy bad data detection and error types in power system state estimation and the connection to newer detection approaches and cyber-attack types.
- Surveying various sources of state estimation cyber-threats and the challenges they pose to anomaly detection schemes.
- An overview of newer approaches for anomaly detection based on quickest-change detection and AI.
- Considerations for future research, including the incorporation of dynamic load profiles, autocorrelated data, and asynchronous measurements.
2. Power System State Estimation
2.1. Static State Estimation
2.2. Dynamic State Estimation
3. Bad Data Types and Considerations
3.1. Measurement Error
3.2. Parameter Error
3.3. Topology Error
4. Bad Data Detection
4.1. Chi-Squared Test
4.2. Residual-Based Methods
4.3. Hypothesis Testing
- H0: is a valid measurement.
- H1: is a measurement in error.
5. When Bad Data Become Malicious
6. Recent Approaches
6.1. Quickest-Change Detection
- H0: X has pdf p.
- H1: X has pdf q.
6.2. AI Approaches
7. Conclusions and Suggestions for Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schweppe, F.C.; Wildes, J. Power System Static-State Estimation, Part I: Exact Model. IEEE Trans. Power Appar. Syst. 1970, PAS-89, 120–125. [Google Scholar] [CrossRef]
- Filho, M.; da Silva, A.; Falcao, D. Bibliography on power system state estimation (1968–1989). IEEE Trans. Power Syst. 1990, 5, 950–961. [Google Scholar] [CrossRef]
- Schellstede, G.; Beissler, G. A Software Package for Security Assessment Functions. In Power Systems and Power Plant Control; Pingyang, W., Ed.; IFAC Symposia Series; Pergamon: Oxford, UK, 1987; pp. 277–284. [Google Scholar] [CrossRef]
- Merrill, H.M.; Schweppe, F.C. Bad Data Suppression in Power System Static State Estimation. IEEE Trans. Power Appar. Syst. 1971, PAS-90, 2718–2725. [Google Scholar] [CrossRef]
- Handschin, E.; Schweppe, F.; Kohlas, J.; Fiechter, A. Bad data analysis for power system state estimation. IEEE Trans. Power Appar. Syst. 1975, 94, 329–337. [Google Scholar] [CrossRef]
- Monticelli, A. State Estimation in Electric Power Systems: A Generalized Approach; Springer: Berlin, Germany, 2012. [Google Scholar]
- Abur, A.; Expósito, A.G. Power System State Estimation: Theory and Implementation, 1st ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Bretas, A.; Bretas, N.; London, J.B., Jr.; Carvalho, B. Cyber-Physical Power Systems State Estimation; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Zhao, J.; Gómez-Expósito, A.; Netto, M.; Mili, L.; Abur, A.; Terzija, V.; Kamwa, I.; Pal, B.; Singh, A.K.; Qi, J.; et al. Power System Dynamic State Estimation: Motivations, Definitions, Methodologies, and Future Work. IEEE Trans. Power Syst. 2019, 34, 3188–3198. [Google Scholar] [CrossRef]
- Phadke, A. Synchronized phasor measurements-a historical overview. In Proceedings of the IEEE/PES Transmission and Distribution Conference and Exhibition, Yokohama, Japan, 6–10 October 2002; Volume 1, pp. 476–479. [Google Scholar] [CrossRef]
- Liu, Y.; Ning, P.; Reiter, M.K. False Data Injection Attacks against State Estimation in Electric Power Grids. ACM Trans. Inf. Syst. Secur. 2011, 14, 1–33. [Google Scholar] [CrossRef]
- Musleh, A.S.; Chen, G.; Dong, Z.Y. A Survey on the Detection Algorithms for False Data Injection Attacks in Smart Grids. IEEE Trans. Smart Grid 2020, 11, 2218–2234. [Google Scholar] [CrossRef]
- Bretas, N.G.; Bretas, A.S. The Extension of the Gauss Approach for the Solution of an Overdetermined Set of Algebraic Non Linear Equations. IEEE Trans. Circuits Syst. Ii Express Briefs 2018, 65, 1269–1273. [Google Scholar] [CrossRef]
- Kalman, R.E.; Bucy, R.S. New Results in Linear Filtering and Prediction Theory. J. Basic Eng. 1961, 83, 95–108. [Google Scholar] [CrossRef]
- Zhao, J.; Singh, A.K.; Mir, A.S.; Taha, A.; Rouhani, A.; Gomez-Exposito, A.; Meliopoulos, A.; Pal, B.; Kamwa, I.; Qi, J.; et al. Power System Dynamic State and Parameter Estimation-Transition to Power Electronics-Dominated Clean Energy Systems: IEEE Task Force on Power System Dynamic State and Parameter Estimation; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Liu, Y.; Singh, A.K.; Zhao, J.; Meliopoulos, A.P.S.; Pal, B.; Ariff, M.A.b.M.; Van Cutsem, T.; Glavic, M.; Huang, Z.; Kamwa, I.; et al. Dynamic State Estimation for Power System Control and Protection. IEEE Trans. Power Syst. 2021, 36, 5909–5921. [Google Scholar] [CrossRef]
- Bretas, N. An iterative dynamic state estimation and bad data processing. Int. J. Electr. Power Energy Syst. 1989, 11, 70–74. [Google Scholar] [CrossRef]
- Debs, A.S.; Larson, R.E. A Dynamic Estimator for Tracking the State of a Power System. IEEE Trans. Power Appar. Syst. 1970, PAS-89, 1670–1678. [Google Scholar] [CrossRef]
- Nishiya, K.I.; Takagi, H.; Hasegawa, J.; Koike, T. Dynamic state estimation for electric power systems—introduction of a trend factor and detection of innovation processes. Electr. Eng. Jpn. 1976, 96, 79–87. [Google Scholar] [CrossRef]
- Nishiya, K.; Hasegawa, J.; Koike, T. Dynamic state estimation including anomaly detection and identification for power systems. IEE Proc. Gener. Transm. Distrib. 1982, 129, 192–198. [Google Scholar] [CrossRef]
- Bretas, A.S.; Bretas, N.G.; Massignan, J.A.D.; London Junior, J.B.A. Hybrid Physics-Based Adaptive Kalman Filter State Estimation Framework. Energies 2021, 14, 6787. [Google Scholar] [CrossRef]
- Jin, Z.; Zhao, J.; Ding, L.; Chakrabarti, S.; Gryazina, E.; Terzija, V. Power system anomaly detection using innovation reduction properties of iterated extended kalman filter. Int. J. Electr. Power Energy Syst. 2022, 136, 107613. [Google Scholar] [CrossRef]
- Mili, L.; Phaniraj, V.; Rousseeuw, P. Least median of squares estimation in power systems. IEEE Trans. Power Syst. 1991, 6, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Celik, M.; Abur, A. A robust WLAV state estimator using transformations. IEEE Trans. Power Syst. 1992, 7, 106–113. [Google Scholar] [CrossRef]
- Majumdar, A.; Pal, B.C. Bad Data Detection in the Context of Leverage Point Attacks in Modern Power Networks. IEEE Trans. Smart Grid 2018, 9, 2042–2054. [Google Scholar] [CrossRef]
- Mili, L.; Cheniae, M.; Vichare, N.; Rousseeuw, P. Robust state estimation based on projection statistics [of power systems]. IEEE Trans. Power Syst. 1996, 11, 1118–1127. [Google Scholar] [CrossRef]
- Zhao, J.; Mili, L. Vulnerability of the Largest Normalized Residual Statistical Test to Leverage Points. IEEE Trans. Power Syst. 2018, 33, 4643–4646. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, J.; Huang, Z.; Diao, R. Assessing Gaussian Assumption of PMU Measurement Error Using Field Data. IEEE Trans. Power Deliv. 2018, 33, 3233–3236. [Google Scholar] [CrossRef]
- Huang, C.; Thimmisetty, C.; Chen, X.; Stewart, E.; Top, P.; Korkali, M.; Donde, V.; Tong, C.; Min, L. Power Distribution System Synchrophasor Measurements with Non-Gaussian Noises: Real-World Data Testing and Analysis. IEEE Open Access J. Power Energy 2021, 8, 223–228. [Google Scholar] [CrossRef]
- Zarco, P.; Exposito, A. Power system parameter estimation: A survey. IEEE Trans. Power Syst. 2000, 15, 216–222. [Google Scholar] [CrossRef]
- Stuart, T.A.; Herczet, C.J. A Sensitivity Analysis of Weighted Least Squares State Estimation for Power Systems. IEEE Trans. Power Appar. Syst. 1973, PAS-92, 1696–1701. [Google Scholar] [CrossRef]
- Bretas, A.S.; Bretas, N.G.; Carvalho, B.E. Further contributions to smart grids cyber-physical security as a malicious data attack: Proof and properties of the parameter error spreading out to the measurements and a relaxed correction model. Int. J. Electr. Power Energy Syst. 2019, 104, 43–51. [Google Scholar] [CrossRef]
- Liu, W.H.E.; Lim, S.L. Parameter error identification and estimation in power system state estimation. IEEE Trans. Power Syst. 1995, 10, 200–209. [Google Scholar] [CrossRef]
- Costa, I.; Leao, J. Identification of topology errors in power system state estimation. IEEE Trans. Power Syst. 1993, 8, 1531–1538. [Google Scholar] [CrossRef]
- Wu, F.; Liu, W.H. Detection of topology errors by state estimation (power systems). IEEE Trans. Power Syst. 1989, 4, 176–183. [Google Scholar] [CrossRef]
- Korres, G.N.; Manousakis, N.M. A state estimation algorithm for monitoring topology changes in distribution systems. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Koglin, H.J.; Neisius, T.; Beiβler, G.; Schmitt, K. Bad data detection and identification. Int. J. Electr. Power Energy Syst. 1990, 12, 94–103. [Google Scholar] [CrossRef]
- Clements, K.A.; Davis, P.W. Multiple Bad Data Detectability and Identifiability: A Geometric Approach. IEEE Trans. Power Deliv. 1986, 1, 355–360. [Google Scholar] [CrossRef]
- Cutsem, T.V.; Ribbens-Pavella, M.; Mili, L. Hypothesis Testing Identification: A New Method For Bad Data Analysis In Power System State Estimation. IEEE Trans. Power Appar. Syst. 1984, PAS-103, 3239–3252. [Google Scholar] [CrossRef]
- Mili, L.; Van Cutsem, T.; Ribbens-Pavella, M. Decision Theory Applied to Bad Data Identification in Power System State Estimation. In Proceedings of the 7th IFAC/IFORS Symposium on Identification and System Parameter Estimation, York, UK, 3–7 July 1985; Volume 18, pp. 945–950. [Google Scholar] [CrossRef]
- Mili, L.; Van Cutsem, T. Implementation of the hypothesis testing identification in power system state estimation. IEEE Trans. Power Syst. 1988, 3, 887–893. [Google Scholar] [CrossRef]
- Lourenco, E.; Costa, A.; Clements, K. Bayesian-based hypothesis testing for topology error identification in generalized state estimation. IEEE Trans. Power Syst. 2004, 19, 1206–1215. [Google Scholar] [CrossRef]
- Wu, W.B.; Cheng, M.X.; Gou, B. A Hypothesis Testing Approach for Topology Error Detection in Power Grids. IEEE Int. Things J. 2016, 3, 979–985. [Google Scholar] [CrossRef]
- Xie, L.; Mo, Y.; Sinopoli, B. Integrity Data Attacks in Power Market Operations. IEEE Trans. Smart Grid 2011, 2, 659–666. [Google Scholar] [CrossRef]
- Amin, S.; Cárdenas, A.A.; Sastry, S.S. Safe and Secure Networked Control Systems under Denial-of-Service Attacks. In Proceedings of the Hybrid Systems: Computation and Control, San Francisco, CA, USA, 13–15 April 2009; Majumdar, R., Tabuada, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 31–45. [Google Scholar]
- Kim, J.; Tong, L. On Topology Attack of a Smart Grid: Undetectable Attacks and Countermeasures. IEEE J. Sel. Areas Commun. 2013, 31, 1294–1305. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z. Local Topology Attacks in Smart Grids. IEEE Trans. Smart Grid 2017, 8, 2617–2626. [Google Scholar] [CrossRef]
- Liang, G.; Weller, S.R.; Luo, F.; Zhao, J.; Dong, Z.Y. Generalized FDIA-Based Cyber Topology Attack with Application to the Australian Electricity Market Trading Mechanism. IEEE Trans. Smart Grid 2018, 9, 3820–3829. [Google Scholar] [CrossRef]
- Kosut, O.; Jia, L.; Thomas, R.J.; Tong, L. Malicious Data Attacks on Smart Grid State Estimation: Attack Strategies and Countermeasures. In Proceedings of the 2010 First IEEE International Conference on Smart Grid Communications, Gaithersburg, MD, USA, 4–6 October 2010; pp. 220–225. [Google Scholar] [CrossRef]
- Hug, G.; Giampapa, J.A. Vulnerability Assessment of AC State Estimation with Respect to False Data Injection Cyber-Attacks. IEEE Trans. Smart Grid 2012, 3, 1362–1370. [Google Scholar] [CrossRef]
- Nuthalapati, S. State Estimation Performance Monitoring. 2015. Available online: https://www.nerc.com/pa/rrm/Resources/Monitoring_and_Situational_Awareness_Conference1/10 (accessed on 3 June 2023).
- ETAP State Estimation Software. 2015. Available online: https://etap.com/product/state-estimation-software (accessed on 3 June 2023).
- Yang, Q.; Chang, L.; Yu, W. On false data injection attacks against Kalman filtering in power system dynamic state estimation. Secur. Commun. Netw. 2016, 9, 833–849. [Google Scholar] [CrossRef]
- Valverde, G.; Terzija, V. Unscented Kalman filter for power system dynamic state estimation. Iet Gener. Transm. Distrib. 2011, 5, 29–37. [Google Scholar] [CrossRef]
- Ghahremani, E.; Kamwa, I. Dynamic State Estimation in Power System by Applying the Extended Kalman Filter with Unknown Inputs to Phasor Measurements. IEEE Trans. Power Syst. 2011, 26, 2556–2566. [Google Scholar] [CrossRef]
- Shih, K.R.; Huang, S.J. Application of a robust algorithm for dynamic state estimation of a power system. IEEE Trans. Power Syst. 2002, 17, 141–147. [Google Scholar] [CrossRef]
- Manandhar, K.; Cao, X.; Hu, F.; Liu, Y. Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter. IEEE Trans. Control. Netw. Syst. 2014, 1, 370–379. [Google Scholar] [CrossRef]
- Faheem, M.; Shah, S.; Butt, R.; Raza, B.; Anwar, M.; Ashraf, M.; Ngadi, M.; Gungor, V. Smart grid communication and information technologies in the perspective of Industry 4.0: Opportunities and challenges. Comput. Sci. Rev. 2018, 30, 1–30. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Uludag, S. Mitigating IoT-based Cyberattacks on the Smart Grid. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 517–522. [Google Scholar] [CrossRef]
- Yan, Y.; Qian, Y.; Sharif, H.; Tipper, D. A Survey on Cyber Security for Smart Grid Communications. IEEE Commun. Surv. Tutor. 2012, 14, 998–1010. [Google Scholar] [CrossRef]
- Kurt, M.N.; Yılmaz, Y.; Wang, X. Secure Distributed Dynamic State Estimation in Wide-Area Smart Grids. IEEE Trans. Inf. Forensics Secur. 2020, 15, 800–815. [Google Scholar] [CrossRef]
- Xie, L.; Zou, S.; Xie, Y.; Veeravalli, V.V. Sequential (Quickest) Change Detection: Classical Results and New Directions. IEEE J. Sel. Areas Inf. Theory 2021, 2, 494–514. [Google Scholar] [CrossRef]
- Veeravalli, V.V.; Banerjee, T. Quickest-change detection. In Academic Press Library in Signal Processing; Elsevier: Amsterdam, The Netherlands, 2014; Volume 3, pp. 209–255. [Google Scholar] [CrossRef]
- Poor, H.V. An Introduction to Signal Detection and Estimation, 2nd ed.; Springer Texts in Electrical Engineering; Springer: New York, NY, USA, 1994. [Google Scholar]
- Neyman, J.; Pearson, E.S. IX. On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. London Ser. Contain. Pap. Math. Phys. Character 1933, 231, 289–337. [Google Scholar] [CrossRef]
- Moulin, P.; Veeravalli, V.V. Statistical Inference for Engineers and Data Scientists; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Page, E.S. Continuous Inspection Schemes. Biometrika 1954, 41, 100–115. [Google Scholar] [CrossRef]
- Polunchenko, A.S.; Tartakovsky, A.G. On Optimality of the Shiryaev-Roberrts Procedure for Detecting a Change in Distribution. Ann. Stat. 2010, 38, 3445–3457. [Google Scholar] [CrossRef]
- Banerjee, T.; Chen, Y.C.; Dominguez-Garcia, A.D.; Veeravalli, V.V. Power system line outage detection and identification—A quickest change detection approach. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 3450–3454. [Google Scholar] [CrossRef]
- Rovatsos, G.; Jiang, X.; Domínguez-García, A.D.; Veeravalli, V.V. Comparison of statistical algorithms for power system line outage detection. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 2946–2950. [Google Scholar] [CrossRef]
- Yang, X.; Chen, N.; Zhai, C. A Control Chart Approach to Power System Line Outage Detection Under Transient Dynamics. IEEE Trans. Power Syst. 2021, 36, 127–135. [Google Scholar] [CrossRef]
- Huang, Y.; Li, H.; Campbell, K.A.; Han, Z. Defending false data injection attack on smart grid network using adaptive CUSUM test. In Proceedings of the 2011 45th Annual Conference on Information Sciences and Systems, Baltimore, MD, USA, 23–25 March 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, J.; Cheng, Y.; Li, H.; Campbell, K.A.; Han, Z. Real-Time Detection of False Data Injection in Smart Grid Networks: An Adaptive CUSUM Method and Analysis. IEEE Syst. J. 2016, 10, 532–543. [Google Scholar] [CrossRef]
- De Maio, A. Rao Test for Adaptive Detection in Gaussian Interference with Unknown Covariance Matrix. IEEE Trans. Signal Process. 2007, 55, 3577–3584. [Google Scholar] [CrossRef]
- Akingeneye, I.; Wu, J. Low Latency Detection of Sparse False Data Injections in Smart Grids. IEEE Access 2018, 6, 58564–58573. [Google Scholar] [CrossRef]
- Li, S.; Yılmaz, Y.; Wang, X. Quickest Detection of False Data Injection Attack in Wide-Area Smart Grids. IEEE Trans. Smart Grid 2015, 6, 2725–2735. [Google Scholar] [CrossRef]
- Kekatos, V.; Giannakis, G.B. Distributed Robust Power System State Estimation. IEEE Trans. Power Syst. 2013, 28, 1617–1626. [Google Scholar] [CrossRef]
- Kurt, M.N.; Yılmaz, Y.; Wang, X. Distributed Quickest Detection of Cyber-Attacks in Smart Grid. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2015–2030. [Google Scholar] [CrossRef]
- Kurt, M.N.; Yılmaz, Y.; Wang, X. Real-Time Detection of Hybrid and Stealthy Cyber-Attacks in Smart Grid. IEEE Trans. Inf. Forensics Secur. 2019, 14, 498–513. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X. Low-Complexity quickest-change detection in Linear Systems with Unknown Time-Varying Pre- and Post-Change Distributions. IEEE Trans. Inf. Theory 2021, 67, 1804–1824. [Google Scholar] [CrossRef]
- Nath, S.; Akingeneye, I.; Wu, J.; Han, Z. Quickest Detection of False Data Injection Attacks in Smart Grid with Dynamic Models. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 1292–1302. [Google Scholar] [CrossRef]
- Kurt, M.N. Data-Driven Quickest-Change Detection. Ph.D. Thesis, Columbia University, New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Moustakides, G.V.; Polunchenko, A.S.; Tartakovsky, A.G. Numerical Comparison of CUSUM and Shiryaev–Roberts Procedures for Detecting Changes in Distributions. Commun. Stat. Theory Methods 2009, 38, 3225–3239. [Google Scholar] [CrossRef]
- Pollak, M.; Tartakovsky, A.G. Exact optimality of the Shiryaev-Roberts procedure for detecting changes in distributions. In Proceedings of the 2008 International Symposium on Information Theory and Its Applications, Auckland, New Zealand, 7–10 December 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Polunchenko, A.S.; Raghavan, V. Comparative performance analysis of the Cumulative Sum chart and the Shiryaev-Roberts procedure for detecting changes in autocorrelated data. Appl. Stoch. Model. Bus. Ind. 2018, 34, 922–948. [Google Scholar] [CrossRef]
- Ozay, M.; Esnaola, I.; Yarman Vural, F.T.; Kulkarni, S.R.; Poor, H.V. Machine Learning Methods for Attack Detection in the Smart Grid. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1773–1786. [Google Scholar] [CrossRef]
- Yan, J.; Tang, B.; He, H. Detection of false data attacks in smart grid with supervised learning. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 1395–1402. [Google Scholar] [CrossRef]
- Wang, Y.; Amin, M.M.; Fu, J.; Moussa, H.B. A Novel Data Analytical Approach for False Data Injection Cyber-Physical Attack Mitigation in Smart Grids. IEEE Access 2017, 5, 26022–26033. [Google Scholar] [CrossRef]
- Yu, Z.H.; Chin, W.L. Blind False Data Injection Attack Using PCA Approximation Method in Smart Grid. IEEE Trans. Smart Grid 2015, 6, 1219–1226. [Google Scholar] [CrossRef]
- Hao, J.; Piechocki, R.J.; Kaleshi, D.; Chin, W.H.; Fan, Z. Sparse Malicious False Data Injection Attacks and Defense Mechanisms in Smart Grids. IEEE Trans. Ind. Inform. 2015, 11, 1–12. [Google Scholar] [CrossRef]
- Esmalifalak, M.; Liu, L.; Nguyen, N.; Zheng, R.; Han, Z. Detecting Stealthy False Data Injection Using Machine Learning in Smart Grid. IEEE Syst. J. 2017, 11, 1644–1652. [Google Scholar] [CrossRef]
- Trevizan, R.D.; Ruben, C.; Nagaraj, K.; Ibukun, L.L.; Starke, A.C.; Bretas, A.S.; McNair, J.; Zare, A. Data-driven Physics-based Solution for False Data Injection Diagnosis in Smart Grids. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Ruben, C.; Dhulipala, S.; Nagaraj, K.; Zou, S.; Starke, A.; Bretas, A.; Zare, A.; McNair, J. Hybrid data-driven physics model-based framework for enhanced cyber-physical smart grid security. IET Smart Grid 2020, 3, 445–453. [Google Scholar] [CrossRef]
- Nagaraj, K.; Zou, S.; Ruben, C.; Dhulipala, S.; Starke, A.; Bretas, A.; Zare, A.; McNair, J. Ensemble CorrDet with adaptive statistics for bad data detection. IET Smart Grid 2020, 3, 572–580. [Google Scholar] [CrossRef]
- Vega-Martinez, V.; Cooper, A.; Vera, B.; Aljohani, N.; Bretas, A. Hybrid Data-Driven Physics-Based Model Framework Implementation: Towards a Secure Cyber-Physical Operation of the Smart Grid. In Proceedings of the 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Prague, Czech Republic, 28 June–1 July 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Kurt, M.N.; Ogundijo, O.; Li, C.; Wang, X. Online Cyber-Attack Detection in Smart Grid: A Reinforcement Learning Approach. IEEE Trans. Smart Grid 2019, 10, 5174–5185. [Google Scholar] [CrossRef]
- Tsitsiklis, J.; van Roy, B. Optimal stopping of Markov processes: Hilbert space theory, approximation algorithms, and an application to pricing high-dimensional financial derivatives. IEEE Trans. Autom. Control. 1999, 44, 1840–1851. [Google Scholar] [CrossRef]
- Chen, S.; Devraj, A.M.; Bušić, A.; Meyn, S. Zap Q-Learning for Optimal Stopping. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; pp. 3920–3925. [Google Scholar] [CrossRef]
- Meyn, S. Control Systems and Reinforcement Learning; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Chen, P.Y.; Yang, S.; McCann, J.A.; Lin, J.; Yang, X. Detection of false data injection attacks in smart-grid systems. IEEE Commun. Mag. 2015, 53, 206–213. [Google Scholar] [CrossRef]
- He, Y.; Mendis, G.J.; Wei, J. Real-Time Detection of False Data Injection Attacks in Smart Grid: A Deep Learning-Based Intelligent Mechanism. IEEE Trans. Smart Grid 2017, 8, 2505–2516. [Google Scholar] [CrossRef]
- Ayad, A.; Farag, H.E.Z.; Youssef, A.; El-Saadany, E.F. Detection of false data injection attacks in smart grids using Recurrent Neural Networks. In Proceedings of the 2018 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 19–22 February 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Ganjkhani, M.; Fallah, S.N.; Badakhshan, S.; Shamshirband, S.; Chau, K.w. A Novel Detection Algorithm to Identify False Data Injection Attacks on Power System State Estimation. Energies 2019, 12, 2209. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Chen, B. Detecting False Data Injection Attacks in Smart Grids: A Semi-Supervised Deep Learning Approach. IEEE Trans. Smart Grid 2021, 12, 623–634. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cooper, A.; Bretas, A.; Meyn, S. Anomaly Detection in Power System State Estimation: Review and New Directions. Energies 2023, 16, 6678. https://doi.org/10.3390/en16186678
Cooper A, Bretas A, Meyn S. Anomaly Detection in Power System State Estimation: Review and New Directions. Energies. 2023; 16(18):6678. https://doi.org/10.3390/en16186678
Chicago/Turabian StyleCooper, Austin, Arturo Bretas, and Sean Meyn. 2023. "Anomaly Detection in Power System State Estimation: Review and New Directions" Energies 16, no. 18: 6678. https://doi.org/10.3390/en16186678
APA StyleCooper, A., Bretas, A., & Meyn, S. (2023). Anomaly Detection in Power System State Estimation: Review and New Directions. Energies, 16(18), 6678. https://doi.org/10.3390/en16186678