Evaluation of the Hygrothermal Conditions of a Typical Residential Building in the Azores Archipelago
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hygrothermal Modeling of Buildings
2.2. Theoretical Models for Combined Heat and Moisture Transfer
3. Methodology
3.1. Monitoring Campaign and Building Characterization
- 60 cm thick external opaque walls, consisting of interior and exterior lime-based mortar coatings and two layers of basaltic stone (28 cm each, approximately);
- recently renovated interior walls consisting of a simple layer of brick masonry (hollow brick of 11 cm thickness) coated on both sides with lime-based mortar;
- ground floor with basaltic stone slabs (40 cm thick, approximately);
- first floor with oak wood flooring supported by beams of the same material;
- first-floor ceiling consisting of an oak wood structure (4.8 cm thick) beneath expanded polystyrene (EPS) boards for thermal insulation (4 cm thick);
- sloping roof with a non-accessible unvented attic consisting of ceramic tile (2.5 cm thick) on a wooden structure;
- glazed windows made up of painted oak wood frames, with grid and simple light-colored glass (0.4 cm thick). The windows are single-glazed (U-value of 5.81 W.m−2.K−1 and total solar transmission of 0.85) and have a painted wooden frame (thermal conductivity of 0.190 W.m−1.K−1), with horizontal and vertical dividers (width of 2 cm).
3.2. Building Simulation Model
4. Numerical Simulation Results
4.1. CTF Versus HAMT Models
4.2. Scenario Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bosikov, I.I.; Martyushev, N.V.; Klyuev, R.V.; Savchenko, I.A.; Kukartsev, V.V.; Kukartsev, V.A.; Tynchenko, Y.A. Modeling and complex analysis of the topology parameters of ventilation networks when ensuring fire safety while developing coal and gas deposits. Fire 2023, 6, 95. [Google Scholar] [CrossRef]
- Balovtsev, S.V.; Skopintseva, O.V.; Kolikov, K.S. Aerological risk management in preparation for mining of coal mines. Sustain. Dev. Mt. Territ. 2022, 14, 107–116. (In Russian) [Google Scholar] [CrossRef]
- Zaniboni, L.; Albatici, R. Natural and Mechanical Ventilation Concepts for Indoor Comfort and Well-Being with a Sustainable Design Perspective: A Systematic Review. Buildings 2022, 12, 1983. [Google Scholar] [CrossRef]
- Vinha, J.; Manelius, E.; Korpi, M.; Salminen, K.; Kurnitski, J.; Kiviste, M.; Laukkarinen, A. Airtightness of residential buildings in Finland. Build. Environ. 2015, 93, 128–140. [Google Scholar] [CrossRef] [Green Version]
- Sadauskiene, J.; Paukstys, V.; Seduikyte, L.; Banionis, K. Impact of Air Tightness on the Evaluation of Building Energy Performance in Lithuania. Energies 2014, 7, 4972–4987. [Google Scholar] [CrossRef] [Green Version]
- Emmerich, S.; Persily, A.K.; McDowell, T.P. Impact of Infiltration on Heating and Cooling Loads in U.S. Office Buildings; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Goffart, J.; Rabouilee, M.; Mendes, N. Uncertainty and sensitivity analysis applied to hygrothermal simulation of a brick building in a hot and humid climate. J. Build. Perform. Simul. 2017, 10, 37–57. [Google Scholar] [CrossRef]
- Inocêncio, D. Construção e Arquitectura Sustentáveis em Cabo Verde–Estudo de Estratégias de Projecto Sustentável. Master Thesis, Technical University of Lisbon, Lisbon, Portugal, June 2012. (In Portuguese). [Google Scholar]
- Salehi, A.; Torres, I.; Ramos, A. An analytical approach to the ventilation effectiveness of Mediterranean buildings. Case study: Existing residential building, Portugal. Energy Procedia 2016, 96, 613–619. [Google Scholar] [CrossRef] [Green Version]
- Ramos, N.; Almeida, R.; Curado, A.; Pereira, P.; Manuel, S.; Maia, J. Airtightness and ventilation in a mild climate country rehabilitated social housing buildings-what users want and what they get. Build. Environ. 2015, 92, 97–110. [Google Scholar] [CrossRef]
- Lucas, F.; Adelard, L.; Garde, F.; Boyer, H. Study of moisture in buildings for hot humid climates. Energy Build. 2002, 34, 345–355. [Google Scholar] [CrossRef]
- Bay, E.; Martinez-Molina, A.; Dupont, W. Assessment of natural ventilation strategies in historical buildings in a hot and humid climate using energy and CFD simulations. J. Build. Eng. 2022, 51, 104287. [Google Scholar] [CrossRef]
- Pérez-Andreu, V.; Aparicio-Fernández, C.; Vivancos, J.-L.; Cárcel-Carrasco, J. Experimental Data and Simulations of Performance and Thermal Comfort in a Typical Mediterranean House. Energies 2021, 14, 3311. [Google Scholar] [CrossRef]
- DB. Design Builder Software; Version 5.2.0; DesignBuilder Software Ltd., Stroud, UK. 2018. Available online: www.designbuilder.co.uk (accessed on 26 March 2018).
- USDoE. EnergyPlus, Version 8.8.0. Documentation–Engineering Reference, September. United States Department of Energy: Washington, DC, USA, 2017.
- Qin, M.; Yang, J. Evaluation of different thermal models in EnergyPlus for calculating moisture effects on building energy consumption in different climate conditions. Build. Simul. 2016, 9, 15–25. [Google Scholar] [CrossRef]
- Yang, J.; Fu, H.; Qin, M. Evaluation of Different Thermal Models in EnergyPlus for Calculating Moisture Effects on Building Energy Consumption in Different Climate Conditions. Procedia Eng. 2015, 121, 1635–1641. [Google Scholar] [CrossRef] [Green Version]
- Zu, K.; Qin, M.; Rode, C.; Libralato, M. Development of a moisture buffer value model (MBM) for indoor moisture prediction. App. Therm. Eng. 2020, 171, 115096. [Google Scholar] [CrossRef]
- Zhao, G.L.; Xie, H.R.; Xia, C.C.; Hokoi, S.; Li, Y.H. Heat, Moisture and Airflow coupled Model for Historical Building. J. Phys. Conf. Ser. 2021, 2069, 012139. [Google Scholar] [CrossRef]
- Frasca, F.; Verticchio, E.; Cornaro, C.; Siani, A.M. Performance assessment of hygrothermal modelling for diagnostics and conservation in an Italian historical church. Build. Environ. 2021, 193, 107672. [Google Scholar] [CrossRef]
- Balocco, C.; Petrone, G. Efficiency of Different Basic Modelling Approaches to Simulate Moisture Buffering in Building Materials. Open Constr. Build. Technol. J. 2016, 10, 561–574. [Google Scholar] [CrossRef] [Green Version]
- Woloszyn, M.; Carsten, R. Tools for Performance Simulation of Heat, Air and Moisture Conditions of Whole Buildings. Build. Simul. 2008, 1, 5–24. [Google Scholar] [CrossRef]
- Beck, H.; Zimmermann, N.; McVicar, T.; Vergopolan, N.; Berg, A.; Wood, E. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- ISO 7726; Ergonomics of the Thermal Environment–Instruments for Measuring Physical Quantities. International Organization for Standardization: Geneva, Switzerland, 2001.
- ASHRAE Standard 55-2013; Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers: Peachtree Corners, GA, USA, 2013.
- ISO 9869-1; Thermal Insulation-Building Elements-In-Situ Measurement of Thermal Resistance and Thermal Transmittance. Part 1: Heat Flow Meter Method. International Organization for Standardization: Geneva, Switzerland, 2014.
- Roque, E.; Vicente, R.; Almeida, R.M.S.F.; Mendes da Silva, J.; Ferreira, A.V. Thermal characterization of traditional wall solution of built heritage using the simple hot box-heat flow meter method: In situ measurements and numerical simulation. App. Therm. Eng. 2020, 169, 114935. [Google Scholar] [CrossRef]
- Kumaran, M. Heat, Air and Moisture Transfer in Insulated Envelope Parts–Final Report, Task 3: Material Properties; International Energy Agency: Paris, France, 1996; Volume 3, ISBN 90-75741-01-4. [Google Scholar]
- Freitas, V.; Pinto, P. Permeabilidade ao Vapor de Materiais de Construção–Condensações Internas, Nota de Informação Técnica NIT.002, 2nd ed.; Lab. de Física das Construções, University of Porto: Porto, Portugal, 1998. (In Portuguese) [Google Scholar]
- WUFI. WUFI Software Database, Fraunhofer Institut Für Bauphysik. 2017. Available online: www.wufi.de/en (accessed on 14 September 2017).
- ISO 7730; Ergonomics of the Thermal Environment–Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. International Organization for Standardization: Geneva, Switzerland, 2005.
- Kalamees, T.; Vinha, J.; Kurnitski, J. Indoor Humidity Loads and Moisture Production in Lightweight Timber-frame Detached Houses. J. Build. Phys. 2006, 29, 219–246. [Google Scholar] [CrossRef]
- LNEG. CLIMAS-SCE-Software para o Sistema Nacional de Certificação de Edifícios, v.1.05; Laboratório Nacional de Energia e Geologia: Lisbon, Portugal, 2017. (In Portuguese) [Google Scholar]
- Aguiar, R. Climatologia e Anos Meteorológicos de Referência para o Sistema Nacional de Certificação de Edifícios (Versão 2013); Relatório para ADENE–Agência de Energia; Laboratório Nacional de Energia e Geologia: Lisbon, Portugal, 2013. (In Portuguese) [Google Scholar]
- Ali, M.H.; Abustan, I. A new novel index for evaluating model performance. J. Nat. Resour. Develop. 2014, 4, 1–9. [Google Scholar]
- Mijakowski, M.; Sowa, J. An attempt to improve indoor environment by installing humidity-sensitive air inlets in a naturally ventilated kindergarten building. Build. Environ. 2017, 111, 180–191. [Google Scholar] [CrossRef]
- Almeida, R.; Freitas, V. IEQ assessment of classrooms with an optimized demand controlled ventilation system. Energy Procedia 2015, 78, 3132–3137. [Google Scholar] [CrossRef] [Green Version]
Floor | Zone | Room | Area [m2] | Volume [m3] |
---|---|---|---|---|
0 | 1 | Bedroom | 14.8 | 34.8 |
2 | Bathroom | 3.9 | 9.2 | |
3 | Stairway | 12.7 | 29.8 | |
4 | Reception | 30.0 | 70.6 | |
5 | Bathroom | 5.9 | 13.8 | |
6 | Hall | 13.2 | 31.1 | |
7 | Circulation | 5.8 | 13.6 | |
8 | Bedroom | 15.4 | 36.3 | |
9 | Bathroom | 4.2 | 9.9 | |
10 | Laundry room | 24.3 | 57.1 | |
11 | Circulation | 3.0 | 7.1 | |
1 | 1 | Bedroom | 20.3 | 58.1 |
2 | Living room | 35.8 | 102.0 | |
3 | Dining room | 29.9 | 85.3 | |
4 | Stairway | - | - | |
5 | Office | 21.6 | 61.7 | |
6 | Pantry | 6.5 | 18.7 | |
7 | Bathroom | 4.5 | 12.8 | |
8 | Bathroom | 3.6 | 10.4 | |
9 | Circulation | 5.0 | 14.4 | |
10 | Kitchen | 31.7 | 90.4 |
Material | λ (W.m−1.K−1) | ρ (kg.m−3) | cP (J.kg−1.K−1) | Porosity (m3.m−3) | Initial Moisture Content (kg.kg−1) |
---|---|---|---|---|---|
Basaltic stone | 1.66 | 2850 | 1000 | 0.095 | 0.00224 |
Lime mortar | 0.70 | 1600 | 850 | 0.30 | 0.01375 |
Oakwood | 0.152 | 700 | 1600 | 0.35 | 0.11430 |
Hollow brick (11 cm) | 0.13 | 650 | 850 | 0.74 | 0.00914 |
EPS | 0.04 | 15 | 1500 | 0.95 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malça, J.; Almeida, R.M.S.F.; Mendes Silva, J.A.R. Evaluation of the Hygrothermal Conditions of a Typical Residential Building in the Azores Archipelago. Energies 2023, 16, 5075. https://doi.org/10.3390/en16135075
Malça J, Almeida RMSF, Mendes Silva JAR. Evaluation of the Hygrothermal Conditions of a Typical Residential Building in the Azores Archipelago. Energies. 2023; 16(13):5075. https://doi.org/10.3390/en16135075
Chicago/Turabian StyleMalça, João, Ricardo M. S. F. Almeida, and José A. R. Mendes Silva. 2023. "Evaluation of the Hygrothermal Conditions of a Typical Residential Building in the Azores Archipelago" Energies 16, no. 13: 5075. https://doi.org/10.3390/en16135075
APA StyleMalça, J., Almeida, R. M. S. F., & Mendes Silva, J. A. R. (2023). Evaluation of the Hygrothermal Conditions of a Typical Residential Building in the Azores Archipelago. Energies, 16(13), 5075. https://doi.org/10.3390/en16135075