ACC-RL: Adaptive Congestion Control Based on Reinforcement Learning in Power Distribution Networks with Data Centers
Abstract
:1. Introduction
2. Backgrounds
2.1. Congestion Control Algorithms
2.2. RL Algorithms
3. Our Approach: ACC-RL
3.1. The Architecture of the Intelligence in ACC-RL
3.2. The ACC-RL Framework
Algorithm 1: ACC-RL |
Input: transmission rate of the flows, RTT, and switch queue length Output: reward r Initialize O according to probability for each flow i do end |
4. Experiments
4.1. Experiment Settings
4.2. Experiment Results
5. Related Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Yu, N. Phase balancing in power distribution network with data center. ACM Sigmetrics Perform. Eval. Rev. 2017, 45, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Salamai, A.A.; El-kenawy, E.S.M.; Abdelhameed, I. Dynamic voting classifier for risk identification in supply chain 4.0. Comput. Mater. Contin. 2021, 69, 3749–3766. [Google Scholar] [CrossRef]
- Ibrahim, A.; Mirjalili, S.; El-Said, M.; Ghoneim, S.S.; Al-Harthi, M.M.; Ibrahim, T.F.; El-Kenawy, E.S.M. Wind speed ensemble forecasting based on deep learning using adaptive dynamic optimization algorithm. IEEE Access 2021, 9, 125787–125804. [Google Scholar] [CrossRef]
- El-kenawy, E.S.M.; Abutarboush, H.F.; Mohamed, A.W.; Ibrahim, A. Advance artificial intelligence technique for designing double T-shaped monopole antenna. Comput. Mater. Contin. 2021, 69, 2983–2995. [Google Scholar] [CrossRef]
- Mittal, R.; Lam, V.T.; Dukkipati, N.; Blem, E.; Wassel, H.; Ghobadi, M. TIMELY: RTT-based congestion control for the datacenter. ACM SIGCOMM Comput. Commun. Rev. 2015, 45, 537–550. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Eran, H.; Firestone, D.; Guo, C.; Lipshteyn, M.; Liron, Y. Congestion control for large-scale RDMA deployments. ACM SIGCOMM Comput. Commun. Rev. 2015, 45, 523–536. [Google Scholar] [CrossRef]
- Li, Y.; Miao, R.; Liu, H.H.; Zhuang, Y.; Feng, F.; Tang, L. HPCC: High precision congestion control. In Proceedings of the ACM SIGCOMM, Beijing, China, 19–23 August 2019; pp. 44–58. [Google Scholar]
- Jiang, H.; Li, Q.; Jiang, Y.; Shen, G.; Sinnott, R.; Tian, C.; Xu, M. When machine learning meets congestion control: A survey and comparison. Comput. Netw. 2021, 192, 108033. [Google Scholar] [CrossRef]
- Lei, K.; Liang, Y.; Li, W. Congestion control in SDN-based networks via multi-task deep reinforcement learning. IEEE Netw. 2020, 34, 28–34. [Google Scholar] [CrossRef]
- Zhu, H.; Gupta, V.; Ahuja, S.S.; Tian, Y.; Zhang, Y.; Jin, X. Network planning with deep reinforcement learning. In Proceedings of the ACM SIGCOMM, Virtual Event, 23–27 August 2021; pp. 258–271. [Google Scholar]
- Zhang, Q.; Ng, K.K.; Kazer, C.; Yan, S.; Sedoc, J.; Liu, V. MimicNet: Fast performance estimates for data center networks with machine learning. In Proceedings of the ACM SIGCOMM, Virtual Event, 23–27 August 2021; pp. 287–304. [Google Scholar]
- Puterman, M.L. Markov decision processes. In Handbooks in Operations Research and Management Science; Elsevier: Amsterdam, The Netherlands, 1990; Volume 2, pp. 331–434. [Google Scholar]
- Jay, N.; Rotman, N.; Godfrey, B.; Schapira, M.; Tamar, A. A deep reinforcement learning perspective on internet congestion control. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 3050–3059. [Google Scholar]
- Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 1992, 8, 229–256. [Google Scholar] [CrossRef] [Green Version]
- Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017, arXiv:1707.06347. [Google Scholar]
- Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 387–395. [Google Scholar]
- Network Simulator 3. Available online: https://www.nsnam.org (accessed on 8 June 2023).
- IEEE 802.1 Qbb—Priority-Based Flow Control. Available online: https://1.ieee802.org/dcb/802-1qbb/ (accessed on 8 June 2023).
- Ruan, C.; Zhang, T.; Li, H.; Xi, Y. Nonlinear control analysis of quantized congestion notification in data center networks. IEEE Access 2020, 8, 125401–125411. [Google Scholar] [CrossRef]
- Alizadeh, M.; Greenberg, A.; Maltz, D.A.; Padhye, J.; Patel, P.; Prabhakar, B. Data center tcp (dctcp). In Proceedings of the ACM SIGCOMM, New Delhi, India, 10 May 2010; pp. 63–74. [Google Scholar]
- Floyd, S. TCP and explicit congestion notification. ACM SIGCOMM Comput. Commun. Rev. 1994, 24, 8–23. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Su, W.; Zhang, W.; Lv, J.; Zhang, Z.; Miaom, J.; Liu, X.; Li, N. In-band network telemetry: A survey. Comput. Netw. 2021, 186, 107763. [Google Scholar] [CrossRef]
- Ketkar, N. Stochastic gradient descent. In Deep Learning with Python; Apress: Berkeley, CA, USA, 2017; pp. 113–132. [Google Scholar]
- Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 1889–1897. [Google Scholar]
- Dong, M.; Meng, T.; Zarchy, D.; Arslan, E.; Gilad, Y.; Godfrey, B.; Schapira, M. PCC Vivace: Online-Learning Congestion Control. In Proceedings of the 15th USENIX Symposium on Networked Systems Design and Implementation, Renton, WA, USA, 9–11 April 2018; pp. 343–356. [Google Scholar]
- Azizzadenesheli, K.; Yue, Y.; Anandkumar, A. Policy gradient in partially observable environments: Approximation and convergence. arXiv 2018, arXiv:1810.07900. [Google Scholar]
- Zhang, Y.; Liu, Y.; Meng, Q.; Ren, F. Congestion detection in lossless networks. In Proceedings of the ACM SIGCOMM, Virtual Event, 23–27 August 2021; pp. 370–383. [Google Scholar]
- Cheng, W.; Qian, K.; Jiang, W.; Zhang, T.; Ren, F. Re-architecting Congestion Management in Lossless Ethernet. In Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation, Santa Clara, CA, USA, 25–27 February 2020; pp. 19–36. [Google Scholar]
- Goyal, P.; Shah, P.; Sharma, N.K.; Alizadeh, M.; Anderson, T.E. Backpressure flow control. In Proceedings of the 18th USENIX Symposium on Networked Systems Design and Implementation, Virtual Event, 12–14 April 2021; pp. 1–26. [Google Scholar]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Fuhrer, B.; Shpigelman, Y.; Tessler, C.; Mannor, S.; Chechik, G.; Zahavi, E.; Dalal, G. Implementing Reinforcement Learning Datacenter Congestion Control in NVIDIA NICs. arXiv 2022, arXiv:2207.02295. [Google Scholar]
Many-to-One | All-to-All | Long–Short | |
---|---|---|---|
Aurora/REINFORCE/PPO | × | × | × |
TIMELY | × | √ | × |
DCQCN | √ | √ | × |
HPCC | × | √ | √ |
ACC-RL (ours) | √ | √ | √ |
128 to 1 | 1024 to 1 | 4096 to 1 | |
---|---|---|---|
Aurora | Packet loss | Packet loss | Packet loss |
REINFORCE | 71% | 89% | Packet loss |
PPO | Packet loss | Packet loss | Packet loss |
TIMELY | 21% | 43% | 59% |
DCQCN | 32% | 48% | 63% |
HPCC | 45% | 68% | 76% |
ACC-RL (ours) | 49% | 59% | 67% |
Start Time | Burst Time | Completion Time | |
---|---|---|---|
TIMELY | 0 | 40 | 100,012 |
DCQCN | 0 | 40 | 100,018 |
HPCC | 0 | 40 | 100,019 |
ACC-RL (ours) | 0 | 40 | 100,002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.; Lu, X.; Zhang, D.; Cheng, H.; Dong, P.; Zhang, L. ACC-RL: Adaptive Congestion Control Based on Reinforcement Learning in Power Distribution Networks with Data Centers. Energies 2023, 16, 5385. https://doi.org/10.3390/en16145385
Huang T, Lu X, Zhang D, Cheng H, Dong P, Zhang L. ACC-RL: Adaptive Congestion Control Based on Reinforcement Learning in Power Distribution Networks with Data Centers. Energies. 2023; 16(14):5385. https://doi.org/10.3390/en16145385
Chicago/Turabian StyleHuang, Tairan, Xiaojuan Lu, Dian Zhang, Haoran Cheng, Pingping Dong, and Lianming Zhang. 2023. "ACC-RL: Adaptive Congestion Control Based on Reinforcement Learning in Power Distribution Networks with Data Centers" Energies 16, no. 14: 5385. https://doi.org/10.3390/en16145385
APA StyleHuang, T., Lu, X., Zhang, D., Cheng, H., Dong, P., & Zhang, L. (2023). ACC-RL: Adaptive Congestion Control Based on Reinforcement Learning in Power Distribution Networks with Data Centers. Energies, 16(14), 5385. https://doi.org/10.3390/en16145385