Evaluation of the Hygrothermal Conditions of a Typical Residential Building in the Azores Archipelago
Abstract
1. Introduction
2. Materials and Methods
2.1. Hygrothermal Modeling of Buildings
2.2. Theoretical Models for Combined Heat and Moisture Transfer
3. Methodology
3.1. Monitoring Campaign and Building Characterization
- 60 cm thick external opaque walls, consisting of interior and exterior lime-based mortar coatings and two layers of basaltic stone (28 cm each, approximately);
- recently renovated interior walls consisting of a simple layer of brick masonry (hollow brick of 11 cm thickness) coated on both sides with lime-based mortar;
- ground floor with basaltic stone slabs (40 cm thick, approximately);
- first floor with oak wood flooring supported by beams of the same material;
- first-floor ceiling consisting of an oak wood structure (4.8 cm thick) beneath expanded polystyrene (EPS) boards for thermal insulation (4 cm thick);
- sloping roof with a non-accessible unvented attic consisting of ceramic tile (2.5 cm thick) on a wooden structure;
- glazed windows made up of painted oak wood frames, with grid and simple light-colored glass (0.4 cm thick). The windows are single-glazed (U-value of 5.81 W.m−2.K−1 and total solar transmission of 0.85) and have a painted wooden frame (thermal conductivity of 0.190 W.m−1.K−1), with horizontal and vertical dividers (width of 2 cm).
3.2. Building Simulation Model
4. Numerical Simulation Results
4.1. CTF Versus HAMT Models
4.2. Scenario Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bosikov, I.I.; Martyushev, N.V.; Klyuev, R.V.; Savchenko, I.A.; Kukartsev, V.V.; Kukartsev, V.A.; Tynchenko, Y.A. Modeling and complex analysis of the topology parameters of ventilation networks when ensuring fire safety while developing coal and gas deposits. Fire 2023, 6, 95. [Google Scholar] [CrossRef]
- Balovtsev, S.V.; Skopintseva, O.V.; Kolikov, K.S. Aerological risk management in preparation for mining of coal mines. Sustain. Dev. Mt. Territ. 2022, 14, 107–116. (In Russian) [Google Scholar] [CrossRef]
- Zaniboni, L.; Albatici, R. Natural and Mechanical Ventilation Concepts for Indoor Comfort and Well-Being with a Sustainable Design Perspective: A Systematic Review. Buildings 2022, 12, 1983. [Google Scholar] [CrossRef]
- Vinha, J.; Manelius, E.; Korpi, M.; Salminen, K.; Kurnitski, J.; Kiviste, M.; Laukkarinen, A. Airtightness of residential buildings in Finland. Build. Environ. 2015, 93, 128–140. [Google Scholar] [CrossRef]
- Sadauskiene, J.; Paukstys, V.; Seduikyte, L.; Banionis, K. Impact of Air Tightness on the Evaluation of Building Energy Performance in Lithuania. Energies 2014, 7, 4972–4987. [Google Scholar] [CrossRef]
- Emmerich, S.; Persily, A.K.; McDowell, T.P. Impact of Infiltration on Heating and Cooling Loads in U.S. Office Buildings; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Goffart, J.; Rabouilee, M.; Mendes, N. Uncertainty and sensitivity analysis applied to hygrothermal simulation of a brick building in a hot and humid climate. J. Build. Perform. Simul. 2017, 10, 37–57. [Google Scholar] [CrossRef]
- Inocêncio, D. Construção e Arquitectura Sustentáveis em Cabo Verde–Estudo de Estratégias de Projecto Sustentável. Master Thesis, Technical University of Lisbon, Lisbon, Portugal, June 2012. (In Portuguese). [Google Scholar]
- Salehi, A.; Torres, I.; Ramos, A. An analytical approach to the ventilation effectiveness of Mediterranean buildings. Case study: Existing residential building, Portugal. Energy Procedia 2016, 96, 613–619. [Google Scholar] [CrossRef]
- Ramos, N.; Almeida, R.; Curado, A.; Pereira, P.; Manuel, S.; Maia, J. Airtightness and ventilation in a mild climate country rehabilitated social housing buildings-what users want and what they get. Build. Environ. 2015, 92, 97–110. [Google Scholar] [CrossRef]
- Lucas, F.; Adelard, L.; Garde, F.; Boyer, H. Study of moisture in buildings for hot humid climates. Energy Build. 2002, 34, 345–355. [Google Scholar] [CrossRef]
- Bay, E.; Martinez-Molina, A.; Dupont, W. Assessment of natural ventilation strategies in historical buildings in a hot and humid climate using energy and CFD simulations. J. Build. Eng. 2022, 51, 104287. [Google Scholar] [CrossRef]
- Pérez-Andreu, V.; Aparicio-Fernández, C.; Vivancos, J.-L.; Cárcel-Carrasco, J. Experimental Data and Simulations of Performance and Thermal Comfort in a Typical Mediterranean House. Energies 2021, 14, 3311. [Google Scholar] [CrossRef]
- DB. Design Builder Software; Version 5.2.0; DesignBuilder Software Ltd., Stroud, UK. 2018. Available online: www.designbuilder.co.uk (accessed on 26 March 2018).
- USDoE. EnergyPlus, Version 8.8.0. Documentation–Engineering Reference, September. United States Department of Energy: Washington, DC, USA, 2017.
- Qin, M.; Yang, J. Evaluation of different thermal models in EnergyPlus for calculating moisture effects on building energy consumption in different climate conditions. Build. Simul. 2016, 9, 15–25. [Google Scholar] [CrossRef]
- Yang, J.; Fu, H.; Qin, M. Evaluation of Different Thermal Models in EnergyPlus for Calculating Moisture Effects on Building Energy Consumption in Different Climate Conditions. Procedia Eng. 2015, 121, 1635–1641. [Google Scholar] [CrossRef]
- Zu, K.; Qin, M.; Rode, C.; Libralato, M. Development of a moisture buffer value model (MBM) for indoor moisture prediction. App. Therm. Eng. 2020, 171, 115096. [Google Scholar] [CrossRef]
- Zhao, G.L.; Xie, H.R.; Xia, C.C.; Hokoi, S.; Li, Y.H. Heat, Moisture and Airflow coupled Model for Historical Building. J. Phys. Conf. Ser. 2021, 2069, 012139. [Google Scholar] [CrossRef]
- Frasca, F.; Verticchio, E.; Cornaro, C.; Siani, A.M. Performance assessment of hygrothermal modelling for diagnostics and conservation in an Italian historical church. Build. Environ. 2021, 193, 107672. [Google Scholar] [CrossRef]
- Balocco, C.; Petrone, G. Efficiency of Different Basic Modelling Approaches to Simulate Moisture Buffering in Building Materials. Open Constr. Build. Technol. J. 2016, 10, 561–574. [Google Scholar] [CrossRef]
- Woloszyn, M.; Carsten, R. Tools for Performance Simulation of Heat, Air and Moisture Conditions of Whole Buildings. Build. Simul. 2008, 1, 5–24. [Google Scholar] [CrossRef]
- Beck, H.; Zimmermann, N.; McVicar, T.; Vergopolan, N.; Berg, A.; Wood, E. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- ISO 7726; Ergonomics of the Thermal Environment–Instruments for Measuring Physical Quantities. International Organization for Standardization: Geneva, Switzerland, 2001.
- ASHRAE Standard 55-2013; Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers: Peachtree Corners, GA, USA, 2013.
- ISO 9869-1; Thermal Insulation-Building Elements-In-Situ Measurement of Thermal Resistance and Thermal Transmittance. Part 1: Heat Flow Meter Method. International Organization for Standardization: Geneva, Switzerland, 2014.
- Roque, E.; Vicente, R.; Almeida, R.M.S.F.; Mendes da Silva, J.; Ferreira, A.V. Thermal characterization of traditional wall solution of built heritage using the simple hot box-heat flow meter method: In situ measurements and numerical simulation. App. Therm. Eng. 2020, 169, 114935. [Google Scholar] [CrossRef]
- Kumaran, M. Heat, Air and Moisture Transfer in Insulated Envelope Parts–Final Report, Task 3: Material Properties; International Energy Agency: Paris, France, 1996; Volume 3, ISBN 90-75741-01-4. [Google Scholar]
- Freitas, V.; Pinto, P. Permeabilidade ao Vapor de Materiais de Construção–Condensações Internas, Nota de Informação Técnica NIT.002, 2nd ed.; Lab. de Física das Construções, University of Porto: Porto, Portugal, 1998. (In Portuguese) [Google Scholar]
- WUFI. WUFI Software Database, Fraunhofer Institut Für Bauphysik. 2017. Available online: www.wufi.de/en (accessed on 14 September 2017).
- ISO 7730; Ergonomics of the Thermal Environment–Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. International Organization for Standardization: Geneva, Switzerland, 2005.
- Kalamees, T.; Vinha, J.; Kurnitski, J. Indoor Humidity Loads and Moisture Production in Lightweight Timber-frame Detached Houses. J. Build. Phys. 2006, 29, 219–246. [Google Scholar] [CrossRef]
- LNEG. CLIMAS-SCE-Software para o Sistema Nacional de Certificação de Edifícios, v.1.05; Laboratório Nacional de Energia e Geologia: Lisbon, Portugal, 2017. (In Portuguese) [Google Scholar]
- Aguiar, R. Climatologia e Anos Meteorológicos de Referência para o Sistema Nacional de Certificação de Edifícios (Versão 2013); Relatório para ADENE–Agência de Energia; Laboratório Nacional de Energia e Geologia: Lisbon, Portugal, 2013. (In Portuguese) [Google Scholar]
- Ali, M.H.; Abustan, I. A new novel index for evaluating model performance. J. Nat. Resour. Develop. 2014, 4, 1–9. [Google Scholar]
- Mijakowski, M.; Sowa, J. An attempt to improve indoor environment by installing humidity-sensitive air inlets in a naturally ventilated kindergarten building. Build. Environ. 2017, 111, 180–191. [Google Scholar] [CrossRef]
- Almeida, R.; Freitas, V. IEQ assessment of classrooms with an optimized demand controlled ventilation system. Energy Procedia 2015, 78, 3132–3137. [Google Scholar] [CrossRef]
Floor | Zone | Room | Area [m2] | Volume [m3] |
---|---|---|---|---|
0 | 1 | Bedroom | 14.8 | 34.8 |
2 | Bathroom | 3.9 | 9.2 | |
3 | Stairway | 12.7 | 29.8 | |
4 | Reception | 30.0 | 70.6 | |
5 | Bathroom | 5.9 | 13.8 | |
6 | Hall | 13.2 | 31.1 | |
7 | Circulation | 5.8 | 13.6 | |
8 | Bedroom | 15.4 | 36.3 | |
9 | Bathroom | 4.2 | 9.9 | |
10 | Laundry room | 24.3 | 57.1 | |
11 | Circulation | 3.0 | 7.1 | |
1 | 1 | Bedroom | 20.3 | 58.1 |
2 | Living room | 35.8 | 102.0 | |
3 | Dining room | 29.9 | 85.3 | |
4 | Stairway | - | - | |
5 | Office | 21.6 | 61.7 | |
6 | Pantry | 6.5 | 18.7 | |
7 | Bathroom | 4.5 | 12.8 | |
8 | Bathroom | 3.6 | 10.4 | |
9 | Circulation | 5.0 | 14.4 | |
10 | Kitchen | 31.7 | 90.4 |
Material | λ (W.m−1.K−1) | ρ (kg.m−3) | cP (J.kg−1.K−1) | Porosity (m3.m−3) | Initial Moisture Content (kg.kg−1) |
---|---|---|---|---|---|
Basaltic stone | 1.66 | 2850 | 1000 | 0.095 | 0.00224 |
Lime mortar | 0.70 | 1600 | 850 | 0.30 | 0.01375 |
Oakwood | 0.152 | 700 | 1600 | 0.35 | 0.11430 |
Hollow brick (11 cm) | 0.13 | 650 | 850 | 0.74 | 0.00914 |
EPS | 0.04 | 15 | 1500 | 0.95 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malça, J.; Almeida, R.M.S.F.; Mendes Silva, J.A.R. Evaluation of the Hygrothermal Conditions of a Typical Residential Building in the Azores Archipelago. Energies 2023, 16, 5075. https://doi.org/10.3390/en16135075
Malça J, Almeida RMSF, Mendes Silva JAR. Evaluation of the Hygrothermal Conditions of a Typical Residential Building in the Azores Archipelago. Energies. 2023; 16(13):5075. https://doi.org/10.3390/en16135075
Chicago/Turabian StyleMalça, João, Ricardo M. S. F. Almeida, and José A. R. Mendes Silva. 2023. "Evaluation of the Hygrothermal Conditions of a Typical Residential Building in the Azores Archipelago" Energies 16, no. 13: 5075. https://doi.org/10.3390/en16135075
APA StyleMalça, J., Almeida, R. M. S. F., & Mendes Silva, J. A. R. (2023). Evaluation of the Hygrothermal Conditions of a Typical Residential Building in the Azores Archipelago. Energies, 16(13), 5075. https://doi.org/10.3390/en16135075